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Abstract

A new method in two variations for the identification of mostewvant covariates in linear models with
homoscedastic errors is proposed. In contrast to many krsalattion criteria, the method is based on
an interpretable scaled quantity. This quantity measuresbdmal relative error one makes by selecting
covariates from a given set of all available covariates. piugposed model selection procedures rely on
asymptotic normality of test statistics, and thereforenmadity of the errors in the regression model is not
required. In a simulation study the performance of the ssiggemethods along with the performance of
the standard model selection criteria AIC, BIC, Lasso atakesl Lasso is examined. The simulation study
illustrates the favorable performance of the proposed atk#ts compared to the above reference criteria,
especially when regressiofffects possess influence of several orders in magnitude. Toeaay of the
normal approximation to the test statistics is also ingaséd, it is already satisfactory for sample sizes 50
and 100. As an illustration the US college spending data ft66% is analyzed.
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1. Introduction

The choice of the relevant covariates in a linear regressiodel is an important and much studied
problem. For this purpose, various methods have been stegbgesthe literature. One approach is via
model selection criteria. Here one seeks to find the sub-hwddeh minimizes a certain information crite-
rion, for example Akaike’s information criterion AIC (Akeg, 1974) or the Bayesian information criterion
BIC (Schwarz, 1978). Typically, one of the various stepwisgthods for subset selection in regression (c.f.
Miller, 2002) is applied in order to find the sub-model whictiually minimizes the information criterion
in use. There is a wide variety of model selection criteridhia literature, apart from AIC and BIC we
mention Mallows’ (1973)C,,, the deviance information criterion DIC as discussed ire§gihalter et al.
(2002) or the focused information criterion FIC of Claeskamd Hjort (2003). For further information
see the monograph of Burnham and Anderson (2002). Anothmr@oapproach to model selection is the
least absolute shrinkage and selection operator (Lassoipsehirani (1996) and its extensions (see e.g.
Meinshausen (2007) and Wang and Leng (2008)). The Lassotfindsdinary least squares estimate with
constrained sum of absolute regressionfitoients. Thd; constraint results in a model selection property
of the Lasso since some of its estimates can be zero. In peatiie model selection problem is often also
solved by sequentially testing the relevant linear retstns determining the sub-models. For relationships
between model testing using the-test and certain information criteria see dgrirta and Mellin (1986).

In this paper we introduce a new type of test which is desigoedlidate a linear sub-model consisting
of variables with strongfeects on the response, and discuss its use for variableisel@cirposes. More

*Corresponding author: Zentrum Mathematik, Technische éfgitat Miinchen, Boltzmannstr. 3, 85748 Garching, Germany
Email addressesaleksmin@ma.tum.de (Aleksey Min),holzmann@mathematik.uni-marburg.de (Hajo Holzmann),
cczado@ma.tum.de (Claudia Czado )

Preprint submitted to Computational Statistics and Datalxsis June 29, 2009



specifically, consider the homoscedastic linear regragsiadel
Y = XB+ €= X1, + Xof3s + €, (1)

whereY € R" is the response vectoX := [Xy, Xo] € R™(P*9 js the known design matrix anl :=
(B1.B5) € RP*% denotes the unknown regression parameter vector of intéfes the moment the errors
€1, . . ., € constitutinge in model (1) are assumed to be independent, identically albyrdistributed with
E(e1) = 0 andVar(e;) = o>. However the distribution of the errors should not be nemélgsa normal
distribution and later we specify it more generally depagdin aims we pursue. Suppose that we want to
check the validity of the sub-model

Y = X4B; + €, (2)

whereX; € R™P andp, € RP. Classically one verifies model (2) by testing the point Hizpsis

HO Zﬂ2=0

using theF-test. However, for many purposes it is not adequate to basigion for or against the
sub-model (2) on testing the hypothesls, and some alternative methods have been developed. Toro-
Vizcarrondo and Wallace (1968), see also Wallace (19723emivfed that the sub-model may be superior
to the complete model in terms of mean square error (MSE) é¥ba sub-model is incorrect. Therefore
they suggested to test in which model the least squaresatstihas smaller MSE. More precisely, let

= (X'X)IXY andB, = (X;X1)"1XY denote the least squares (LS) estimator in the full model (1)
and in the sub-model (2), respectively. Hg&,els also considered as ® ¢ g)—dimensional vector by
filing the lastq entries by 0, i.e.8, = [Y’ Xa(XXa) ™ L 0)". For an arbitrary estimatds of g8 we let
MSEb) := E [(b-B)(b-p)], andMSEB,) < MSEPB) means thaMS EB) — MS E(,) is positive
semidefinite. Now they suggest to test the hypothesis

Huse @ MS E([Agr) <MS E(i'}) versus Kmse @ NotHyse

Setting

dn 1 ’ N/
A:=n O(gz), an(B,) = ﬁﬁzszMXZBZ’ )

wherePy, := X;(X;X;1)"1X] is the projection matrix unto the column space spanned;bQRy, := I, — Py,
andl, is the identity matrix of dimension, Toro-Vizcarrondo and Wallace (1968) showed tHats g is
equivalent tol < 1. Using the fact that under the assumption of normal ertbest--statistic corresponding
to Hyse is non-central F-distributed (in the notation of Kotz andidsson (1970)) with non-centrality
parametenl, Toro—Vizcarrondo and Wallace (1968) constructed a umfgpmost powerful test foHyse
versusKyse based on the F-statistic. Hypotheses relateH i@ ¢ were investigated by Wallace (1972)
and by Yancey et al. (1973).

The hypothesisHyse still has some drawbacks. Instead of comparing models,nitpewes the per-
formance of certain estimators. This is a somewhat arithoice since there are other estimators (e.g.
the ridge estimator, cf. Farbrother, 1975), which have BndSE than the LS estimator. Further, the
hypothesisHyse compares the performance of pre-model selection estisyatdrile it should compare
the performance of post model-selection estimators (atbland Btscher, 2003).

Moreover, even if the hypotheskyse (or Hp) cannot be rejected with a large p-value, this does not
imply that the hypothesi$iyse (or Hp) is actually true, and therefore no evidence for sub-modgl (
is provided. Hence, we suggest to test a hypothesis whialséscon validating the sub-model (2). A
related approach to validating parametric functional ®mwif regression models (against nonparametric
alternatives) was suggested by Dette and Munk (1998). Fektmsive discussion on the methodological
aspects of performing tests for model validation see DetteNunk (2003).

In some variable selection problems one is interested retysim identifying variables which have
a nonzero regression diieient but in identifying variables which have a stroneet on the response
compared to the jointfeect of the variables not selected. Therefore we need a distaeasure between
the restricted model (2) and the full model (1). Note tHg(B,) given in (3) is the squared normalized
length (with factorn™') of the n-vector X,8,, when projected onto the orthogonal complement of the
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space spanned by the columnsXafwith projection matrixQy,. Thus it provides a natural measure of
distance between the restricted model (2) and the full m@gdeM/e propose to validate sub-model (2) by
testing the hypothesis that

Han @ dn(By) > A againstkapn @ di(B,) < A, 4)

for someA > 0. Thus, rejectingd n actually is a decision in favor of sub-model (2), up to thespezified
precisionA and significance levak. Note that in contrast to the hypothesisHysg, the hypotheses
Han refers to the relative quality of the submodel (2) comparedd model (1), and not to the quality

of specific estimators such as LS estimatorsThe test ofH, , versuskKa , will be based on asymptotic
normality of an appropriate test statistic and therefodo#s not require normality of the homoskedastic
errors in the regression model specified in (1).

Section 2 deals with testing hypotheses relateéitg. In Section 2.1 we introduce an asymptotic
versionH, of Ha p, a test statistic foH, and derive its asymptotic distribution. Section 2.2 is @ned
with a nested testing situation, where we test a hypotttésiselated taH,, for model (2) against model (1)
in the presence of another larger super-model containirdgir(@) as its sub-model. The results have their
main application for deriving model selection method fantfying strong regressiorffects. In Section
3 we define quantitie@mn and f)(,,n, which can be interpreted as estimated maximal relativa£(with
level @) that one makes when using the smaller sub-model. Thesegreanvenient for model-selection
purposes, and in Section 3 we discuss how they can be emplogdubckward selection procedure.

Model selection criteria are classically divided into dstent and conservative criteria. In certain
situations such as nested models containing the true modiesjstent criteria like the BIC, choose the
correct model, i.e. the minimal model that contains all c@tas withg; # 0, with a probability converging
to 1. In these cases conservative criteria, like the AIC olidvkes’ Cp,, asymptotically choose models that
are too large with a positive probability, but not modeld @ too small. Of course, criteria such as AIC
have other advantages, e.g. when the linear model is mifisgesee Burnham and Anderson (2002) and
Section 6 for further discussion.

In finite samples and in cases where there are many covawétesmall but nonzero influence, both
conservative and consistent criteria will typically indusome but not all of these covariates in a somewhat
arbitrary way. In contrast, model selection based on a fioldsvalue oflﬁ(m or Ii(,,n allows to discard
covariates with a small influence in a controlled and intetgdsle way, namely as long as the relative error
that arises remains below the chosen threshol@ihus, model selection based fm,n or I5mn does not
aim at finding all the covariates with nonzero influence. Ratits goal is to find the relevant covariates in
terms of maximal relative error.

