Martingale approximations for continuous-time and discrete-time stationary Markov processes

Hajo Holzmann* 1

Institut für Mathematische Stochastik, Georg-August-Universität Göttingen, Maschmühlenweg 8-10, D-37073 Göttingen, Germany

Received 1 July 2004; received in revised form 14 March 2005; accepted 1 April 2005
Available online 27 April 2005

Abstract

We show that the method of Kipnis and Varadhan [Comm. Math. Phys. 104 (1986) 1–19] to construct a Martingale approximation to an additive functional of a stationary ergodic Markov process via the resolvent is universal in the sense that a martingale approximation exists if and only if the resolvent representation converges. A sufficient condition for the existence of a martingale approximation is also given. As examples we discuss moving average processes and processes with normal generator.

MSC: primary 60F05; 60G44; secondary 60J25; 60J35

Keywords: Markov process; Central limit theorem; Martingale; Moving average process; Normal operator

1. Introduction

The central limit theorem (CLT) for additive functionals of stationary, ergodic Markov chains has been studied intensively during the last decades. A basic approach for proving the CLT, initiated by Gordin and Lifšic [13] and afterwards...
pursued by several authors, is to construct a martingale approximation to the partial sums. These are decomposed into a sum of a martingale with stationary increments and a remainder term. After showing that the remainder term is negligible in some suitable sense, asymptotic normality follows from a martingale CLT. In this note we will focus on the case where the remainder is negligible in mean-square. Let \((X_n)_{n \geq 0}\) be a stationary ergodic (discrete-time) Markov chain with state space \((X, \mathcal{B})\), transition operator \(Q\) and stationary initial distribution \(\mu\). We denote by \(\| \cdot \|\) and \(\langle \cdot, \cdot \rangle\) the norm and the inner product of \(L_2(\mu)\), respectively, and by \(L_2^0(\mu)\) the subspace with \(\int f \, d\mu = 0\). For a fixed function \(f \in L_2^0(\mu)\) let \(S_0 = 0\) and

\[
S_n(f) = f(X_1) + \cdots + f(X_n), \quad n \geq 1.
\]

Definition 1.1. We say that there is a martingale approximation to \(S_n(f)\) if there exist two sequences of random variables \((M_n)_{n \geq 1}\) and \((A_n)_{n \geq 1}\) such that

1. \(S_n(f) = M_n + A_n, \quad n \geq 1\),
2. \((M_n)_{n \geq 1}\) is a square-integrable martingale with stationary increments with respect to \(\mathcal{F}_n = \sigma(X_0, \ldots, X_n)\),
3. \(E(A_n)^2/n \to 0, \quad n \to \infty\).

Notice that if there exists a martingale approximation to \(S_n(f)\), the processes \((M_n)_{n \geq 1}\) and \((A_n)_{n \geq 1}\) are uniquely determined a.s.. Given a martingale approximation to \(S_n(f)\), from the CLT for martingales with stationary, ergodic increments due to Billingsley [2] and Ibragimov [16] it follows that:

\[
\frac{S_n(f)}{\sqrt{n}} \overset{n \to \infty}{\Rightarrow} \mathcal{N}(0, \sigma^2(f)),
\]

where the asymptotic variance satisfies

\[
\sigma^2(f) = EM_1^2 = \lim_{n \to \infty} ES_n(f)^2 / n.
\]

A martingale approximation in the above sense (with additional properties in several cases) was constructed by Derriennic and Lin [9–11], Gordin and Holzmann [12], Gordin and Lifšic [13,14], Kipnis and Varadhan [17], Maxwell and Woodroofe [18] and Woodroofe [20] under suitable conditions on the function \(f\) and in some cases on the Markov operator \(Q\). Wu and Woodroofe [21] also investigated necessary and sufficient conditions for existence of (a different notion of) martingale approximations. For a comparison with their results see Remark 2.4.

