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Abstract

A new method in two variations for the identification of most relevant covariates in linear models with
homoscedastic errors is proposed. In contrast to many knownselection criteria, the method is based on
an interpretable scaled quantity. This quantity measures amaximal relative error one makes by selecting
covariates from a given set of all available covariates. Theproposed model selection procedures rely on
asymptotic normality of test statistics, and therefore normality of the errors in the regression model is not
required. In a simulation study the performance of the suggested methods along with the performance of
the standard model selection criteria AIC, BIC, Lasso and relaxed Lasso is examined. The simulation study
illustrates the favorable performance of the proposed method as compared to the above reference criteria,
especially when regression effects possess influence of several orders in magnitude. The accuracy of the
normal approximation to the test statistics is also investigated, it is already satisfactory for sample sizes 50
and 100. As an illustration the US college spending data from1994 is analyzed.
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1. Introduction

The choice of the relevant covariates in a linear regressionmodel is an important and much studied
problem. For this purpose, various methods have been suggested in the literature. One approach is via
model selection criteria. Here one seeks to find the sub-model which minimizes a certain information crite-
rion, for example Akaike’s information criterion AIC (Akaike, 1974) or the Bayesian information criterion
BIC (Schwarz, 1978). Typically, one of the various stepwisemethods for subset selection in regression (c.f.
Miller, 2002) is applied in order to find the sub-model which actually minimizes the information criterion
in use. There is a wide variety of model selection criteria inthe literature, apart from AIC and BIC we
mention Mallows’ (1973)Cp, the deviance information criterion DIC as discussed in Spiegelhalter et al.
(2002) or the focused information criterion FIC of Claeskens and Hjort (2003). For further information
see the monograph of Burnham and Anderson (2002). Another popular approach to model selection is the
least absolute shrinkage and selection operator (Lasso) ofTibshirani (1996) and its extensions (see e.g.
Meinshausen (2007) and Wang and Leng (2008)). The Lasso findsthe ordinary least squares estimate with
constrained sum of absolute regression coefficients. Thel1 constraint results in a model selection property
of the Lasso since some of its estimates can be zero. In practice, the model selection problem is often also
solved by sequentially testing the relevant linear restrictions determining the sub-models. For relationships
between model testing using theF−test and certain information criteria see Teräsvirta and Mellin (1986).

In this paper we introduce a new type of test which is designedto validate a linear sub-model consisting
of variables with strong effects on the response, and discuss its use for variable selection purposes. More
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Email addresses:aleksmin@ma.tum.de (Aleksey Min),holzmann@mathematik.uni-marburg.de (Hajo Holzmann ),

cczado@ma.tum.de (Claudia Czado )

Preprint submitted to Computational Statistics and Data Analysis June 29, 2009



specifically, consider the homoscedastic linear regression model

Y = Xβ + ǫ = X1β1 + X2β2 + ǫ, (1)

whereY ∈ R
n is the response vector,X := [X1,X2] ∈ R

n×(p+q) is the known design matrix andβ :=
(β′1,β

′
2)′ ∈ R

p+q denotes the unknown regression parameter vector of interest. For the moment the errors
ǫ1, . . . , ǫn constitutingǫ in model (1) are assumed to be independent, identically normally distributed with
E(ǫ1) = 0 andVar(ǫ1) = σ2. However the distribution of the errors should not be necessarily a normal
distribution and later we specify it more generally depending on aims we pursue. Suppose that we want to
check the validity of the sub-model

Y = X1β1 + ǫ, (2)

whereX1 ∈ R
n×p andβ1 ∈ R

p. Classically one verifies model (2) by testing the point hypothesis

H0 : β2 = 0

using theF−test. However, for many purposes it is not adequate to base a decision for or against the
sub-model (2) on testing the hypothesisH0, and some alternative methods have been developed. Toro-
Vizcarrondo and Wallace (1968), see also Wallace (1972), observed that the sub-model may be superior
to the complete model in terms of mean square error (MSE) evenif the sub-model is incorrect. Therefore
they suggested to test in which model the least squares estimator has smaller MSE. More precisely, let
β̂ = (X′X)−1X′Y and β̂r = (X′1X1)−1X′1Y denote the least squares (LS) estimator in the full model (1)
and in the sub-model (2), respectively. Hereβ̂r is also considered as a (p + q)−dimensional vector by
filling the last q entries by 0, i.e. β̂r =

[

Y′X1(X′1X1)−1,0′
]′

. For an arbitrary estimatorb of β we let
MS E(b) := E

[

(b − β)(b − β)′
]

, and MS E(β̂r ) ≤ MS E(β̂) means thatMS E(β̂) − MS E(β̂r ) is positive
semidefinite. Now they suggest to test the hypothesis

HMS E : MS E(β̂r ) ≤ MS E(β̂) versus KMS E : Not HMS E.