The actual performance &%, , andD,,, for model selection purposes, as compared to the AIC, the BIC
the Lasso and the relaxed Lasso is investigated in Sectiom#d eéxtensive simulation study. Here we also
give illustrative examples for selection methods basedf)gn and Da,n, respectively and investigate the
quality of the normal approximation of the test statistiisaduced in Section 2. Further in Section 5, we
illustrate the practical usefulness of our method by anaty)S college spending data from 1994. Finally,
Section 6 closes the paper with conclusions and a discussidature research. Technical assumptions
and proofs are deferred to an appendix.

2. Asymptotic tests for identifying large regression ffects

As an illustration, suppose for the moment that the erroesrarmally distributed, and 163 S Eb)
denote the error sum of squares of an estimlatoir8. Then the statistic

1 SSEB)-SSEp)

qo2

1
n-(p+a

is F-distributed with degrees of freedogrand f — (p + g)) and non-centrality parameter given in (3).
SinceHp is equivalent tol = 0 andHysgto 2 < 1, itis then straightforward to construct tests Fyy and
Hws e based on th&-distribution of T.
However,H, , is equivalent tdH,, : 1 > nA/c2. Sinceo? is unknown we cannot construct even under
normality an exact test dfi, ,. However we can construct an asymptotic test for a limitesg hypothesis
3
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of Han, Which does not require normal errors in the regression indge In Section 2.1, we consider
this limiting version of the hypothesés, ,, and construct an asymptotic test for this hypothesis ie cas
the larger model is correct. Section 2.2 gives a correspgntdist in case model (1) to which to (2) is
compared is also incorrect, assuming that there is somerlaedid super-model. In this situation, and in
case of normally distributed errors, a test Fhyis g is discussed in Tésvirta and Mellin (1986).

2.1. Testing when the larger model is correct

In this section we consider testing model (2) against thgelamodel (1) assuming that the larger model
(1) is correct and the errors are not necessarily norma8ijriduted. First we introduce an asymptotic
version ofH, n. To do so, we consider the following condition under whiz(j3,) converges aa — o,
say tod(B,).

Assumption 1. The regressorX are non-random and we haveéX/n — G asn — oo, whereG €
R(P+A*(P+9) js g symmetric positive definite matrix.

Split G into blocks as follows

G= ( gi gz ) G1 € RPP, Gpe R™Y, Gy = Gy € RPX,

Note thatd,(B,) can be rewritten as
1 / ’ ’ - ’
dn(ﬂz) = ﬁﬁzxz(ln - Xl(xlxl) 1X1)X2ﬂ2

XX XeXe XX\ T XX
ﬂzlz X () 1]/,2

n n n n

and from Assumption 1 it follows that

dh(B2) = d(By) = B3(Gzz — G21G11G12)B, @S N — oo, (5)

Under Assumption 1G is positive definite, which implies th&,, — G1G11G, is also positive definite.
Therefore we consider the following asymptotic versionest fproblem (4) given by

Ha @ d(B,) > A againstk, : d(B,) < A. (6)

The test statisti®, for (6) is now derived in the standard manner. To do this, wWesstute the unknown
B, in d(B,) by its consistent LS estimagy from model (1), i.e.R, := dn(B,). Itis not difficult to see that
the test statisti®, is also a normalized numerator of tRe-statistic forHy : 8, = 0, i.e.

1 A ~ 1
Ro = ~(MSE{B,) - MSEg)) = ~Y'(Px—Px,)Y,
with Py 1= X(X'X)"*X’. In Theorem 1 we show th&, is an asymptotic unbiased estimatordfs,) and
derive the asymptotic distribution &, wheng, # 0.
Theorem 1.

(i) Suppose that in model (1) with independent zero mean Boadastic errord\ssumption 1 is satis-
fied. Then ER,) — d(B,) as n— .

(i) Suppose that in model (1) with independent zero mearmBoedastic erroré\ssumptions 3, 4 and
5 (cf. the appendix) are satisfied. If&}) > 0 we have thatyn(R, — d(8,)) = N(0,40%d(B,)) as

n — oo.

The proof of Theorem 1 is given in the appendix. Using Theolenve construct an asymptotic test
for Ha : d(B5) > A versusK, @ d(B,) < A as follows. GivemA > 0, rejectH, with levela > O if

Ry < A + 26U, VA/ VN, (7

whereu, denotes the--quantile of the standard normal distribution.
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Remark 1.

(i) The results of Theorem 1 can be generalized to heterestiedinear models with scaled errors from
a distribution having finit€4 + 6)-th absolute moment as follows. Let

Z=)~(,B+E=)~(1ﬂl+)~(zﬂz+2

be a heteroscedastic linear model, whére- (o1€1, . ..,0n6) With ey, . .., € being i.i.d. with mean
zero and variancd. Further let D:= diag(c?,...,02) and D'Y/2 := diag(1/cy, . .., 1/oy), where
diag(as, ..., an) denotes a diagonal matrix withya .., a, on the main diagonal. Since the linear
model DY2Z = D-Y2X,8, + D~Y2X,8, + D~Y/2¢ has now homoscedastic errors, the statement of
the corresponding theorem as well as its proof for the hemgdastic errors are straightforward
from Theorem 1 and its proof, respectively. Thus the coording statistics '’ is given by

R := 7/ (D IX[X'D X X'D ™ = DXy [X{D ™ Xy] XD ™) Z/n
and Assumption 1 is, for example, reformulateck&® X — G.

(i) Statement (i) of Theorem 1 remains valid if the desigririn& contains random regressors inde-
pendent of error vectoe and EX’X)/n — G. This can be seen in decompositi@n4) from the
Appendix, where £5;|X) and ES,|X) would be independent of X. However statement (ii) on con-
vergence of asymptotic distribution does not hold, sineddéhading term $in (A.4) of asymptotics
is a sum of dependent variables of unknown structure.

2.2. Testing when having a valid super-model

Theorem 1 is only valid if the larger model (1) is correct. Hwer, if we apply the test sequentially,
then we will possibly also have the situation where the langedel is not true either, because we already
excluded covariates with too small an influence, which amedver non-zero. Therefore, we now study the
situation where the larger model is also not correct. Howeve assume that at least the linear regression
model with all covariates is correct, thus, there is a valipes-model.

Changing the notation slightly, suppose that we alreadynewusly believe that at most the following
sub-model

Y = X181 + XoB3, + €, (8)

of the true super-model

Y =2ZB+e, Z=[X1, X2, X3], B =1[B1.B2B3], 9)

contains all the relevant covariates, and that we want telctiee validity of the smaller sub-mod¥l =
XaB, + €. to Note thatX; € R™P, X; € R™%, X3 € R™®, B, € RP, B, € R%, B, € R%. Further the
errorsg’s are independent identically distributed (i.i.d.) wile; = 0), Var(e1) = o® and not necessarily
normal. For convenience l&t := [Xy, Xp] and letQxx, := Px — Px,. Now define

~ 1
Gn(B2, B3) = n (ﬂ’zxé +.B§X§) Qxx, (Xzﬂz + Xsﬂs)- (10)

The quantit)dn(ﬂz, Bs) is the normalized (by a factor of @) length of then—vectorX,f, + X385 when or-
thogonally projected b@x x, onto the orthogonal complement of the space spanned by kinmcwectors

of X in the space spanned by thoseXfAs in Section 2.1 we impose here the following assumption on
the design matriZ.

Assumption 2. The regressorZ are non-random and we ha#&Z/n — G asn — oo, whereG €
R(Pra+@)x(Prai+®) js g symmetric positive definite matrix.

Split G into blocks as follows
Gi1 G2 G
G=| G G G |,
Ga1 5032 Gs3



whereGy; € RPXP, Gy € RU*XU Gz € R*%®, Gy = G’21 € RPX% G5 = G,Sl € RP*® andGy3 = Géz €
R%*%_ Under Assumption 2 it follows also for — oo that

, Gu1 G\ _.
X X/n—> ( G21 622 ) =. Grl,Z'

Lemma 1. Let Assumptior(2) hold for the design matrix Z of mod@). Then
dn(B2. Bs) — d(By.B5) = ByAB, + B3BA'B By + 283BB, as n— oo,

where
A:=Gy — GzlGI]]_'Glz, B:=G3 — GglGI]]_'Glz. (11)

The proof of Lemma 1 is given in the appendix.
For A > 0 Lemma 1 allows to consider a testing problem

Ha:d(B,.B5) >A  against Ky : d(B,.B;) < A, (12)
which is an asymptotic version of

Han:0h(Bo.Ba) > A against  Kun: d(Bs.Bs) < A.

The test StatIStICRn for (12) is derived by substituting, andg; in d(B.. B5) with their consistent LS
estlmate$2 andﬂ3 based on model (9), i.eR, = dn(ﬂz, ﬂ3) It should be noted that the test statidi¢
can be rewritten as

.1 . . 1,
R = H(MS EB,,) - MSEB,,,)) = A Y'(Px —Px,)Y,
wheref%rl is the restricted LS estimator in model (2) eiﬂ}gz the restricted LS estimator in model (8). Here
additional zeros have been added to obtain the same dinmeasto
Theorem 2.