In this note we will mainly consider continuous-time Markov processes. Let \((X_t)_{t \geq 0}\) be a stationary ergodic Markov process, defined on a probability space \((\Omega, \mathcal{F}, P)\), with state space \((X, \mathcal{B})\), transition probability function \(p(t, x, dy)\) and stationary initial distribution \(\mu\). We assume that the contraction semigroup

\[
T_tf(x) = \int_X f(y) p(t, x, dy), \quad f \in L_2(\mu)
\]

is strongly continuous (on \(L_2(\mu)\)). Let \((\mathcal{F}_t)_{t \geq 0}\) be a filtration in \((\Omega, \mathcal{F}, P)\) such that \((X_t)_{t \geq 0}\) is progressively measurable with respect to \((\mathcal{F}_t)_{t \geq 0}\) and satisfies the
Markov property

\[E(f(X_t)|\mathcal{F}_u) = T_{t-u}f(X_u), \quad f \in L_2(\mu), \quad 0 \leq u < t. \]

Let \(L \) be the generator of \((T_t)_{t \geq 0} \) and \(\mathcal{D}(L) \) its domain of definition on \(L_2(\mu) \). Denote by \(L^0_2(\mu) \) the subspace of functions in \(L_2(\mu) \) with \(\int_X f \, d\mu = 0 \). For \(f \in L^0_2(\mu) \) and \(t \geq 0 \) let

\[S_t(f) = \int_0^t f(X_s) \, ds. \]

For a more detailed description of this setting see e.g. [1].

Definition 1.2. We say that there is a martingale approximation to \(S_t(f) \) if there exist two processes \((M_t)_{t \geq 0}\) and \((A_t)_{t \geq 0}\) on \((\Omega, \mathcal{A}, P)\) such that

1. \(S_t(f) = M_t + A_t, \quad t \geq 0, \)
2. \((M_t)_{t \geq 0}\) is a square-integrable martingale with respect to \((\mathcal{F}_t)_{t \geq 0}\) with stationary increments and \(M_0 = 0, \)
3. \(E(A_t)^2/t \to 0 \) as \(t \to \infty. \)

Again note that once the filtration \((\mathcal{F}_t)_{t \geq 0}\) is fixed, a martingale approximation is uniquely determined a.s. As in the discrete-time case, using a CLT for martingales with stationary increments (a careful discussion of which can be found in [6]) the existence of a martingale approximation implies that

\[\frac{S_t(f)}{\sqrt{t}} \xrightarrow{t \to \infty} N(0, \sigma^2(f)), \]

where

\[\sigma^2(f) = EM_1^2 = \lim_{t \to \infty} ES_t(f)^2/t. \]

The problem of the validity of the CLT for general continuous-time Markov processes has been studied less intensively than for discrete-time chains, and there seem to be few results via martingale approximation. Bhattacharya [1] proved the continuous-time analogue of Gordin and Lifšić’s [13] result. He assumed that there exists a solution to Poisson’s equation

\[f = -Lg, \quad g \in \mathcal{D}(L). \]

Write

\[S_t(f) = g(X_t) - g(X_0) - \int_0^t Lg(X_s) \, ds + g(X_0) - g(X_t). \]

Using Dynkin’s formula

\[T_t g - g = \int_0^t T_{t-s} L g \, ds, \quad g \in \mathcal{D}(L) \]

it can be shown that \((M_t)_{t \geq 0}, M_t = g(X_t) - g(X_0) - \int_0^t Lg(X_s) \, ds, \) is a martingale with stationary increments with respect to \((\mathcal{F}_t)\). Furthermore, we evidently have
For the asymptotic variance, Bhattacharya [1] gave the formula
\[\sigma^2(f) = 2(f, g) \] where \(f = -Lg \).

Kipnis and Varadhan [17] extended this approach in the context of reversible processes by solving (2) approximately via the resolvent. Using their method, de Masi et al. [8] studied reversible processes under weaker integrability conditions on the function \(f \), and Olla [19] considered non-reversible processes via the symmetrized operator \((L + L^*)/2\). Here our main goal is to show that the method of Kipnis and Varadhan [17] is universal in a certain sense. In Section 2 we introduce the resolvent representation of \(S_t(f) \) and show that there exists a martingale approximation to \(S_t(f) \) if and only if the resolvent representation converges (for the definitions see Section 2). Corresponding results are also formulated for Markov chains. In Section 3 this is applied to prove the CLT for stationary Markov processes under a condition analogous to that used by Maxwell and Woodroofe [18] in the discrete-time setting. As an example we consider moving average processes in continuous time. Furthermore, we give a sufficient condition for the existence of a martingale approximation if the generator \(L \) is a normal operator on \(L^2_c(\mu) \).