Setting

λ := n
dn(β2)
σ2
, dn(β2) :=

1
n
β′2X′2QX1X2β2, (3)

wherePX1 := X1(X′1X1)−1X′1 is the projection matrix unto the column space spanned byX1, QX1 := In−PX1

and In is the identity matrix of dimensionn, Toro-Vizcarrondo and Wallace (1968) showed thatHMS E is
equivalent toλ ≤ 1. Using the fact that under the assumption of normal errors,the F-statistic corresponding
to HMS E is non-central F-distributed (in the notation of Kotz and Johnsson (1970)) with non-centrality
parameterλ, Toro–Vizcarrondo and Wallace (1968) constructed a uniformly most powerful test forHMS E

versusKMS E based on the F-statistic. Hypotheses related toHMS E were investigated by Wallace (1972)
and by Yancey et al. (1973).

The hypothesisHMS E still has some drawbacks. Instead of comparing models, it compares the per-
formance of certain estimators. This is a somewhat arbitrary choice since there are other estimators (e.g.
the ridge estimator, cf. Farbrother, 1975), which have smaller MSE than the LS estimator. Further, the
hypothesisHMS E compares the performance of pre-model selection estimators, while it should compare
the performance of post model-selection estimators (cf. Leeb and P̈otscher, 2003).

Moreover, even if the hypothesisHMS E (or H0) cannot be rejected with a large p-value, this does not
imply that the hypothesisHMS E (or H0) is actually true, and therefore no evidence for sub-model (2)
is provided. Hence, we suggest to test a hypothesis which focuses on validating the sub-model (2). A
related approach to validating parametric functional forms of regression models (against nonparametric
alternatives) was suggested by Dette and Munk (1998). For anextensive discussion on the methodological
aspects of performing tests for model validation see Dette and Munk (2003).

In some variable selection problems one is interested not solely in identifying variables which have
a nonzero regression coefficient but in identifying variables which have a strong effect on the response
compared to the joint effect of the variables not selected. Therefore we need a distance measure between
the restricted model (2) and the full model (1). Note thatdn(β2) given in (3) is the squared normalized
length (with factorn−1) of the n−vector X2β2, when projected onto the orthogonal complement of the
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space spanned by the columns ofX1 with projection matrixQX1. Thus it provides a natural measure of
distance between the restricted model (2) and the full model(1). We propose to validate sub-model (2) by
testing the hypothesis that

H∆,n : dn(β2) > ∆ againstK∆,n : dn(β2) ≤ ∆, (4)

for some∆ > 0. Thus, rejectingH∆,n actually is a decision in favor of sub-model (2), up to the prespecified
precision∆ and significance levelα. Note that in contrast to the hypothesisHMS E, the hypotheses
H∆,n refers to the relative quality of the submodel (2) compared to model (1), and not to the quality
of specific estimators such as LS estimators.The test ofH∆,n versusK∆,n will be based on asymptotic
normality of an appropriate test statistic and therefore itdoes not require normality of the homoskedastic
errors in the regression model specified in (1).

Section 2 deals with testing hypotheses related toH∆,n. In Section 2.1 we introduce an asymptotic
versionH∆ of H∆,n, a test statistic forH∆ and derive its asymptotic distribution. Section 2.2 is concerned
with a nested testing situation, where we test a hypothesisH̃∆, related toH∆, for model (2) against model (1)
in the presence of another larger super-model containing model (1) as its sub-model. The results have their
main application for deriving model selection method for identifying strong regression effects. In Section
3 we define quantitieŝDα,n andD̃α,n, which can be interpreted as estimated maximal relative errors (with
levelα) that one makes when using the smaller sub-model. These are very convenient for model-selection
purposes, and in Section 3 we discuss how they can be employedin a backward selection procedure.

Model selection criteria are classically divided into consistent and conservative criteria. In certain
situations such as nested models containing the true model,consistent criteria like the BIC, choose the
correct model, i.e. the minimal model that contains all covariates withβi , 0, with a probability converging
to 1. In these cases conservative criteria, like the AIC or Mallows’ Cp, asymptotically choose models that
are too large with a positive probability, but not models that are too small. Of course, criteria such as AIC
have other advantages, e.g. when the linear model is misspecified, see Burnham and Anderson (2002) and
Section 6 for further discussion.