(i) Suppose that in model (9ssumption 2 is satisfied. TherffE) — &(ﬂz,ﬁg) as n— oo.
(ii) Suppose that in model (9ssumptions 3, 6 and 7 (cf. the appendix) are satisfie&(ﬂ;,ﬂg) >0
we have thatyn(R, — d(8,, 83)) AN (0, 40-2&(,82,B3)> as n— co.

Theorem 2 allows to construct an asymptotic test for thertggiroblem (12). Indeed, giveA > 0,
rejectH, versusk, with levela > O if

Ry < A + 26U, VA/ vn, (13)
whereo” is an estimate of- based on the full super-model (9).

Remark 2.
(i) The proof of Theorem 2 is similar to the proof of Theorermd & therefore omitted.

(i) The results of Theorem 2 can be generalized to heterges linear models in the same way as in
Theorem 1 (compare to Remark 1 (i)).

(iif) Statement (i) of Theorem 2 remains valid if the desigainw Z contains random regressors indepen-
dent of error vectok and HZ'Z)/n — G.

3. Model validation and model selection

Test decisions based on (7) or (13) will obviously strongipehnd on the choice @f. For example,
in (7), A'is a threshold fod(g,), the limit of the distancel,(8,), which as mentioned above measures the
normalized (with facton™) squared distance of the projected vectgB,. This has to be seen in relation
with the total normalized squared leng#hX’ XB/n, and thus, a general recommendation for a numerical
value ofA (like 0.1) does not make sense. Therefore, in the following we st@dgsctive procedures for
choosingA, and discuss how the resulting tests can be used for moeetiesl purposes within a backward
selection procedure.
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3.1. Model selection based @, ,

First consider the hypothests, in (6) for arbitraryA. Using (7) one can, for a given level (e.g.
a = 0.05), determine a critical threshold,i:(«, n) for which HACm(a!n) can be rejected at level, while Hy

cannot be rejected fax < Agit(a, n), i.e. Agit(a, n) is defined as
2

Berla,) 1= ((Ro+ 322 /n) 2 = G,/ VR)

Then we suggest to normaliie;rit(a, n) by an estimate of the total normalized squared length akel ta
square roots to obtain A

A Acrit(a, n) \ 1/2

Dar,n = (,\,7,\) s

B X' XB/n
where,B is the LSE ofB in (1). The quantitylﬁa,n can be nicely interpreted as the estimated maximal
relative error one makes (with leve) if one uses sub-model (2) instead of the full model (1). kt,fane
has
Bon — [d(B)/(BG)] " := D

in probability asn — oo. Note thatD depends on the unknown regression vegtavhich for brevity is
suppressed in the following. Variable identification withosg dfects on the response now proceeds in
terms oflﬁmn: If Iﬁmn is less than some fixed value which we allow as maximal reativor (say ), we
identify the variables included in the smallest sub-modelariables with strongfeects.

Let us describe how the above method can be used in a backeladtien procedure. After fixing the
level @, we computef)a,n for all sub-models of the full model (1) which exclude one aoate. Let the
sub-model with minimaD,, », denoted byD? ,, be M. Next we computéd, , relative to the full model
(1), for all sub-models oM; which exclude a further covariate. Let the sub-model ambegtib-models
of M1 with minimal D(,,n, denoted byﬁgyn, beMs,. Let us stress that in each step we com;fDJ(l;,a relative
to the full model (which we assume to be correct so that we hawisspecification), since we possibly
already excluded covariates with small but still notabifuence. In this way we obtain a decreasing
sequence of sub-modeld; > M, o ... with increasing sequendﬁ}m < Iﬁg,n < ... with corresponding
relative errors w.r.t. the full model (1). One can now chotteemodel from the sequend#, e.g. as the
model for which the relative error is just below some thrédiige.g. 01). Note that we us®, n, which is
always normalized by the same fac®X’XB/n. Therefore, the ordev; > M, > ... in which the model
is reduced is the same as for the F-test and the AIC and BIg tbelstopping is more transparent as it is
based on the maximal relative error. We further discusdnhise simulation study in Section 4.

3.2. Model selection based @,

y For the testing problerﬂA versusK ip (12) and for a given levet, 'Ehe threshold&crit(a, n) for which
Ha.w(en) CAN be rejected at level while Hy cannot be rejected fax < Agit(er, n), is determined by using
(13) as follows:
- . R 2
Re(en) = ((Ro+ 722 m) 2 = Gu,/ VA1)
whereo” is an estimator of- in (9). We suggest to normaliiecrit(a, n) by an estimate of the total normal-
ized length in model (8)

=~ . Acrit,a,n 172

a,n - = .~
B X' XBy, /N

whereﬁrl‘2 is the LSE in (8). The interpretation &, , is also that of an estimated relative error, since

c](ﬂz,,BS) only involves the normalized length g8 when orthogonally projected onto the orthogonal com-
plement of the column space o in that of X = [Xy, Xz]. However, it takes into account the whole
contribution ofXyB, + X33, and is therefore not exclusively relative to the intermaéelimodel (8). Note

thatD,, — \/d(ﬂz,,33)/[?;1’2Gr12,3&2 =: D in probability asn — co. Note thatD depends o, andgs,
which we omit in the sequel.




Table 1: Simulation setups

Scenarios foB = (Bo, 81,82,83,84,86) Sample size

1 B=(2222010101) a) 200

2  B=(10,5,5,1,1,0.050.05) b) 400

3 B=(10,157,315,0.7,03) c) 1000
d) 5000

Error distribution
i) t-distribution with 5 degrees of freedom
ii) standard normal distribution

The backward selection procedure basedXn proceeds as follows. After fixing the level and
a threshold valué for Iim, we computef)w for all sub-models of the correct super-mod} which
exclude one covariate. Let the sub-modelMg with minimal D,, ., denoted byD? ,, be M;. Next we
computeD, n, relative toM, for all sub-models of; which exclude a further covariate. Thus here we are
possibly already in the situation where the intermediatdehis incorrect, since we compare relative to the
(possibly already incorrect) sub-moddh. Let the sub-model among the sub-model$/afwith minimal
D..n, denoted byD2 ,, be Ms. In this way we obtain a decreasing sequence of sub-madgets M, > ...
with (not necessarily increasing) relative errdﬁ§n, lﬁi,n, .... Now one chooses the first model from the
sequenceV; for which D!, , is below the thresholt while Di2 is larger than the threshotdNote that the
denominator oiD‘C,,n changes in each step, since the intermediate models (8harging. This implies
that the order in which the models are redutéd> M, > ... may be diferent from that for the AIC, the

BIC and the method based @, .

4. Simulation study

In the simulation study we consider threédient scenarios for the regressidteets. First we choose
strong equal regressiolffects (Scenario 1), one set of variables with very strong aedset with medium
strength regressiortects (Scenario 2) and finally regressidteets which vary from very strong to weak
effects (Scenario 3). The specific values of the regressiofiicieats are given in Table 1 whegg is an
intercept.

Fori = 1,...,6 the covariate vecto is drawn independently from a uniform distribution e[ 1]".
The n—dimensional unit vectoxy corresponds to the interce@g. For the corresponding design matrix
X = [Xo, X1, X2, X3, X4, X5, Xg] Assumption 1 (Assumption 2) is satisfied with

X'X/n— G =dag(11/3,...,1/3)  (ZZ/n—>G=diag(11/3,...,1/3)).

As error distribution we choosetadistribution with 5 degrees of freedom (df) and the standemanal
distribution. Note that the errors fori = 1,...,n should be scaled by a fact&F in such a way that
observations with signal to noise ratio (SNR) larger tharpraximately form 40%—-50% of the whole
data. Here SNR is just a ratio of mean to standard deviatioanobbservation. Finally sample sizes
n = 200 400 1000 and 5000 are investigated. Thus for each combinatigh&ind an error distribution
given in Table 1 we apply our methods.

In Section 4.1 we illustrate in detail how our methods worlSienario 1 and 2 for regression @oe
cients. Section 4.2 contains a simulation study in whichnvestigate the performance of model selection
based orﬁmn and f)mn as compared to the standard model selection criteria AI(Ba@dWe give results
for two choices of the thresholdand discuss its choice. Finally in Section 4.3 we investigaé quality
of the normal approximation in Theorems 1 and 2tfedistributed errors. In all model selection methods,
we use backward elimination and always keep the interdeys, anly choosing from the covariates.