2. Martingale approximation and the resolvent

Let us start this section by recalling the resolvent representation of \(S_t(f) \), as introduced in [17]. Given \(\varepsilon > 0 \) let
\[R_\varepsilon f = (\varepsilon I - L)^{-1}f = \int_0^\infty e^{-\varepsilon t}T_t f \, dt, \quad f \in L^2(\mu), \]
be the resolvent. Since \(R_\varepsilon f \in \mathcal{D}(L) \), given \(f \in L^2_c(\mu) \) we let \(g_\varepsilon = R_\varepsilon f \) and decompose
\[S_t(f) = M_{t,\varepsilon} + \varepsilon S_t(g_\varepsilon) + A_{t,\varepsilon}, \quad (4) \]
where
\[M_{t,\varepsilon} = g_\varepsilon(X_t) - g_\varepsilon(X_0) - \int_0^t (Lg_\varepsilon)(X_s) \, ds, \quad A_{t,\varepsilon} = -g_\varepsilon(X_t) + g_\varepsilon(X_0). \]

For each \(\varepsilon > 0 \) the process \((M_{t,\varepsilon})_{t \geq 0} \) is a square-integrable martingale with stationary increments and \(M_{0,\varepsilon} = 0 \).

Definition 2.1. The decomposition (4) of \(S_t(f) \) is called the *resolvent representation*. The resolvent representation is said to *converge* if

1. \(\varepsilon \| g_\varepsilon \|^2 \to 0, \varepsilon \to 0 \).
2. There exists a decreasing sequence \(\varepsilon_n \to 0 \) with \(\varepsilon_{n+1} \geq c \varepsilon_n \) for some \(c > 0 \) such that for each \(t \geq 0 \), \(M_{t,\varepsilon_n} \) converges as \(n \to \infty \) to a limit in \(L^2(\Omega, \mathcal{F}, P) \).

Although this definition is rather technical, its significance becomes clear in the following theorem.
Theorem 2.2. Let \((X_t)_{t \geq 0}\) be a progressively measurable stationary ergodic Markov process, defined on a probability space \((\Omega, \mathcal{A}, P)\), with state space \((X, \mathcal{B})\), strongly continuous contraction semigroup \((T_t)_{t \geq 0}\) and stationary initial distribution \(\mu\). Let \(f \in L^2(\mu)\) and \(S_t(f) = \int_0^t f(X_s) \, ds\). Then there exists a martingale approximation to \(S_t(f)\) if and only if the resolvent representation of \(S_t(f)\) converges. In either case the limit variance is given by

\[
\sigma^2(f) = \lim_{n \to \infty} 2n(g_{1/n} - T_{1/n}g_{1/n}, g_{1/n}).
\]

A similar result also holds for discrete-time Markov chains. For \(\varepsilon > 0\) set \(g_\varepsilon = ((1 + \varepsilon)I - Q)^{-1}f\), where \(I\) denotes the identity, so that \((1 + \varepsilon)g_\varepsilon - Qg_\varepsilon = f\). Then we obtain a decomposition

\[
S_n(f) = M_{n, \varepsilon} + \varepsilon S_n(g_\varepsilon) + A_{n, \varepsilon},
\]

where

\[
M_{n, \varepsilon} = \sum_{k=1}^n (g_\varepsilon(X_k) - (Qg_\varepsilon)(X_{k-1})), \quad A_{n, \varepsilon} = (Qg_\varepsilon)(X_0) - (Qg_\varepsilon)(X_n).
\]

Again (6) is called the resolvent representation, and its convergence is defined as in the continuous-time case (just replace \(t\) by \(n\) in Definition 2.1). The theorem now goes

Theorem 2.3. Let \((X_n)_{n \geq 0}\) be a stationary ergodic Markov chain, defined on a probability space \((\Omega, \mathcal{A}, P)\), with state space \((X, \mathcal{B})\), transition operator \(Q\) and stationary initial distribution \(\mu\). Let \(f \in L^2(\mu)\) and \(S_n(f) = \sum_{k=1}^n f(X_k)\). Then there exists a martingale approximation to \(S_n(f)\) if and only if the resolvent representation of \(S_n(f)\) converges. In either case the limit variance is given by

\[
\sigma^2(f) = 2 \lim_{\varepsilon \to 0} \langle g_\varepsilon, f \rangle - \|f\|^2.
\]

