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We extend the central limit theorem for additive functionals of a stationary, ergodic Markov chain with
normal transition operator due to Gordin and Lifšic, 1981 [A remark about a Markov process with normal
transition operator, In: Third Vilnius Conference on Probability and Statistics 1, pp. 147–48] to
continuous-time Markov processes with normal generators. As examples, we discuss random walks on
compact commutative hypergroups as well as certain random walks on non-commutative, compact
groups.
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1. Introduction

The central limit theorem (CLT) for additive functionals of stationary, ergodic Markov chains

has been studied intensively during the last decades. Let (Xn)n$0 be a stationary, ergodic

Markov chain with state space (X,B), transition operator Q and invariant initial distribution

m. A situation, which is particularly well understood is that in which Q is a normal operator

on LC2 ðmÞ: This was first considered by Gordin and Lifšic [12]. Denote by L0
2 the set of real-

valued functions with
Ð
f dm ¼ 0 and let

Snð f Þ ¼ f ðX1Þ þ · · ·þ f ðXnÞ

be the partial sums. Assume that Q is normal and given f [ L02 let rf denote the spectral

measure of Q with respect to f (cf. [2] for the definition). In [12], it is shown that if f [ L02
satisfies ð

s ðQÞ

1

j1 2 zj
drf ðzÞ , 1; ð1Þ
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then Snðf Þ=
ffiffiffi
n

p
is asymptotically normal with variance

s2ðf Þ ¼

ð
s ðQÞ

12 jzj
2

j12 zj
2
drf ðzÞ: ð2Þ

It seems that at that time their result did not receive much attention, and complete proofs

were only published later in [4]. Kipnis and Varadhan [16] reproved the result for reversible

chains, which correspond to self-adjoint Q, using a different technique and Deriennic and Lin

[6] gave a proof for the normal case without use of the spectral theorem. They used the

condition f [ Im
ffiffiffiffiffiffiffiffiffiffiffiffi
I 2 Q

p� �
; which is equivalent to equation (1) (cf. [8]). In this paper, we

mainly consider continuous-time Markov processes. Let (Xt)t$0 be a stationary ergodic

Markov process, defined on a probability space ðV;A;PÞ; with state space ðX;BÞ; transition
probability function p(t,x,dy) and stationary distribution m. We assume that the contraction

semigroup

Tt f ðxÞ ¼

ð
X

f ð yÞp ðt; x; dyÞ; f [ L2ðmÞ;

is strongly continuous (on L2(m)). Let ðF tÞt$0 be a filtration in ðV;A;PÞ such that (Xt)t$0 is

progressively measurable with respect to ðF tÞt$0 and satisfies the Markov property

Eð f ðXtÞjF uÞ ¼ Tt2u f ðXuÞ; f [ L2ðmÞ; 0 # u , t:

Let L be the generator of (Tt)t$0 and DðLÞ its domain of definition on LC2 ðmÞ. Given

f [ L02; t . 0 let

Stð f Þ ¼

ðt
0

f ðXsÞ ds:

Without further assumptions on the generator L, Bhattacharya [1] proved asymptotic

normality for Stð f Þ=
ffiffi
t

p
(in fact even the functional CLT) if f [ Im(L). For a reversible

Markov process (which corresponds to self-adjoint L), in [16], the CLT under the assumption

that f [ Im
ffiffiffiffiffiffiffi
2L

p� �
is proved.

In this paper, we study the case in which L is a normal operator, i.e. LL * ¼ L *L. Recall

that the generator L is normal if and only if each operator Tt, t . 0, of the corresponding

semigroup is normal (cf. [19], p. 360). In Section 2, the CLT for Markov processes with

normal generator L under a spectral assumption similar to equation (1) is proved, following

the method used in [16] for the self-adjoint case. We point out that the method of Gordin and

Lifšic [12] for discrete-time chains seems not to be applicable in continuous time. An

interesting situation in which the generator L turns out to be normal but not necessarily self-

adjoint is that of a convolution semigroup on a compact, commutative hypergroup. In

Section 3, we prove a CLT for the corresponding random walks. Random walks on non-

commutative compact groups, where the corresponding convolution semigroup is contained

in the center of measure algebra, are discussed in Section 4.