4.1. lllustrating examples
Consider Scenario 1 where the vector of regressiofficeentsg is set ag8 = (2,2,2,2,0.1,0.1,0.1).
Now we chosen = 200 and—distributed errors with 5 df scaled by the fac®F = v0.8. This results that
8



Table 2: Results of model selection procedure based om& and I5a,n—methods for a data set of sime= 200 simulated with
B=1(2,2,2,2,0.1,0.1,0.1) andt—distributed errors with 5 df scaled [&F = V0.8. The levek is equal to 0.05.

stepi  sub-model discardedcov. D, D Di, D
1 Xo, X1, X2, X3, X4, X5 X6 0.106 0.020 0.106 0.020
2 X0, X1, X2, X3, X5 Xa 0.107 0.028 0.107 0.020
3 X0, X1, X2, X3 X5 0.113 0.035 0.112 0.020
4 X0, X1, X3 X2 0.488 0.040 0.488 0.408
5 Xo.Xa X3 0.643 0578 0.503 0.447

Table 3: Results of model selection procedure based olmemethod for a data set simulated wigh= (10,5,5, 1, 1, 0.05,0.05)
andt—distributed errors with 5 df scaled I$/F = 4. Notee = 0.05,8; = (10,5,5)’, 8> = (1, 1,0.05,0.05) andD ~ 0.08.

discarded
Stepi  Sub-Model covariate D,
n=
200 400 1000 500(
1 Xo, X1, X2, X3, X4, Xg X5 0.120 0.048
Xo, X1, X2, X3, X4, X5 Xe 0.076 0.022
2 X0, X1, X2, X3, X4 Xs 0.080 0.030
X0, X1, X2, X3, X4 Xe 0.120 0.057
3 X0, X1, X2, X4 X3 0.061
X0, X1, X2, X3 X4 0.125 0.105 0.070
4 X0, X1, X2 xz 0.147 0.127 0.094
Xo, X1, X2 Xa 0.081
5 X0, X2 X1 0.350 0.263
X0, X1 X2 0.293 0.272

the variance of scaled errors is equal 183L Table 2 contains the results of our model selection phoes
for one sample, together with the estimafg, andD,, as wells as with the true valusandD. Models
which containxy, X, andxz result in estimated relative erroff)(@,n or I5mn) around 01, however models
which miss one oKy, X, andxs have estimated relative error larger thad.0Thus, there are only two
reasonable choices for possible models. Either one iswgitth except a relative error at abou @nd only
keepsxi, X2, X3, Or one keeps all the covariates.

For the second illustration we consider Scenario 2 for iegjom coéicients,t—distributed errors with
5 df and sample sizes= 200 400 1000 and 5000. Note that this scenario has several orderagfitude
for the regression cdigcientsp’s. The scaling facto6 F is set to 4 and it ensures for example that 48%
observations have a SNR for n = 200. Table 3 contains the results of the model selectionguhare for
one sample, together with the valuesﬁ))fn. Here we are interested in identifying the largéeets, namely
covariates<p, X1 andx; in the presence of moderatffectsx; andx,. Thus the regression vectgris split
as {81,85), whereB; = (10,5,5) andp, = (1,1,0.05,0.05). Further the true theoretical value Dffor
identifying B, is equal to Q8. If we would now use the threshold= 0.1 then the important covariates
X1 andx, should be chosen by trfea,n—method. In each column of Table 3 the valuelftit,lfn is bolded as
soon asD}, , > 0.1 for a first time. This implies that the method chooses theipus model above. For
n = 200 our model selection procedure witk 0.1 does not choose any sub-model with 5 covariates and
therefore the full model cannot be simplified. When now samsjales increases to 400, then the sub-model
with X1, X, X3 andxy is identified which contains the medium regressifie@sxs andx,. Forn = 1000
andn = 5000 the desired sub-model is detected with thresheld.1, even though the empirical values
of D, are slightly larger then the true vallz = 0.8. This example shows that for small and moderate
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Table 4: Number of times specific sub-models are chosen uimg f)a,n, BIC and AIC among 1000 simulated data sets with
B =1(2222010.10.1). The first column identifies models including an intercept tigto their sub-indices of covariates. We
want to identify covariatesg, X1, X2, andxz. Notep; = (2,2,2,2), B, = (0.1,0.1,0.1y, D ~ 0.04 for the Iﬁa,n—method and
B1=(2222),8,=01,8;=(0.1,01y, D ~ 0.02 for theD, ,—method.

Model Bun Bon BIC AlC
t=01 t=0.15 t=0.1 t=0.15
n= n= n= n= n= n=
200 400 200 400 200 400 200 400 200 400 200 400
t-errors with 5 degrees of freedor8 F = V0.8)
“12345” 283 3 4 0 271 0 1 0 3 5 50 10
“12356" 271 11 4 1 261 6 2 1
“12346” 289 5 5 0 281 3 3 0
“1234” 44 118 54 1 41 59 23 0 64 92 165 1%
2 0
0 0

“1235” 34 88 49 40 38 21 45 65 129 13
“1236” 46 76 42 49 29 15 50 61 132 145
“123” 33 699 842 996 57 865 935 999 833 758 408 262
Normal errors § F = +/4/3)

“12345” 318 5 1 0 313 1 0 0
“12356" 277 4 3 0 272 1 1 0 3 6 55 128
“12346” 305 4 3 0 296 1 1 0 4 4 64 84
“1234” 26 106 48 0 28 38 18 0 48 70 163 1%9

0 0

0 0

1 7 44 100

“1235" 31 98 48 33 34 22 a7 66 150 145
“1236”" 23 100 47 23 41 15 40 73 113 133
“123" 20 683 850 1000 35 884 943 1000 857 774 411 256

sample sizes such as 200 or 400 a correction for threshold valissneeded. We discuss this point in the
next section in more detail.

4.2. Model selection performance

Here we report results of an extensive simulation study topare the performance of our model
selection criteria based on tIﬁA)a,,n— and f)(,,n—methods with the AIC, the BIC, the Lasso and the relaxed
Lasso. For thé®, ,— andD, ,—methods, in each simulation we choose the level 0.05 and sample size
200 as wells as 400.

Table 4 displays the frequency of chosen sub-models for Haf® sets simulated wih = (2,2, 2, 2,
0.1,0.1,0.1), a fixed design matrixX and the two error distributions from Table 1. Theerrors are
scaled withS F = /0.8 while the normal errors are scaled wiF = +/4/3. This implies that the both
type of scaled errors have the same variance and 44% of eliesy have the SNR2 for n = 200.
Obviously, this regression model has three covarigies, andxs (model “123” in Table 4) corresponding
to B, = (2,2,2,2) which we want to identify. The true value & (D) for identifying these is equal to
0.04 (002). However as we noticed in the previous section the tlotdskaluet should be corrected for
small and moderate sample sizes. Therefore we chdser@15 as the thresholdfor the If‘)mn—method,
which are obtained by rounding-3.04 and 4 0.04 to the nearest numbers 0.1, 0.15 or 0.2. From our
experience the true relative errbr(D) for choosing the thresholdfor the D, ,—method 0, ,—method)
should be multiplied by the factor 2, 3 or even 4 (3,4 or evefobsample sizes 200 or 400 when about
50% observations have SNR larger than 2 and only 6 covardatasnder consideration. For both methods
we use the same threshold values in order to illustrate thereince between them.

Fort—errors both methods choose in over 99% the sub-model wigle timportant covariateg, X, and
x3 whent = 0.15 andn = 400. They clearly outperform BIC (AIC), which rather chosske sub-model
with X3, X2 andxz only in 76% (26%). If the sample size decreases from 400 tdl‘a‘!@@thelf)a,n—method
is comparable with BIC and outperforms AIC. Tlie,,n— method performs here clearly better than BIC
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and AIC. If the threshold = 0.1 then our methods are comparable with BIC onlyrioz 400 while for

n = 200 their performance is very poor with respect to BIC and .AlGhould be noted that when a sample
size increases then BIC and AIC start to detect the small asdium regressionfiects. In contrast, in
this situation the precision of our methods increases agylstart to choose a smaller model with all large
regression gects. For normal errors we get similar results as forttfegror case.

We performed simulations for regression fiagents from Scenario 2 and the same design magrix
in a similar manner. Thé-errors are now scaled witB F = 4 while the normal errors are scaled with
S F = 4+/5/3. This ensures that the scaled errors have the same vaaad@8% of the observations have
SNR>2 for n = 200. Here we would like to identify strong regressidfeetsx; andx, (model “12” in
Table 5) corresponding 18, = (10,5, 5) in the presence of the moderatéeet regressors; andx,. The
true value ofD (D) for identifying them is equal t0.08 (Q05). We set the threshotdor both methods to
0.15 and 2 which are argued by multiplying the true relative efo& 0.08 by 2 and 3 and then rounding
them to the nearest numberd,®.15 or 0.2.

Table 5 displays how often sub-models have been selectelDfify data sets simulated according to
the above setup. We see that the correction of the truewelatror by multiplying with 21 = 0.15) is
not enough fom = 200. To see a better performance of our methods in compangbrBIC and AIC,
the sample size should be increased to 400. The correctitimetfactor 3 shows that our methods clearly
outperform BIC and AIC for the both sample sizes. A changdefdrror distribution does not change the
results by much. If a larger proportion of observations h&N& larger than 2 then a correction factor 2
becomes acceptable. Table 6 shows the same results as e5rabt with diferent scale factorS Fs.
The values foIS F are chosen in such a way that 80% of observations have-8@NR/e see that for the
both error distributions our methods identify the desireztiei with a correction factor 2 or 3 for the true
threshold correctly, thus improving the precision of themes. In contrast BIC and AIC start to choose
strong and intermediate regressidteets together. A change of the error distribution does nahgk the
results by much.