Remark 2.4. Wu and Woodroofe [21] studied approximations by triangular arrays \((M_{n,k})_{k \geq 1}\) of martingales (with respect to \(\mathcal{F}_k\)). If

\[
\max_{k \leq n} E(S_k - M_{n,k})^2 = o(\sigma_n^2),
\]

where \(\sigma_n^2 = ES_n^2(f) \to \infty\), \((M_{n,k})_{k \geq 1}\) is called a martingale approximation scheme. It is called stationary if for each \(n\), \((M_{n,k})_{k \geq 1}\) has stationary differences, and non-triangular if \(M_{n,k} = M_k\) does not depend on \(n\). In this terminology, the martingale approximations of Definition 1.1 are stationary and non-triangular martingale approximation schemes. Wu and Woodroofe [21, Theorem 1], obtained necessary and sufficient conditions for the existence of such martingale approximation schemes. However, the martingale approximation schemes they construct are either stationary or non-triangular but the proof of Theorem 1 in [21] does not yield the existence of martingale approximation schemes which are both stationary and non-
triangular. Moreover, the martingale approximation schemes constructed do not imply the CLT. In their paper they also showed that the validity of a conditional version of the CLT is equivalent to a Lindeberg-type condition for the martingale approximation scheme.

Let us turn to the proof of Theorem 2.2. We will first prove two lemmas. Let

\[V_t f = \int_0^t T_s f \, ds, \quad f \in L_2^0(\mu). \]

Lemma 2.5. Suppose that \(|V_n f| = o(\sqrt{n}) \). Then \(\sqrt{\varepsilon} g \|g\| \rightarrow 0, \quad \varepsilon \rightarrow 0. \)

Proof. Observe that \(|V_t f| \leq |V_{[t]} f| + |f| \), where \([t]\) denotes the integer part of \(t\). Hence there is a non-increasing sequence \(\phi_n \rightarrow 0 \) such that \(|V_t f| / \sqrt{t} \leq \phi_{[t]}, \quad t \geq 1 \). Therefore it is easy to find a bounded, continuously differentiable function \(\psi \) on \([0, \infty)\) such that \(\psi(t) \geq \phi_{[t]}, \quad t \geq 1 \), and \(\psi(t) \rightarrow 0, \quad t \rightarrow \infty \). Using the formula

\[g = \int_0^\infty \varepsilon e^{-\varepsilon t} V_t f \, dt \]

for the resolvent we estimate

\[\sqrt{\varepsilon} \|g\| \leq \int_0^1 \varepsilon^{3/2} e^{-\varepsilon t} \|V_t f\| \, dt + \int_1^\infty \varepsilon^{3/2} e^{-\varepsilon t} \|V_t f\| \, dt \]

\[\leq \varepsilon^{3/2} \|f\| + \int_0^\infty \varepsilon^{3/2} e^{-\varepsilon t} \sqrt{t} \psi(t) \, dt. \]

Substituting \(u = \varepsilon t \) in the second term, we obtain \(\int_0^\infty e^{-u} \sqrt{u} \psi(u/\varepsilon) \, du \), which tends to 0 as \(\varepsilon \rightarrow 0 \) by dominated convergence. \(\Box \)

Lemma 2.6. For \(\varepsilon, \delta > 0 \) we have

\[|\langle g_\varepsilon - g_\delta - T_t(g_\varepsilon - g_\delta), g_\varepsilon - g_\delta \rangle| \leq 2t(\varepsilon + \delta) (\|g_\varepsilon\|^2 + \|g_\delta\|^2). \]

Proof. From Dynkin’s formula (3)

\[g_\varepsilon - g_\delta - T_t(g_\varepsilon - g_\delta) = \int_0^t (T_s L g_\delta - T_s L g_\varepsilon) \, ds. \]

Hence

\[\langle g_\varepsilon - g_\delta - T_t(g_\varepsilon - g_\delta), g_\varepsilon - g_\delta \rangle = \int_0^t \langle T_s L g_\delta - T_s L g_\varepsilon, g_\varepsilon - g_\delta \rangle \, ds. \]