2. The central limit theorem

In this section, we will prove the CLT for stationary, ergodic Markov processes with normal

generator. Assume that, L is a normal operator on LC2 ðmÞ with spectrum s (L) and for f [ L02
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denote by rf (dz) the spectral measure of L with respect to f. Recall that we have RðzÞ # 0 for

each z [ s (L). Consider the conditionð
s ðLÞ

1

jzj
rf ðdzÞ , 1: ð3Þ

Given e . 0; let ge ¼ ðeI 2 LÞ21f be the image under the resolvent mapping. Recall that

ge [ DðLÞ; the domain of definition of L, for any e . 0: The norm in LC2 ðmÞ is denoted by k·k

and the scalar product by , ·,· . .

Lemma 1. Assume that L is normal and that f [ L0
2 satisfies equation (3). Then

lim
e!0

ekge ; ge l ¼ 0 ð4Þ

and

lim
d;e!0

kge 2 gd 2 Ttðge 2 gdÞ; ge 2 gdl ¼ 0: ð5Þ

Proof. In order to show equation (4), from the spectral theorem it follows that

ekge ; ge l ¼
ð
s ðLÞ

e

je 2 zj
2
rf ðdzÞ:

Since, R(z) # 0 for z [ s (L) we estimate

je 2 zj
2
¼ e 2 þ jzj

2
2 2e�RðzÞ $ e 2 þ jzj

2
$ 2ejzj:

Thus equation (4) follows from equation (3) and the dominated convergence theorem.

As for equation (5), we have from the spectral theorem

kge 2 gd 2 Ttðge 2 gdÞ; ge 2 gdl ¼
ð
s ðLÞ

ð12 eztÞ
1

e 2 z
2

1

d2 z

� �
1

e 2 �z
2

1

e 2 z

� �
rf ðdzÞ

#

ð
s ðLÞ

j12 eztj
ðe 2 dÞ2

je 2 zj
2
�jd2 zj

2
rf ðdzÞ:

We can assume e . d . 0: Now je 2 zj
2
jd2 zj

2
$ jzj

2
e 2: On s (L) > {jzj # 1} we have

j1 2 e ztj # jztje t, and the integrand is dominated by te t/jzj. On s (L) > {jzj . 1} we have

j1 2 eztj # 1þ jeztj ¼ 1þ eRzt # 2;

and the integrand is dominated by 2/jzj2 # 2/jzj. Again equation (5) follows from equation

(3) and the dominated convergence theorem. A

Theorem 1. Let (Xt)t$0 be a progressively measurable stationary ergodic Markov process

with state space ðX;BÞ, strongly continuous contraction semigroup (Tt)t$0 and stationary

distribution m. Assume that the generator L is normal on LC2 ðmÞ and that f [ L0
2 satisfies
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equation (3). Then

Stð f Þffiffi
t

p ¼)
t!1

Nð0;s2ð f ÞÞ;

where the limit variance satisfies

s2ð f Þ ¼ lim
t!1

EðStð f ÞÞ
2=t ¼ 22

ð
s ðLÞ

1

z
rf ðdzÞ:

Here, N(0,s 2) denotes the normal law with mean 0 and variance s 2, and ) denotes weak

convergence of distributions.

Proof. Consider the decomposition

St ð f Þ ¼ Mt;e þ eStðge Þ þ At;e ;

where

Mt;e ¼ ge ðXtÞ2 ge ðX0Þ2

ðt
0

ðLge ÞðXsÞ ds;

At;e ¼ 2ge ðXtÞ2 ge ðX0Þ;

and ðMt;e Þt$0 is a martingale with stationary increments and M0;e ¼ 0 for any e . 0: For any

h [ L2(m), from the Schwarz inequality,

E

ðt
0

hðXsÞ ds

� �2

# E t

ðt
0

hðXsÞ
2 ds

� �
¼ t 2khk

2
: ð6Þ

From equations (4) and (6), it follows that e 2EStðge Þ
2 ! 0. Furthermore, since