Finally consider a scenario with no clearly separated srdémagnitudes for thg's. We choose
B =1(10,157,3,1.50.7,0.3), i.e. Scenario 3 in Table 1. Thus regressidiieets decrease without having
strong separation offkects. The—errors are now scaled with F = 4 while the normal errors are scaled
with SF = 4+/5/3. The scaled errors for both error distributions thus hbheesame variance and 47.5% of
the observations have SNR for n = 200. Now we want to identify covariates, X, andxs (model “123”
in Table 7) corresponding 8, = (80./1.82,83) . The true value oD (D) for identifying them is equal
to 0.07 (006), which we use below to illustrate our methods at work. Bave, we set the threshold as
t = 0.15 andt = 0.2 which are motivated by multiplying 0.07 by 2 and 3. Table itams the results of the
model selection procedures for 1000 data sets simulatdurwiicenario 3. Here we see that a correction
factor 2 ¢ = 0.15) works well for our both methods and they outperform BI@ AfC for sample sizes 200
and 400. Thus fon = 200 thef)a,n—method Oa,n—method) chooses the sub-model withx,, X3 in 64%
(74%) while the BIC does so in 35%. If now the threshol@ 8 used then th®, ,—method identifies the
desired model still better than the BIC (59% versus 35%) @/\Aﬁj{n—method fails to do this (25% versus
35%). Both our methods fail to identify the model with, x, andxs if a slightly smaller threshold than
above is used. Thus far= 0.12,n = 200 andt—errors thelﬁn,n— and Iim—methods favor a larger model
with Xo, X1, X2, X3 andx,4 in 552 and 482 cases out of 1000, respectively. This indicdiat when there
are no clear strongfiects then our methods become sensitive to the choice of thection factor for the
desired relative erro® andD and this correction should be done carefully.

Following the referees’ suggestion we also compared ourefrgelection methods with the Lasso of
Tibshirani (1996) and the relaxed Lasso of Meinshausen7R0These two methods are implemented
in the non-commercial statistical softwakeas packagedasso2 (Lasso) andrelaxo (relaxed Lasso).
Thus we applied the Lasso and the relaxed Lasso to the saméraat simulation Scenarios 1, 2 and 3
with t—errors corresponding to Tables 4, 5 and 7. Table 8 presentadidel selection performance of both
methods with penalty parameter chosen by cross-validétiofibshirani (1996) and Meinshausen (2007)).
It is well known that a model selection based on Lasso estiraas not a consistent variable selection
procedure and chooses a larger set of covariates, howevggiiting important ones with probability 1
(s. Meinshausen (2007)). A comparison of the results fotteso from Table 8 with the corresponding
results from Tables 4, 5 and 7 also exposes this fact, sirc&dhso always prefers the full model with
all six covariates. In contrast, in Scenario 1 the modelctigle based on the relaxed Lasso prefers the
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Table 5: Number of times specific sub-models are chosen uimg f)a,n, BIC and AIC among 1000 simulated data sets with
B = (10,5,5,1,1,0.050.05y. The first column identifies models including an intercept tigto their sub-indices of covariates.
We want to identify covariatesg, x; andx,. NotegB; = (10,5,5), B, = (1,1,0.050.05), D ~ 0.08 for thelﬁa,n—method and
By = (10,5,5Y, B, = 1, 83 = (1,0.05,0.05), D ~ 0.05 for theD, ,—method.

Model Dan Dyn BIC AIC
t=0.15 t=0.2 t=0.15 t=0.2
n= n= n= n= n= n=
200 400 200 400 200 400 200 400 200 400 200 400
t-errors with 5 degrees of freedor8 F = 4)
“12345” 10 1 0 0 7 0 0 0 3 5 40 99
“12356" 6 1 0 0 4 1 0 0 1 0 6 g
“12346" 12 0 0 0 11 0 0 0 3 4 60 102
“12456" 7 0 0 0 2 0 0 0 1 0 7 8
“1234" 130 3 3 0 70 0 0 0 58 179 230 435
“1235” 19 0 0 0 7 0 0 0 1 5 28 18
“1236" 26 0 1 1 10 0 0 0 6 2 32 22
“1245” 22 0 1 0 8 0 0 0 3 5 38 21
“1246" 29 0 2 0 13 0 0 0 5 3 41 11
“1256" 2 0 0 0 1 0 0 0 0 0 7 1
“123" 211 112 72 2 180 14 12 0O 169 203 131 116
“124" 251 112 82 0 215 27 23 0 225 237 203 119
“125" 26 5 1 0 6 0 1 0 8 5 21 5
“126" 22 2 5 0 5 0 0 0 1 7 17 1
“12" 227 764 833 997 461 958 964 1000 516 345 139 27
Normal errors § F = /80/3)
“12345" 5 0 0 0 1 0 0 0 0 3 39 94
“12356" 5 0 0 0 1 0 0 0 0 0 8 1
“12346" 4 0 0 0 1 0 0 0 0 1 49 9%
“12456” 3 0 0 0 1 0 0 0 0 0 8 1
“1234" 129 0 1 0 70 0 0 0 64 184 246 436
“1235” 19 0 0 0 12 0 0 0 8 4 37 21
“1236" 16 0 0 0 6 0 0 0 5 6 21 24
“1245” 25 0 0 0 10 0 0 0 5 4 37 17
“1246" 38 0 0 0 10 0 0 0 8 5 45 18
“1256” 4 0 0 0 2 0 0 0 0 1 4 3
“123" 228 92 70 1 190 12 11 0 176 187 152 101
“124" 273 98 78 0 234 10 18 0 233 217 202 180
“125” 27 4 6 0 10 0 0 0 10 3 15 5
“126" 26 5 3 0 14 0 0 0 9 13 20 6
“12" 198 801 842 999 438 978 970 1000 482 372 117 36

model with significant covariates;, X, andxs in 610 (466) cases out of 1000 far= 200 ( = 400).
In the presence of strong as well as intermediate regresfiiects (Scenario 2), our methods and BIC
outperform the relaxed Lasso. In Scenario 3 the relaxeddligssonsistent with the BIC fan = 200 and
asn increases to 400 a larger model with five covariates is faldteshould be noted that in the presence
of regression fects of diferent magnitude, BIC, AIC, Lasso and relaxed Lasso startdiade more and
more covariates in a model as the sample size increasesauhipproaches, contrarily, choose a favored
model in a small sample with higher probability whegets larger.

Now we discuss some of our results using a false discoveey(FIDR) criterion for multiple testing
problems introduced by Benjamini and Hochberg (1995). Thigrion has been found especially useful
when a large number of covariates are under consideratiberefore its use became quite popular for
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Table 6: Number of times specific sub-models are chosen uimg f)a,n, BIC and AIC among 1000 simulated data sets with
B = (10,5,5,1,1,0.050.05y. The first column identifies models including an intercept tigto their sub-indices of covariates.
We want to identify covariatesg, x; andx,. NotegB; = (10,5,5), B, = (1,1,0.050.05), D ~ 0.08 for thelﬁa,n—method and
By = (10,5,5Y, B, = 1, 83 = (1,0.05,0.05), D ~ 0.05 for theD, ,—method.

Model Dyn Dan BIC AIC
t=0.15 t=0.2 t=0.15 t=0.2
n= n= n= n= n= n=
200 400 200 400 200 400 200 400 200 400 200 400
t-errors with 5 degrees of freedor8 F = 2)
“12345" 0 0 0 0 0 0 0 0 14 25 129 160
“12356” 0 0 0 0 0 0 0 0 0 0 0 1
“12346” 0 0 0 0 0 0 0 0 11 10 147 148
“12456” 0 0 0 0 0 0 0 0 0 0 3 g
“1234” 0 0 0 0 0 0 0 0 621 919 637 690
“1235” 0 0 0 0 0 0 0 0 3 0 4 Q
“1236” 0 0 0 0 0 0 0 0 2 2 5 q
“1245" 0 0 0 0 0 0 0 0 2 0 8 Q
“1246" 0 0 0 0 0 0 0 0 4 0 4 Q
“123” 13 1 0 0 0 0 0 0 116 11 19 0
“124” 18 0 0 0 2 0 0 0 197 31 43 1
“125” 0 0 0 0 0 0 0 0 1 0 0 0
“12" 969 999 1000 1000 998 1000 1000 1000 29 2 1 0
Normal errors § F = /20/3)
“12345" 0 0 0 0 0 0 0 0 19 14 139 154
“12356” 0 0 0 0 0 0 0 0 0 0 2 g
“12346”" 0 0 0 0 0 0 0 0 11 25 124 158
“12456" 0 0 0 0 0 0 0 0 0 0 3 a
“1234” 0 0 0 0 0 0 0 0 618 921 663 691
“1235" 0 0 0 0 0 0 0 0 3 0 7 Q
“1236" 0 0 0 0 0 0 0 0 6 0 5 Q
“1245” 0 0 0 0 0 0 0 0 2 0 0 Q
“1246" 0 0 0 0 0 0 0 0 5 1 7 1
“123” 8 0 0 0 1 0 0 0 125 16 18 (
“124” 11 0 0 0 1 0 0 0 188 22 32 1
“12" 981 1000 1000 1000 998 1000 1000 1000 23 1 0 0

microarray data (see e.g. Drigalenko and Elston (1997)grevilan experimenter aims to detect a few
genes relevant to a disease among many ten thousands orwewredh thousands of genes. In order to
introduce the FDR criterion the related quantities sucthasnumber of true positives (TP), the number
of false negatives (FN), the number of false positives (Fu&l be characterized. In a model selection
procedure the relevant covariates to the response can it or not. Now the number of TP describes
the number of correctly identified relevant covariates wiiie number of FN describes the number of
relevant covariates which are not identified. Their sumlteso the numbep of the important covariates
for the response (dimension 8f). Similarly, non-relevant covariates can be wrongly idféad as relevant
or not. The number FP is just the number of non-relevant ssjpa éfects which are wrongly identified
as important. Now FDR is defined as follows