Now since \(\delta g_\delta - L g_\delta = f \)

\[T_s L g_\delta = \delta T_s g_\delta - T_s f. \]
Therefore

\[|(T_s Lg_\delta - T_s Lg_\varepsilon - g_\varepsilon - g_\delta)| = |(\delta T_s g_\delta - \varepsilon T_s g_\varepsilon, g_\varepsilon - g_\delta)| \]

\[\leq \delta |(T_s g_\delta, g_\delta)| + \varepsilon |(T_s g_\varepsilon, g_\varepsilon)| \]

\[+ \delta |(T_s g_\delta, g_\varepsilon)| + \varepsilon |(T_s g_\varepsilon, g_\delta)| \]

\[\leq \delta \|g_\delta\|^2 + \varepsilon \|g_\varepsilon\|^2 + (\varepsilon + \delta)\|g_\delta\|\|g_\varepsilon\| \]

\[\leq 2(\varepsilon + \delta)(\|g_\varepsilon\|^2 + \|g_\delta\|^2). \]

Applying this inequality in (10) yields the result. \(\Box \)

Proof of Theorem 1. First assume that there exists a martingale approximation
\(S_t(f) = M_t + A_t. \) Since \(M_0 = 0 \)

\[\frac{1}{n} \|V_n f\|^2 = \frac{1}{n} E(E(S_n(f)|F_0))^2 \]

\[= \frac{1}{n} E(E(A_n) | F_0))^2 \]

\[\leq \frac{1}{n} EA_n^2 \rightarrow 0, \quad n \rightarrow \infty. \]

Thus \(\|V_n f\| = o(\sqrt{n}), \) and Lemma 2.5 applies. For any \(h \in L_2(\mu), \) from the Schwarz inequality

\[E \left(\int_0^t h(X_s) \, ds \right)^2 \leq E \left(t \int_0^t h(X_s)^2 \, ds \right) = t^2 \|h\|^2. \]

(11)

From (11) and Lemma 2.5 it follows that \(\varepsilon E(S_t(g_\varepsilon))^2 \rightarrow 0, \varepsilon \rightarrow 0, \) for any \(t > 0. \) Let us show that \(M_{t, \varepsilon} \) converges in \(L_2(\Omega, \mathcal{A}, P) \) along the sequence \(\varepsilon_n = 1/n \) to \(M_t. \) Since both \((M_t)_{t \geq 0} \) and \((M_{t, \varepsilon})_{t \geq 0} \) are martingales with stationary increments with respect to \((F_t) \), so is \((M_t - M_{t, \varepsilon}). \) Therefore

\[E(M_{t, \varepsilon} - M_t)^2 = 1/n E(M_{m, \varepsilon} - M_m)^2 \]

\[\leq 3/n EA_n^2 + 3/n EA_{m,n}^2 + 3/n \varepsilon^2 E(S_m(g_\varepsilon))^2 \]

By assumption, \(1/n EA_n^2 \rightarrow 0 \) as \(n \rightarrow \infty. \) Furthermore, \(EA_{m,1/n}^2 \leq 4\|g_1/n\|^2, \) thus using Lemma 2.5, \(1/n EA_{m,1/n}^2 \rightarrow 0. \) Finally from (11), \(E(S_n(g_{1/n})^2 \leq t^2 n^2 \|g_{1/n}\|^2, \) and we obtain the conclusion for the last term. This shows that the resolvent representation converges.

Conversely, assume that the resolvent representation converges. Since \(E(S_t(g_\varepsilon)^2) \leq t^2 \|g_\varepsilon\|^2, \) \(\varepsilon S_t(g_\varepsilon) \rightarrow 0 \) as \(\varepsilon \rightarrow 0 \) in \(L_2(\Omega, \mathcal{A}, P). \) From the resolvent representation (4),

\[A_{t, \varepsilon} = S_t(f) - M_{t, \varepsilon} - \varepsilon S_t(g_\varepsilon). \]