EðAt;e 2 At;dÞ
2 ¼ 2 , ge 2 gd 2 Ttðge 2 gdÞ; ge 2 gd .;

the convergence of At;e to some At as e ! 0 follows directly from equation (5) via the Cauchy

criterion. Since, Mt;e ¼ eStðge Þ þ At;e 2 Stð f Þ; Mt;e also converges to a limit Mt, which is

also a martingale with stationary increments, and St ( f ) ¼ Mt þ At. Using equation (4), it is

easy to show (see Kipnis and Varadhan [16]) that EA2
t =t! 0 as t ! 1. Asymptotic

normality follows from the CLT for martingales with stationary increments. This result is

well-known for discrete-time martinagles; see Chikin [5] for a careful discussion of the

continuous-time case. Finally, let us prove the formula for s 2( f ). From [14],

EM2
1 ¼ s2ð f Þ ¼ lim

n!1
2n , g1=n 2 T1=ng1=n; g1=n . :

Now

2n , g1=n 2 T1=ng1=n; g1=n .¼ 2

ð
s ðLÞ

12 ez=n

1=n

1

j1=n2 zj
2
drf ðzÞ:

The intergrand converges to 21=�z; and by an application of the dominated convergence

theorem, which can be justified as above the formula for s 2( f ) follows. This finishes the

proof of the theorem. A
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Remark 1. A functional CLT for Markov chains with normal transition operator, started at a

point, was proved in [7] under a spectral assumption slightly stronger than (3). It would be of

some interest to obtain a similar result for continuous-time Markov processes.

Remark 2. Kipnis and Varadhan [16] in fact obtained the functional central limit theorem for

reversible Markov processes under the condition (3). A simpler proof of the functional part

was given by Olla [18]. It is possible to deduce from his results that if

2

ð
s ðLÞ

1

Rz
drf ðzÞ , 1;

then the functional CLT holds in case of a stationary Markov process with normal generator.

Whether such a result is already true under the milder spectral assumption (3) remains an

open problem.

3. Random walks on compact commutative hypergroups

In this section, we apply Theorem 1 to random walks on compact commutative hypergroups.

Roughly speaking, a hypergroup is a Hausdorff space H such that the space of regular finite

Borel measures MbðHÞ can be equipped with a convolution operation, which preserves the

probability measures. Axiomatic schemes for this concept were first introduced by Dunkl [9]

and Jewett [15]. Since then hypergroups have been investigated intensively, due to the rich

variety of examples, and a rather general notion of hypergroups has become standard in the

literature. Let H be a locally compact Hausdorff space. We denote by MbðHÞ the space of

regular finite Borel measures and by M1ðHÞ the subset of regular probabilities. Our

definition of a hypergroup is taken from Bloom and Heyer [3].

Definition 1. H is called a hypergroup if the space ðMbðHÞ;þÞ admits a second binary

operation * such that the following conditions are satisfied.

1. ðMbðHÞ;þ; *Þ is an algebra.

2. For any x, y [ H, dx*dy [ M1ðHÞ and supp (dx*dy) is compact (here, dx denotes the Dirac

measure at x [ H).

3. The mappings (x,y) 7! dx*dy and (x,y) 7! supp(dx*dy) of H £ H are continuous with

respect to the weak topology and the Michael topology, respectively.

4. There exists an involution x 7! �x of H such that dx*dy ¼ d�y*d�x for all x,y [ H, where �n

denotes the image of n [ MbðHÞ under the involution.

5. There exists an element e [ H such that de*dx ¼ dx*de ¼ dx for all x [ H, and such that

e [ supp(dx*dy) if and only if y ¼ �x, x,y [ H.