FP

FDR= e 7p

Thus FDR measures the rate of false discoveries among abwiises. A low FDR with TP close tp
13



Table 7: Number of times specific sub-models are chosen uimg f)a,n, BIC and AIC among 1000 simulated data sets with
B =(10,157,3,1.5,0.7,0.3) . The first column identifies models including an intercept tigtotheir sub-indices of covariates. We
want to identify covariatego, X1, X2 andxs. NotepB; = (10,157,3), B, = (1.5,0.7,0.3), D = 0.07 for the D, n—method and
By = (10,15,7,3), B, = 1.5, B3 = (0.7,0.3), D ~ 0.06 for theD, ,—method

Model Dan Dan BIC AIC
t=0.15 t=0.2 t=0.15 t=02
n= n= n= n= n= n=
200 400 200 400 200 400 200 400 200 400 200 400
t-errors with 5 degrees of freedor8 F = 4)
“12345” 4 0 0 0 3 0 0 0 57 156 297 496
“12356" 0 1 0 0 0 1 0 0 1 2 23 g
“12346" 3 0 0 0 1 0 0 0 16 26 127 14p
“1234" 257 17 5 0 129 3 1 0 499 648 433 337
“1235” 37 2 1 0 8 0 0 0 50 33 41 6
“1236" 5 0 0 0 0 0 0 0 8 4 13 1
“1245” 3 0 0 0 0 0 0 0 3 0 0 q
“123" 642 929 568 157 743 693 256 13 349 131 65 5
“124” 41 14 35 2 40 4 4 0 11 0 1 0
“125” 0 0 1 0 1 0 0 0 1 0 0 0
“12” 8 37 390 841 75 299 739 987 5 0 0 0
Normal errors $ F = /80/3)
“12345” 2 0 0 0 1 0 0 0 59 172 290 531
“12356" 1 0 0 0 0 0 0 0 4 8 18 2(
“12346" 0 0 0 0 0 0 0 0 19 22 118 128
“1234" 270 14 1 0 134 1 0 0 505 633 434 311
“1235” 34 2 0 0 8 0 0 0 49 31 43 9
“1236" 5 0 0 0 0 0 0 0 7 9 16 2
“1245” 1 0 0 0 1 0 0 0 0 0 0 q
“1246" 2 0 0 0 0 0 0 0 2 0 0 q
“123" 643 932 593 152 753 697 255 11 345 125 80 4
“124” 28 7 39 0 30 0 3 0 8 0 1 d
“125” 1 0 1 0 0 0 0 0 0 0 0 0
“12” 13 45 366 848 73 302 742 989 2 0 0 0

indicates a good performance of the method. In Table 9 we greeaged values of TP, FN and FP for
all investigated methods based on 1000 simulated data $ets @arrors are distributed according to the
scaledt—distribution with 5 df. The FDR given in Table 9 is then comgulitusing the average values
of FP and TP. For Scenario 1 whgh= (2,2,2,2,0.1,0.1,0.1) the BIC performs better than AIC for
n = 200 and 400. Our methods clearly outperform BIC ifoe= 400 andt = 0.15. Forn = 200 a
threshold oft = 0.1 is too small to achieve a better performance than BIC. Fen&ado 2 wherg =
(10,5,5,1,1,0.05,0.05) we obtain similar results, i.¢.= 0.2 andn = 400 outperform BIC. For Scenario
3 wheng = (10,15,7,3,1.5,0.7,0.3) we see a dierence. Here a threshdld 0.15 is outperforming BIC
and AIC. However the average TP value is lower for our mettoaspared to AIC and BIC, i.e. too small
models are identified by our methods. For normal errors waiodt similar results. Therefore we omit
them for brevity. Overall we see that our tailored method&lemtify relevant covariates outperform all
purpose model selection criteria such as the BIC, the Al€] isso and the relaxed Lasso.

4.3. Quality of the normal approximation

Finally, we investigate the quality of the normal approxiioas in Theorems 1 and 2. Since the true
value of d(8,) and d(B,,83) are usually not known we usé (8,) anddy(B,,85) instead ofd(B,) and
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Table 8: Number of times specific sub-models are chosen usirepl(a¥ and relaxed Lasso (RL) methods for scatedistributed
errors with 5 df.

Model Scenario 1 Scenario 3 = 4) Scenario 3
L RL L RL L RL
n= n= n= n= n= n=

200 400 200 400 200 400 200 400 200 400 200 400

“123456" 365 513 0 0 253 338 0 0 516 704 0 0
‘12345 175 125 58 97 185 219 94 127 259 205 285 430
“12356 128 131 42 97 32 16 13 10 8 3 5 17
“12346 158 128 52 86 216 209 100 150 137 65 102 115
“12456 0 0 0 0 36 3 16 19 1 0 0 0
“1234" 49 36 116 74 122 111 142 266 67 22 416 366

“1235" 54 28 61 80 24 6 13 9 1 1 17 10
“1236” 47 30 61 100 18 16 11 17 8 0 3 2
“1245” 0 0 0 0O 3 17 22 13 0 0 0 0
“1246” 0 0 0 0 3 19 22 13 0 0 0 0
“1256” 0 0 0 0 8 0 0 2 0 0 0 q
‘123" 24 9 610 466 10 7 95 84 3 0 168 @0
“124” 0 0 0 0 16 5 165 127 0 0 1 0
“125” 0 0 0 0 6 0 9 3 0 0 0 0
“126” 0 0 0 0 2 1 5 3 0 0 0 0
“12” 0 0 0 0 2 1 293 157 0 0 3 @

d(B,, B3) in Theorem 1 and Theorem 2, respectively. By virtue of Agstiom 4 and Slutsky’s theorem the
above change does ndtect the limiting normal distribution.

For Theorem 1, we test the complete model (1) against the Igod® in (2). We us@ = (2,2,0.1,0.1,
0.1,2,2) andt—errors with 5 df scaled by the fact&F = v0.8. The design matriX is constructed in a
similar manner as in the previous sections. Model 2 is defirysekcluding the covariate; corresponding
to the regression cdiécientfs = 2. We simulate the statistig, 10000 times fom = 50,100 and 200.
For visualization in Figure 1 we use P-P plots. They show [0, 1] on they—axis and the empirical
probability @, of the event{ vn[R, — dn(B,)] < Q..n} ON thex—axis. HereQ,, is thea-quantile of the
asymptotic normal distribution of Theorem 1 with consisgrstimated variancec#R,. Note thato? is
the estimate of the error varianag in model (1).

Similarly for Theorem 2, we test a sub-model without the ciata X against a sub-model where the
covariatexs and xs are excluded, and simulate the statigic10000 times fon = 50,100 and 200 and
scaled— distributed errors with 5 df as above. Th8sandp; from Theorem 2 are both equal to 2. Figure
2 shows for each € [0, 1] on they—axis the empirical probability, of the event{ vA[R, — dn(B, B3)] <
Qa,n} on thex—axis. HereQm is thea-quantile of the asymptotic normal distribution of Theor2mwith
consistently estimated varianceR,. Note thato? is the estimate of the error variane8 in model (9).
¢, From the top row of Figures 1 and 2 we see that the asympfmtioximation is quite good already for
rather small sample sizes. Note that for the test decisiorand (13), the approximations for smals are
relevant, which can be assessed using the bottom row.

5. College spending data

To illustrate our method in a practical application we amalihe college spending data from U.S. News
and World Report 1994 College Guide. The complete data cdaouye in Dielman (1996) and its short
description is given in Table 10. The variable of interestdsicational spending per full-time equivalent
(SPEND) given for 147 US colleges. A simple explorative datalysis shows that there is a presence of
variance heterogeneity and a log transformation of theoresg SPEND is needed. Further, for numerical
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Table 9: Averaged values of true positives (TP), false negg(FN), false positives (FP) and the corresponding faiseovery rate
(FDR) based on the averaged values among 1000 simulated tafardeerrors with 5 degrees of freedom.