Since for \(t > 0 \) both \(M_{t, \varepsilon} \) and \(\varepsilon_n S_n(g_{\varepsilon_n}) \) converge as \(n \rightarrow \infty \) in \(L_2(\Omega, \mathcal{A}, P), \) and \(S_t(f) \) does not depend on \(n, \) it follows that \(A_{t, \varepsilon} \) also converges in \(L_2(\Omega, \mathcal{A}, P). \) Let us show that in fact \(A_{t, \delta_n} \) converges along an arbitrary sequence \(\delta_k \rightarrow 0. \) Let \(n(k) \) be such that
\(\varepsilon_{n(k)+1} \leq \delta_k \leq \varepsilon_{n(k)} \). Then \(\delta_k \geq c \varepsilon_{n(k)} \). From (1) and Lemma 2.6,

\[
E(A_t, \delta_k - A_{t,n(k)})^2 = 2(g_{\delta_k} - g_{\varepsilon_{n(k)}} - T_i(g_{\delta_k} - g_{\varepsilon_{n(k)}})) \leq 4t(\delta_k + \varepsilon_{n(k)})(\|g_{\delta_k}\|^2 + \|g_{\varepsilon_{n(k)}}\|^2) \leq 8t \varepsilon_{n(k)} \|g_{\varepsilon_{n(k)}}\|^2 + 4t(1 + 1/c) \delta_k \|g_{\delta_k}\|^2 \to 0, \quad k \to \infty.
\]

(12)

Arguing with the resolvent representation as above it follows that both

\[
M_{t, \varepsilon} \to M_t \quad \text{and} \quad A_{t, \varepsilon} \to A_t, \quad \varepsilon \to 0 \quad \text{in} \quad L_2(\Omega, \mathcal{F}, P), \quad t \geq 0,
\]

where \((M_{t, \varepsilon})_{t \geq 0}\) is a martingale with stationary increments with respect to \((\mathcal{F}_t) \), \(M_0 = 0 \) and \(EM_t^2 < \infty, EA_t^2 < \infty \) for every \(t \). Thus it remains to show that \(EA_t^2 / t \to 0 \). But

\[
EA_t^2 \leq 3EA_{t, \varepsilon}^2 + 3E(M_{t, \varepsilon} - M_t)^2 + 3\varepsilon^2 ES_t(f_{\varepsilon})^2.
\]

Now let \(\varepsilon = 1/t \) and proceed as in [17] in the discrete-time situation to obtain the conclusion. Therefore we have a martingale approximation to \(S_t(f') \).

Finally let us prove the formula for the limit variance. We have that

\[
\sigma^2(f) = EM_1^2 = \lim_{n \to \infty} EM_{1, 1/n}^2.
\]

Since \((M_{t, 1/n}, t \geq 0)\) is a martingale with stationary increments,

\[
EM_{1, 1/n}^2 = nEM_{1, 1/n}^2 = nE \left(g_{1/n}(X_{1/n}) - g_{1/n}(X_0) - \int_0^{1/n} (Lg_{1/n})(X_s) \, ds \right)^2.
\]

For any \(\varepsilon > 0 \), \(Lg_\varepsilon = -f + \varepsilon g_\varepsilon \), hence \(\|Lg_\varepsilon\| \leq \|f\| + \varepsilon \|g_{\varepsilon}\| \leq 2\|f\| \). Thus

\[
\frac{nE \left(\int_0^{1/n} (Lg_{1/n})(X_s) \, ds \right)^2}{1/n\|Lg_{1/n}\|^2} \to 0.
\]

Since \(nE(g_{1/n}(X_{1/n}) - g_{1/n}(X_0))^2 = 2n(g_{1/n} - T_{1/n}g_{1/n}, g_{1/n}) \), the formula for \(\sigma^2(f) \) follows. The theorem is thus proved. \(\square \)

Proof of Theorem 2. The proof is similar to that of Theorem 1, therefore we only show how to obtain the formula for the variance.

\[
\sigma^2(f) = \lim_{\varepsilon \to 0} EM_{1, \varepsilon}^2 = \lim_{\varepsilon \to 0} (\|g_{\varepsilon}\|^2 - \|Qg_{\varepsilon}\|^2).
\]

Furthermore,

\[
\|g_{\varepsilon}\|^2 - \|Qg_{\varepsilon}\|^2 = -2\varepsilon\|g_{\varepsilon}\|^2 - \varepsilon^2\|g_{\varepsilon}\|^2 + 2(g_{\varepsilon}, f) - \|f\|^2 + 2\varepsilon(g_{\varepsilon}, f).
\]

All terms vanish as \(\varepsilon \to 0 \) except for \(2(g_{\varepsilon}, f) - \|f\|^2 \), and the formula for \(\sigma^2(f) \) follows. \(\square \)
3. Asymptotic normality

In the following theorem we apply Theorem 1 to prove the CLT for stationary Markov processes under a condition which is analogous to that used by Maxwell and Woodroofe [18] in a discrete-time setting.