The hypergroup H is called commutative if ðMbðHÞ;þ; *Þ is a commutative algebra. In the

following, let H be a commutative hypergroup. The x-translate of a function f [ Cc(H) is

defined by

tx f ðyÞ ¼ f ðx*yÞ ¼

ð
H

f dðdx*dyÞ:
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A measure n [ MbðHÞ is called invariant ifð
H

tx f dm ¼

ð
H

f dm; f [ CcðHÞ; x [ H:

A compact hypergroup (i.e. H is a compact) always admits a unique invariant measure

m [ M1ðHÞ (cf. [3], p. 40), and we have the formula (cf. [3], p. 34)ð
H

f ðx*yÞgð yÞ dmð yÞ ¼

ð
H

f ðyÞgð�x*yÞ dmðyÞ ;f ; g [ LC2 ðmÞ: ð7Þ

Furthermore, translation can be extended to the space LC2 ðmÞ. The convolution of a

function f [ LC2 ðmÞ and a measure n [ MbðHÞ is defined by

f*n ðxÞ ¼

ð
K

f ðx*�yÞ dn ðyÞ:

A non-zero, continuous function x : H ! C is called a character if

x ðx*�yÞ ¼ x ðxÞx ðyÞ; x; y [ H:

It follows that x (e) ¼ 1, jx (x)j # 1 and x ð�xÞ ¼ x ðxÞ. The set of characters is denoted by

Ĥ. If H is compact and commutative, Ĥ is discrete (with respect to the topology of uniform

convergence), and forms an orthogonal basis of LC2 ðmÞ (cf. [9], p. 340). The Fourier transform

of a function f [ LC2 ðmÞ and of a measure n [ MbðHÞ are defined respectively by

f̂; n̂ : Ĥ! C; f̂ ðx Þ ¼

ð
H

f x dm; n̂ ðxÞ ¼

ð
H

x dn:;

The Plancherel measure on Ĥ is given by p ¼
P

x[HcðxÞdx; where dx is the Dirac

measure at x and

cðxÞ ¼

ð
H

jxj
2
dm

� �21

:

Furthermore, we have the Plancherel formula and the inversion formula (cf. [3], pp. 86, 91).

Firstly, let us consider discrete-time random walks. Let Q [ M1ðHÞ be a probability

measure on H. Then, we can define a Markov kernel Q on LC2 ðmÞ by letting Q f (x) ¼ f*Q(x).

Using the translation invariance of the Haar measure one shows that this Markov kernel

preserves m. Now we are in the position to state the following result.

Theorem 2. Let H be a compact, commutative hypergroup with Haar measure m. Let

Q [ M1ðHÞ and let (Xn)n$0 be a random walk in H with transition operator Q and stationary

distribution m. Suppose that 1 is a simple eigenvalue of Q and that f [ L0
2 satisfies

X
x[Ĥ

1

j1 2 Q̂ðxÞj
cðxÞj f̂ ðxÞj

2
, 1:

Then Snðf Þ=
ffiffiffi
n

p
is asymptotically normally distributed, and the limit variance is given by

s2ð f Þ ¼
X
x[Ĥ

12 jQ̂ðxÞj
2

j12 Q̂ðxÞj
2
cðxÞj f̂ ðxÞj

2
:
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Proof. We want to apply condition (1), as obtained by Gordin and Lifšic [12]. It is well-

known that the chain (Xn)n$0 is ergodic if and only if 1 is a eigenvalue of Q. Now let us show

that Q is a normal operator. To this end, using equation (7) the following is easily shown.ð
H

ðQ f ÞðxÞgðxÞ dmðxÞ ¼

ð
H

f ðxÞ

ð
H

gðx*yÞ dQð yÞ dmðxÞ; f ; g [ LC2 ðmÞ:

Therefore, the adjoint operator is given by ðQ*gÞðxÞ ¼
Ð
gðx* yÞ dQðyÞ; i.e. by convolution

with respect to the measure �Q. By commutativity it follows that Q is normal. Furthermore, we

have that

x *Q ¼ Q̂ðxÞx; x [ Ĥ: ð8Þ

Therefore, Q has a discrete spectrum and each x is an eigenvector with eigenvalue Q̂ðxÞ.

The theorem now follows from equations (1) and (2). A

Remark 3. Related results on the central limit theorem for random walks on hypergroups,

where H is a non-compact interval or the lattice Z or Zþ, can be found in [11].