B=(22,2,2010.1,01), SF= V0.8 and desired sub-modej, X, Xz, X3

Dan Dan BIC AIC
t=01 t=0.15 t=01 t=0.15
n= n= n= n= n= n=
200 400 200 400 200 400 200 400 200 400 200 400
P 4 4 4 4 4 4 4 4 4 4 4 4
FN 0 0 0 0 0 0 0 0 0 0 0 q

FP 1.81 0320 0.171 0.005 1.756 0.144 0.071 0.002 0.175 0.28658 1.042
FDR 0.312 0.074 0.041 0.001 0.305 0.035 0.017 0.000 0.042620.00.159 0.207
B =(10,5,5,1,1,0.050.05), SF = 4 and desired sub-modej, X1, X,

Don Dan BIC AIC
t=015 t=02 t=0.15 t=02
n= n= n= n= n= n=
200 400 200 400 200 400 200 400 200 400 200 400
TP 3 3 3 3 3 3 3 3 3 3 3 3
FN 0 0 0 0 0 0 0 0 0 0 0 0
FP 1.071 0.243 0.174 0.004 0.696 0.044 0.696 0 0.573 0.867631.41.917

FDR 0.263 0.075 0.055 0.001 0.188 0.014 0.188 0 0.160 0.2248280. 0.390
B=(10,157,3,1.5,0.7,0.3), S F = 4 and desired sub-modej, X, X2, X3

Dan Don BIC AIC
t=0.15 t=0.2 t=015 t=02
n= n= n= n= n= n=
200 400 200 400 200 400 200 400 200 400 200 400

TP 3,948 3.949 3574 3.157 3.884 3.697 3.257 3.013 3.980 49939 4
FN 0.052 0.051 0.426 0.843 0.116 0.303 0.743 0.987 0.020 00100 O
FP 0.360 0.035 0.042 0.002 0.186 0.009 0.005 0 0.723 1.053821.31.646
FDR 0.084 0.009 0.012 0.001 0.046 0.002 0.002 0 0.154 0.20&@570. 0.292

Table 10: Variables of college spending data in USA from 1994

Notation  Short description
SAT —average SAT score
TOP10 —freshmen in the top 10% of their
high school class (in percentage)
ACCRATE -—acceptance rate (in percentage)
PHD —faculty with PhD (in percentage)
RATIO —student faculty ratio
SPEND —educational spending per full-time
equivalent student (in dollars)
GRADRATE —graduation rate (in percentage)
ALUMNI  —alumni giving rate (in percentage

stability, all variables including the response log(SPENiDe centered and normalized by their sample
mean and sample standard deviation.
For our methods we set the desired relative ertbend D equal to 01 and choose the nominal level
a = 0.05. Further we use the correction factor 3 BandD which works forn = 200 well as we have
seen in the previous section. This results in the threshallget = 0.3 for thelf)a,n— and f)a,n—methods. In
the top part of Table 11, the results of a backward selectionqulure for thd, ,—method, the BIC and
16



Figure 1: P-P plots fon/n[R, — dn(8,)] based on 10000 replications whgp = (2,2,0.1,0.1,0.1,2), 8, = 2 and errors are scaled
t—distributed with 5 df (top row € (0, 1), bottom row € (0, 0.1)).

n=50 n=100 n =200

1.0
1.0

0.8
0.8

0.6
0.6

0.4
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0.2
0.2
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0.00 0.02 0.04 0.06 0.08 0.10
0.00 0.02 0.04 006 0.08 0.10

Figure 2: P-P plots for/M[Ry — dn(B,.85)] based on 10000 replications whgp = (2,2,0.1,0.1,0.1), B, = 2, B3 = 2 errors are
scaled—distributed with 5 df (top row € (0, 1), bottom rowe € (0, 0.1)).

n=>50 n=100 n =200

a

o4
0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00 0.02 0.04 0.06 0.08 0.10

the AIC, applied to the college spending data, are given.

As in the simulation study we always keep the intercept inghie-models. One can see that the
f)a,n—method, the BIC and the AIC have the same sequence of préfeutemodels when the number of
the covariates decreases stepwise. However they choogdateiyn diterent sub-models which are bolded
in Table 11. The BIC chooses a sub-model consisting of theethpvariates SAT, TOP10 and RATIO,
and the AIC prefers a model with 4 covariates. Note that theegafor the BIC for the sub-models with
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Table 11: Results of a backward selection procedure foegelspending data based on ﬁ}@n—, Iia,n—methods, BIC and AIC.

Model selection based dﬁa,n, BIC and AIC

stepi  sub-model discarded cov. D},, BIC  AIC

1 SAT, TOP10, ACCRATE,
PHD, RATIO, ALUMNI GRADRATE 0164 2537 2298

2 SAT, TOP10, ACCRATE,

PHD, RATIO ALUMNI 0.165 2488 2279
3 SAT, TOP10, PHD,RATIO ACCRATE @85 2455 2275
4 SAT, TOP10, RATIO PHD @15 2435 2285
5 TOP10, RATIO SAT ®78 2470 2351
6 TOP10 RATIO 0650 3261 3171

Model selection based db,,,

stepi  sub-model discarded cov. D}, ,
1 SAT, TOP10, ACCRATE,
PHD, RATIO, ALUMNI GRADRATE 0164
2 SAT, TOP10, ACCRATE,

PHD, RATIO ALUMNI 0.164
3 SAT, TOP10, PHD, RATIO  ACCRATE .889
4 SAT, TOP10, RATIO PHD (394
5 SAT, TOP10 RATIO 184
6 SAT TOP10 0640

2 - 5 covariates, and the values of the AIC for 3-6 covariategather close together, thus making a clear
decision in favor of any of these sub-modelffidult. The Iﬁa,n—method evidently chooses the sub-model
with covariates TOP10 and RATIO.

The ﬁa,n—method behaves somewhaffdrently as the bottom part of Table 11 displays. It prefers
the sub-model with five covariates SAT, TOP10, ACCRATE, PHid &ATIO which are given in bold
face. This sub-model is “almost” chosen by the AIC since ftifiecence in AIC between 227.9 and 227.5
is negligible. Thus all four model selection proceduresad®odiferent sub-models consisting of 2-5
covariates which indicates a high model uncertainty in tbiéege spending data. Thﬁmn—method is
sensible to the uncertainty present and it results in thécehaf the largest sub-model among all chosen
sub-models. In the presence of model uncertainty the smalle-model with four covariates cannot be
preferred to the larger sub-model with five covariates tgkito account the existence of the super-model
with all 6 covariates. In this situation the numeratorf)g,fn and f)(y,n are approximately of the same order
but the denominator olf)mn is smaller than the denominator tﬁ;,n. Therefore we may observe large
values oﬂia,n compared to the corresponding one$Xf, as for example Table 11 displays for stéps3
and 4. Note that the order in which the variables are discbbgfethef)a,n—method difers from that taken
by the other methods, aridl,, needs not be monotone. Finally we also applied Lasso ankelaasso
with optimal chosen penalty parameter to the college spendata. As expected the Lasso prefers the
largest model among all methods, namely the full model reddoy GRADRATE. In contrast, the relaxed
Lasso favors the model with SAT, TOP10 and RATIO chosen ajsthé BIC.
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6. Conclusions and discussion

Model selection is one of the most important andiciilt problems in statistics. Even in classical linear
models with normal errors, where exact distributions of ynstatistics are known, there is no universal
solution for selecting the relevant covariates. In thisguape solve this problem by means of relative
errorslﬁa,n and If)(,,n for discarding non-relevant covariates from a startingriddel with all covariates. In
general, there are two reasonable approaches to measseeréative errors. The first approach consists
in estimating a maximal relative errdﬁg,n) of a sub-model with respect to the full model. In the second
approach a maximal relative errcﬁ)t(,n) of a sub-model is evaluated with respect to a larger modéaltwik,
in turn, nested under the full model. Obviously, the rekaﬁzwrorsf)mn and f)mn allow for model selection
strategies based on a threshold valuder them. These model selection methods, in contrast to many
other selection criteria, have an interpretable distani@efence in relative errors) between compared
sub-models, which makes them attractive.

The Iﬁa,n— and D, ,—methods rely on critical values of the tests given by (6) at®).( They do not
require the normality of errors in a linear regression mael utilize the asymptotic normality of the
test statistic for the above testing problems. The accuodite normal approximation in Theorems 1
and 2 is investigated in a simulation study. The correspanéP-plots show that the asymptotic normal
approximation can already be quite satisfactory for samiglesn = 50 and 100.

A natural choice of the threshotdor the Iﬁa,n— and I5a,n—methods is a desired relative error that one
allows when excluding non-relevant covariates. Our sitifisstudy illustrates that for small and moderate
small samples a correction of the desired relative efoamdD is needed. For instance, in linear models
with moderate covariate number and intercept for sampkssiz 200 the desired relative errosand
D should be multiplied by factor 3 or 4 when about 50% of obsioua have a SNR 2. If a larger
proportion of data have a SNR then the correction factor can appropriately be decreased

It is well known that classical model selection procedurgshsas the AIC and the BIC have certain
optimality properties, i.e. in terms of a Bayesian a-pasterule (for the BIC) or in terms of &iciency
(for the AIC). In contrast, our methods are designed to $@lewodel with a certain maximal relative error.
In this sense they intend to identify the most relevant dates.