Theorem 3.1. Let \((X_t)_{t \geq 0}\) be a progressively measurable stationary ergodic Markov process with state space \((X, \mathcal{B})\), strongly continuous contraction semigroup \((T_t)_{t \geq 0}\) and stationary initial distribution \(\mu\). Let \(f \in L^2_2(\mu)\) and \(S_t(f) = \int_0^t f(X_s) \, ds\). Suppose that \(f\) satisfies
\[
\int_1^\infty \|V_t(f)\|/t^{3/2} \, dt < \infty. \tag{13}
\]
Then there exists a martingale approximation to \(S_t(f)\). In particular \(S_t(f)/\sqrt{t}\) is asymptotically normal with variance \(\sigma^2(f)\) given in (5), and
\[
\sigma^2(f) = \lim_{t \to \infty} E S_t(f)^2 / t.
\]

Proof. We show that the resolvent approximation converges. Let \(\varepsilon_n = 1/2^n\). The main point is to show that
\[
\sum_{n \geq 1} \sqrt{\varepsilon_n} \sup_{\varepsilon_n \leq \varepsilon < \varepsilon_{n-1}} \|g_\varepsilon\| < \infty. \tag{14}
\]
From this it follows immediately that \(\varepsilon \|g_\varepsilon\|^2 \to 0, \varepsilon \to 0\). Furthermore, from (12)
\[
E(A_{t,\varepsilon_{n+1}} - A_{t,\varepsilon_n})^2 \leq 8t\varepsilon_n \|g_{\varepsilon_n}\|^2 + 12t\varepsilon_{n+1} \|g_{\varepsilon_{n+1}}\|^2,
\]
and since \(\sqrt{a+b} \leq \sqrt{a} - \sqrt{b}, a, b \geq 0\),
\[
\|A_{t,\varepsilon_{n+1}} - A_{t,\varepsilon_n}\|_{L_2(\Omega, \mathcal{F}, P)} \leq C_1\sqrt{\varepsilon_n} \|g_{\varepsilon_n}\| + C_2 \sqrt{\varepsilon_{n+1}} \|g_{\varepsilon_{n+1}}\|.
\]
Therefore, from (14)
\[
\sum_{n \geq 1} \|A_{t,\varepsilon_{n+1}} - A_{t,\varepsilon_n}\|_{L_2(\Omega, \mathcal{F}, P)} < \infty,
\]
and \(A_{t,\varepsilon_n}\) converges in \(L_2(\Omega, \mathcal{F}, P)\) as \(n \to \infty\). From the resolvent representation it follows that \(M_{t,\varepsilon_n}\) also converges. It remains to show (14). Given \(\varepsilon > 0\) choose \(n\) such that \(\varepsilon_n \leq \varepsilon < \varepsilon_{n-1}\). From (8)
\[
\|g_\varepsilon\| \leq \varepsilon \int_0^1 e^{-\varepsilon t} \|V_t(f)\| \, dt + \varepsilon \int_1^\infty e^{-\varepsilon t} \|V_t(f)\| \, dt
\]
\[
\leq 2\varepsilon_n \|f\| + 2\varepsilon_n \int_1^\infty e^{-\varepsilon_n t} \|V_t(f)\| \, dt.
\]
Hence
\[
\sum_{n \geq 1} \sqrt{\varepsilon_n} \sup_{\varepsilon_n \leq \varepsilon < \varepsilon_{n-1}} \|g_\varepsilon\| \leq 2 \sum_{n \geq 1} \varepsilon_n^{3/2} \|f\| + 2 \int_1^\infty \|V_t(f)\| \left(\sum_{n \geq 1} \varepsilon_n^{3/2} e^{-\varepsilon_n t} \right) \, dt.
\]
But \(\sum_{n \geq 1} \frac{e^{3/2}}{n^3} e^{-ui} \) can be seen to be \(O(t^{-3/2}) \) (cf. [18, p. 715]), and condition (13) implies (14).