Now let us consider continuous-time random walks. A convolution semigroup ðQtÞt.0 ,

M1ðHÞ is a family of probabilitymeasures such thatQt*Qs ¼ Qsþt. It is called e-continuous (or

simply continuous) if limt!0Qt ¼ de in the topology of weak convergence. For every

e-continuous convolution semigroup there exists a negative definite function c [ NðsÞ
B ðĤÞ (see

[3], p. 334), called the exponent of the convolution semigroup, such that Q̂t ¼ expð2tcÞ:Given

an e-continuous convolution semigroup,weobtain a contraction semigroup by lettingTt ¼ f *Qt

f [ LC2 ðmÞ (cf. [3], p. 427). This semigroup commutes with translations, and gives rise to a

stationary Markov process (Xt)t$0 with stationary distribution m. We have the following

Theorem 3. Let H be a compact, commutative hypergroup with Haar measure m. Let (Qt)t.0

be an e-continuous convolution semigroup with exponent c [ NðsÞ
B ðĤÞ and let (Xt)t$0 be the

corresponding continuous-time random walk with semigroup Tt, generator L, and stationary

distribution m. Suppose that 0 is a simple eigenvalue of L and that f [ L0
2 satisfiesX

x[Ĥ

1

jc ðxÞj
cðxÞj f̂ ðxÞj

2
, 1: ð9Þ

Then Stðf Þ=
ffiffi
t

p
is asymptotically normally distributed with limit variance

s2ð f Þ ¼ 2
X
x[Ĥ

1

c ðxÞ
cðxÞjf̂ðxÞj

2
:

Proof. First let us show that the semigroup (Tt) is strongly continuous. In fact, the Fourier

transform gives rise to the contraction semigroup on LC2 ðĤ;pÞ given by the multiplication

operators MtF ¼ expð2tcÞF; F [ LC2 ðĤ;pÞ. Such contraction semigroups are always

strongly continuous (cf. Nagel and Schlotterbeck [17], p. 8), and their generator is the

densely-defined multiplication operator L̂F ¼ 2cF. Thus from the Fourier isometry, it

follows that the generator L of (Tt) is also densely defined with domain

DðLÞ ¼ f [ LC2 ðĤ;mÞ : cf̂ [ LC2 ðĤ;pÞ
� 	

;
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and d
ðLf ÞðLf Þ ¼ 2cf̂; f [ DðLÞ:

For f ¼ x with x [ Ĥ this gives

d
ðLxÞðgÞðLxÞðgÞ ¼ 2c ðxÞcðxÞ211{x}ðgÞ; x; g [ Ĥ:

From the inversion theorem ([3], pp. 89–92) we get that

Lx ¼ 2cðxÞx:

The theorem follows from theorem 1. A

Remark 4. Observe that L is self-adjoint if and only if Qt ¼ �Qt for all t . 0.

Example 1. (Compact Abelian groups). In this examples we illustrate the use of Theorems 2

and 3 by considering random walks on a separable compact Abelian group G. Let G denote

the dual group of G and let mG be the normalized Haar measure. It is well known that

characters form an orthonormal basis of LC2 ðGÞ. There is a hypergroup structure on G given

by the usual convolution, i.e. dx þ dy ¼ dxþy: Thus Haar measure on the hypergroup is the

usual Haar measure on G, and the characters of the hypergroup are given by the characters of

the group. Theorems 2 and 3 apply, and c(x) ¼ 1 for all x [ G. In discrete time, this example

was studied by Gordin & Lifšic ([4], pp. 171, 72). Given an e-continuous convolution

semigroup, the generating functional c can be decomposed as follows:

c ¼ c1 þ c2 þ c3;

where c1 is a continuous primitive form, c2 a continuous square form, and c3 is given in

terms of the Lévy function and the Lévy measure (see Heyer [13], pp. 70, 308). Let us

consider the one-dimensional torus T 1, where characters are of the form xnðuÞ ¼ e inu;

u [ [0, 2p). In this case (cf. Zimple [20], p. 493),

c1ðxnÞ ¼ 2ian; c2ðxnÞ ¼ bn2; a [ R; b $ 0:

If c ¼ c1, Xt ¼ e iat is a deterministic motion. As can be expected, (9) is satisfied for any

f [ L0
2 but s 2(f) ¼ 0. If c ¼ c2, the Qt are wrapped Gaussian distributions with densities

qtðuÞ ¼
1

2p

X
n[Z

e2tn 2bcos ðnuÞ:

Equation (9) is also satisfied for any f [ L0
2, and s

2( f ) – 0 if f – 0 (and b – 0). Notice that

L is self-adjoint in this case. If the Lévy measure a is bounded, then

c3ðxnÞ ¼

ð
G\{e}

ð12 xnðuÞÞ daðuÞ:

In this case (as well as in the case of general c), asymptotic normality depends on the

Fourier expansion of f [ L0
2.
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4. Random walks on compact, non-Abelian groups

In this section we show how to apply Theorem 1 to certain random walks on compact,

possibly non-Abelian groups.

Let G be a compact, separable group with normalized Haar measure mG and let Ĝ denote

the set of equivalence classes of irreducible unitary representations of G. If a [ Ĝ, we let a

also stand for some representative of this equivalence class, acting on a space Va of finite

dimension na. We have the orthogonal Hilbert space decomposition

LC2 ðGÞ ¼ %
a[ĜHa; Ha ¼ {g 7! trðaðgÞCÞ; g [ G; C [ EndðVaÞ}; a [ Ĝ;

where tr(C) denotes the trace of the endomorphism C (cf. Ref. [10]). The orthogonal

projection of f [ LC2 ðGÞ to Ha is given by n a fa, where fa ¼ f * xa ¼ xa * f, and xa is the

character of a.

Let H be the set of conjugacy classes with the quotient topology. There is a one-to-one

correspondence between MbðHÞ and ZðMbðGÞÞ, the center of MbðGÞ. Therefore H can be

equipped with a commutative hypergroup structure, and Theorems 2 and 3 apply to random

walks on H. Explicitly, the characters of H are given by the normalized characters of the

group gp ¼ xp=na.

We want to extend this result to functions which are not necessarily conjugation-invariant.

Notice that Q [ ZðMbðGÞÞ is ergodic on LC2 ðGÞ if and only if it is ergodic on LC2 ðH;mÞ, since

0 is either a simple or multiple eigenvalue in both cases.

Theorem 4. Let G be a compact, separable, non-Abelian group and let Q be a probability on

G. Suppose that Q [ ZðMbðGÞÞ and that Q, as a convolution operator, has 1 as a simple

eigenvalue. Let (Xn)n$0 be a random walk on G with transition operator Q and stationary

distribution mG. If f [ L0
2 satisfiesX

a[Ĝ

1

j1 2 Q̂ðxaÞ=naj
n2
ak f ak

2
, 1;

then Sn( f )/
ffiffiffi
n

p
is asymptotically normally distributed, where the limit variance is given by

X
a[Ĝ

1 2 jQ̂ðxaÞ=naj
2

j1 2 Q̂ðxaÞ=naj
2
n2
ak f ak

2
, 1:

Proof. Since Q [ ZðMbðGÞÞ, from (8) we obtain Q * ga ¼ Q̂ðgaÞga or

Q * xa ¼ Q̂ðxaÞ=naxa. Given any f [ LC2 ðGÞ and a [ Ĝ, we have since Q [ ZðMbðGÞÞ,

Q * f a ¼ Q * f * xa ¼ f *Q * xa ¼ Q̂ðxaÞ=naf * xa ¼ Q̂ðxaÞ=na f a:

Therefore, each space Ha is an eigenspace of Q with eigenvalue Q̂ðxaÞ=na and in

particular,Q is a normal operator. The theorem follows from condition (1), due to Gordin and

Lifšic [12]. A

A similar result can be formulated for e-continuous convolution semigroups in ZðMbðGÞÞ.
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