Theorems 1 and 2 remain valid if instead of LS estimators, dignct estimators such as ridge
estimators are used to estimate the quantitied,(8,) and dn(ﬁz, B3). It would be of some interest to
extend the approach of Toro-Vizcarrondo and Wallace (1968)n order to compare the performance
of other estimators such as ridge estimates. Such generaizon would allow for a construction of
more general model selection methods thab, , and I5mn. This issue will be addressed in the future.
Generalized linear models (GLM’s) are an extension of ataséinear models where the distribution of
the response is a member of a general exponential family\s€aillagh and Nelder (1989)). In GLM'’s
the AIC and the BIC are also widely used for model selectidnvduld be of substantial interest to have
such interpretable model selection criteria for GLM’s $anto thef)(,,n— and f)(,,n—methods. This is the
subject of future research.
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Appendix A. Assumptions and proofs

Assumption 3. The errorsey, ... e, are i.i.d. withE(e;) = 0, Var(e;) = o andE|e|[*° < o for some
0>0.

Assumption 4. We have that

V(NX'X-G) -0 as n-— oo (A1)
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Remark 3. Note that Assumption 4 is more restrictive than AssumptioinlAssumption 4 we require
theo(n~/?) rate of convergence in Assumption 1.

Assumption 5. The entries of the covariate matrk lie in a compact sek c R for all n.

Note that from Assumptions 4 and 5 it follows that

ﬁ[(%x'x)’l-e-l} -0 as n— oo (A2)

since taking the inverse of a matrix is a Lipschitz contirmimapping on compact sets.
Proof of Theorem 1(i) From Theil (1971, P. 146) it follows
Px — Px, = Qx, X2(X5Qx, X2) " X5Qx, =1 Qxx, (A.3)

whereQyx, = In — Px,. The matrixQxx, is symmetric and idempotent and satisfigsx, X1 = 0. For
convenience, here and in the sequel we drop the subindexech#irix Qx x,, i.e. we useQ instead of
Qxx,. Thus the statisti®, can be decomposed as

1
Rq HY’(PX - Px,)Y

1 ’ 2 / ’ l / !
= € Qe + ﬁﬂzszf + ﬁﬂzszxzﬂz
=1 Sy + Sy +dn(By,). (A.4)

Noting thatES; = ¢?tr(Q)/n = o?q/n — 0 asn — co andE(S,) = 0, the first statement of Theorem 1
now follows from (5).

(i) First note that relationships (6) and (A.2) imply
VNn(da(B2) — d(B2)) — 0.
Since by assumptiow(B,) > 0, d,(8,) will be bounded away from 0 and we get

Ri-d(By)  — 2Y'(Px—Px)Y — dn(By)
v 20 \/Ga(By) vn 20 \/dn(By)

Consider now decomposition (A.4) f&,. By virtue of Theorem 1.6 from Seber and Lee (2003), the
variance of the first terr; in (A.4) is given by

+0(1). (A.5)

Var(Sy) = nflz [(ua — 30 )Wh + 25°tr (Q)]
whereuy = E(ef) andh is the vector of diagonal elements of the mat@ixfor whichh'h < ¢?. Thus
S1 = Op(IESy| +S1 — ESy) = Op(n™?).

FurthermoreES, = 0 and 4 4
Var(Sy) = ﬁ - 0%0h(By) ~ i -?d(B,),

and therefore the ter@, dominates the asymptotics in (A.4). It remains to show aggtitpnormality of
S.,. For this we check the Lyapounov condition

1 & 4o Ela* <~

o [4T0 — )

n(4+5)/2§ Elbia™ = 25372 Ibi* -0 as n— oo,
i=1 i=1
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whereb’ := 285,X5Q = (by, ..., by). It will be enough to show that the entriesdivided byn are uniformly
bounded. From Assumption 5 it follows that

I 1
max TE = 0 max [[QXop
< - max {Z [Qlikl - |[Xzﬂz]k|}
..... 2

IA

C n
HQ%{ENQM}

.....

whereC > 0 and [- ]k denotes thei(k)-th entry of the corresponding matrix. Sin@eis symmetric and
positive semi-definitd[ Q)| < (Qii + Qkk)/2, and thus

maxM < Cig}a)g{;;([Q]ii"'[Q]kk)}

C
= — [nax

Cn+1

n2 '@

< Cq for n>1

IA

This finishes the proof of Theorem 1. O
Proof of Lemma 1.Using (10), (A.3) and notin@X; = 0, we have

1 1 7 \// 2 7 \//
On(B2.B3) = HﬂZXZQX1X2ﬂ2+Hﬂ3X3QX1X2B2

1 4 ’ ’ - ’
+ Hﬂsstxlxz(szxlxz) X5 Qx, X33

= T1+T2+T3. (AG)

ConsiderT; in (A.6). By virtue of Assumption 2 it follows that

1.,
Ti o= BXQxXeB,
(KXo XoXa [X{Xa] ™ XiXo
= BZ n - n n n BZ
- By (Ga—GnGiiGr) B, as N—
= ﬁ’zAﬂz-
Similarly, one can show that
2.,
T2 = ﬁﬁ3X3QX1X2ﬂ2

—  2B3(Gsz - G21G11G12) B,
~ 2886, as noo

and

1 / ’ ’ - ’
Tz = ﬁﬁsstxlxz(XzQxlxz) 1X2Qxlx3ﬂs
— PBBABB; as n— .
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Assumption 6. We have that

Vn(n'Z’Z-G) -0 as n- .

Remark 4. Note that Assumption 6 is more restrictive than Assumptioin2Assumption 6 we require
theo(n~/?) rate of convergence in Assumption 2.

Assumption 7. The entries of the covariate matriX{, Xs] lie in a compact sekK c R for all n.

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]

(8]
(9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

[20]
[21]
[22]

[23]
[24]
[25]

Akaike, H., 1974. A new look at the statistical model idéoation. System identification and time-series analy&&H Trans.
Automatic Control 19, 716—723.

Benjamini, Y. and Hochberg, Y., 1995. Controling the &ldiscovery rate: a practical and powerful approach for ipielti
testing. J. R. Statist. Soc. B 57, 289-300.

Burnham, K.P., Anderson, D.R., 2002. Model selection amdtimodel inference. A practical information-theoretic eqgch.
Springer-Verlag, New York.

Claeskens, G., Hjort, N.L., 2003. The focused informatioiterion. J. Amer. Statist. Assoc. 98, 900—-945.

Dielman T.E., 1996. Applied regression analysis for hess and economics. Duxbury Press, Belmont.

Dette, H., Munk, A., 1998. Validation of linear regressimodels. Ann. Statist. 26, 778-800.

Dette, H., Munk, A., 2003. Some methodological aspectsatitfation of models in nonparametric regression. StatiserNe
landica 57, 207-244.

Drigalenko, E.I., Elston, R.C., 1997. False discoveiiegenome scanning. Genet. Epidemiol. 14, 779-784.

Farebrother, R.W., 1975. The minimum mean square erroatiastimator and ridge regression. Technometrics 17, 127-128
Johnson, N.L., Kotz, S., 1970. Distributions in statis. Continuous univariate distributio®lume 2. Houghton Mitlin Co.,
Boston, Mass.

Leeb, H, Btscher, B., 2003. The finite-sample distribution of post-etaglection estimators and uniform versus nonuniform
approximations. Econometric Theory 19, 100-142.

McCullagh, P., Nelder. J.A., 1989. Generalized Linkkdels. Chapman and Hall, London.

Mallows, C.L., 1973. Some comments Gp. Technometrics 15, 661-675.

Meinshausen, N., 2007. Relaxed Lasso. ComputatiomaisBts and Data Analysis 52, 374-393.

Miller, A., 2002. Subset selection in regression. Ghap & Hal/CRC, Florida.

Schwarz, G., 1978. Estimating the dimension of a model../Statist. 6, 461-464.

Seber, G.A.F., Lee, A.J., 2003. Linear Regression ysial John Wiley & Sons, Hoboken, New Jersey.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., vanldede, A., 2002. Bayesian measures of model complexity and fRoyal
Statist. Ser. B 64, 583-639.

Terasvirta, T., Mellin, I., 1986. Model selection criteria amtbdel selection tests in regression models. Scand. J. Stegist
159-171.

Tibshirani, R., 1996. Regression shrinkage and selesta the lasso. J. Royal. Statist. Soc B. 58, 267-288.

Theil, H., 1971. Principles of Econometrics. John Wigpons, New York.

Toro-Vizcarrondo, C., Wallace, T.D., 1968. A test oétinean square error criterion for restrictions in linearesgion. J. Amer.
Statist. Assoc. 63, 558-572.

Wallace, T.D., 1972. Weaker criteria and tests fordineestrictions in regression. Econometrica 40, 689-698.

Wang, H., Leng, C., 2008. A note on adaptive group LASSemputational Statistics and Data Analysis 52, 5277-5286.
Yancey, T.A., Judge, G.G., Bock, M.E., 1973. Wallacelsak mean square error criterion for testing linear regnst in
regression: a tighter bound. Econometrica 41, 1203—-1206.

22