Corollary 3.2. If \(f \in L^0_2(\mu) \) satisfies

\[
\int_1^\infty \frac{\|T_t(f)\|}{\sqrt{t}} \, dt < \infty,
\]

then it also fulfills (13), and therefore the conclusions of the theorem remain valid.

Example 3.3 (Moving average processes). We consider the semigroup of translation operators on \(L^2[0, \infty) \) given by

\[
(T_t f)(u) = f(u + t), \quad f \in L^2[0, \infty)
\]

and denote the generator of \((T_t)\) by \(L \). Let \((\xi_t)_{t \in \mathbb{R}}\) be a square-integrable, real-valued process with stationary, independent increments, \(E\xi_t = 0 \) and \(E\xi_t^2 = dt \) (cf. [7, p. 111]). Each \(f \in L^2[0, \infty) \) gives rise to a stationary, ergodic process \((Y_t)_{t \in \mathbb{R}}\), defined by the stochastic integrals

\[
Y_t(f) = Y_t = \int_{-\infty}^t f(t - s) \, d\xi_s.
\]

Let \(\mathcal{F}_s = \sigma(\xi_u, u \leq s) \). We have that

\[
E(Y_t | \mathcal{F}_u) = \int_{-\infty}^u f(t - s) \, d\xi_s = \int_{-\infty}^u T_{t-u} f(u - s) \, d\xi_s, \quad t \geq u,
\]

hence

\[
E(E(Y_t | \mathcal{F}_0))^2 = \|T_t f\|^2 = \int_t^\infty f(u)^2 \, du.
\]

Although \((Y_t)_{t \geq 0}\) is not constructed from a Markov process in the way discussed above, these considerations show that our method can still be used with the translation semigroup \((T_t)\) in place of the semigroup of the Markov process. For example, the martingales \((M_{t,\varepsilon})_{t \geq 0}, \varepsilon > 0\), now take the form

\[
M_{t,\varepsilon} = Y_t(g_{\varepsilon}) - Y_0(g_{\varepsilon}) - \int_0^t Y_s(Lg_{\varepsilon}) \, ds,
\]

where \(g_{\varepsilon} \) is formed via the semigroup \((T_t)\). Thus Corollary 3.2 applies, and we obtain that if \(f \in L^2[0, \infty) \) satisfies

\[
\int_1^\infty \frac{1}{\sqrt{t}} \int_t^\infty f(u)^2 \, du \, dt < \infty,
\]

then

\[
\frac{1}{\sqrt{t}} \int_0^t Y_s \, ds \xrightarrow{t \to \infty} N(0, \sigma^2(f)),
\]

where \(\sigma^2(f) \) is given by (5).
Remark 3.4. Finally suppose that the generator L of the Markov process is a normal operator on $L^2_\mu(\mathbb{R})$. Although conditions for the CLT in the discrete-time case, i.e. in case of a normal transition operator Q, have been studied intensively (cf. Gordin and Lifšic [14], who announced the result and later published the complete proofs in [5, Section IV.7], or Derriennic and Lin [9,10]), there seems to be no continuous-time version in the literature so far. Let us formulate a sufficient condition for the convergence of the resolvent representation and hence for the validity of the CLT for such operators. Given $f \in L^2_\mu(\mathbb{R})$ let ρ_f be the spectral measure of L with respect to f (cf. [3, pp. 123–125]), and let $\sigma(L)$ denote the spectrum of L. One can show that if

$$\int_{\sigma(L)} \frac{1}{|z|^2} \rho_f(\mathrm{d}z) < \infty, \quad (15)$$

then the resolvent representation converges and hence there exists a martingale approximation to $S_t(f)$, where the limit variance is given by

$$\sigma^2(f) = -2 \int_{\sigma(L)} \frac{1}{z} \rho_f(\mathrm{d}z).$$

A rich class of examples of Markov processes with normal but not necessarily self-adjoint generator arises from convolution semigroups on compact, commutative hypergroups (cf. [4]). Further details can be found in [15]. As pointed out in [10] for the discrete-time case, the condition (15) is weaker than (13) as used in Theorem 3.1.

Acknowledgements

This paper is based on a section of my Ph.D. thesis (Universität Göttingen, 2004), and I would like to thank my supervisor Professor M. Denker for constant encouragement, discussions and advice. Further I thank the referee for pointing out several references.

References