In finite samples and in cases where there are many covariateswith small but nonzero influence, both
conservative and consistent criteria will typically include some but not all of these covariates in a somewhat
arbitrary way. In contrast, model selection based on a threshold value ofD̂α,n or D̃α,n allows to discard
covariates with a small influence in a controlled and interpretable way, namely as long as the relative error
that arises remains below the chosen thresholdt. Thus, model selection based onD̂α,n or D̃α,n does not
aim at finding all the covariates with nonzero influence. Rather, its goal is to find the relevant covariates in
terms of maximal relative error.

The actual performance of̂Dα,n andD̃α,n for model selection purposes, as compared to the AIC, the BIC,
the Lasso and the relaxed Lasso is investigated in Section 4 in an extensive simulation study. Here we also
give illustrative examples for selection methods based onD̂α,n and D̃α,n, respectively and investigate the
quality of the normal approximation of the test statistics introduced in Section 2. Further in Section 5, we
illustrate the practical usefulness of our method by analyzing US college spending data from 1994. Finally,
Section 6 closes the paper with conclusions and a discussionon future research. Technical assumptions
and proofs are deferred to an appendix.

2. Asymptotic tests for identifying large regression effects

As an illustration, suppose for the moment that the errors are normally distributed, and letS S E(b)
denote the error sum of squares of an estimatorb of β. Then the statistic

T =
S S E(β̂r ) − S S E(β̂)

qσ̂2
, whereσ̂2 =

1
n− (p+ q)

(

Y − Xβ
)′ (

Y − Xβ
)

,

is F-distributed with degrees of freedomq and (n− (p+ q)) and non-centrality parameterλ, given in (3).
SinceH0 is equivalent toλ = 0 andHMS E to λ ≤ 1, it is then straightforward to construct tests forH0 and
HMS E based on theF-distribution ofT.

However,H∆,n is equivalent toHλ,n : λ > n∆/σ2. Sinceσ2 is unknown we cannot construct even under
normality an exact test ofH∆,n. However we can construct an asymptotic test for a limiting test hypothesis
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of H∆,n, which does not require normal errors in the regression model (1). In Section 2.1, we consider
this limiting version of the hypothesesH∆,n, and construct an asymptotic test for this hypothesis in case
the larger model is correct. Section 2.2 gives a corresponding test in case model (1) to which to (2) is
compared is also incorrect, assuming that there is some larger valid super-model. In this situation, and in
case of normally distributed errors, a test forHMS E is discussed in Teräsvirta and Mellin (1986).

2.1. Testing when the larger model is correct
In this section we consider testing model (2) against the larger model (1) assuming that the larger model

(1) is correct and the errors are not necessarily normally distributed. First we introduce an asymptotic
version ofH∆,n. To do so, we consider the following condition under whichdn(β2) converges asn → ∞,
say tod(β2).

Assumption 1. The regressorsX are non-random and we haveX′X/n → G as n → ∞, whereG ∈
R

(p+q)×(p+q) is a symmetric positive definite matrix.

Split G into blocks as follows

G =

(

G11 G12

G21 G22

)

, G11 ∈ R
p×p, G22 ∈ R

q×q, G12 = G′21 ∈ R
p×q.

Note thatdn(β2) can be rewritten as

dn(β2) =
1
n
β′2X′2(In − X1(X′1X1)−1X′1)X2β2

= β′2

[

X′2X2

n
− X′2X1

n

(

X′1X1

n

)−1 X′1X2

n

]

β2

and from Assumption 1 it follows that

dn(β2)→ d(β2) := β′2(G22 −G21G
−1
11G12)β2 as n→ ∞. (5)

Under Assumption 1,G is positive definite, which implies thatG22 −G21G−1
11G12 is also positive definite.

Therefore we consider the following asymptotic version of test problem (4) given by

H∆ : d(β2) > ∆ againstK∆ : d(β2) ≤ ∆. (6)

The test statisticRn for (6) is now derived in the standard manner. To do this, we substitute the unknown
β2 in d(β2) by its consistent LS estimatêβ2 from model (1), i.e.Rn := dn(β̂2). It is not difficult to see that
the test statisticRn is also a normalized numerator of theF−statistic forH0 : β2 = 0, i.e.

Rn =
1
n

(

MS E(β̂r ) − MS E(β̂)
)

=
1
n

Y′
(

PX − PX1

)

Y,

with PX := X(X′X)−1X′. In Theorem 1 we show thatRn is an asymptotic unbiased estimator ofd
(

β2

)

and
derive the asymptotic distribution ofRn whenβ2 , 0.

Theorem 1.

(i) Suppose that in model (1) with independent zero mean homoscedastic errorsAssumption 1 is satis-
fied. Then E(Rn)→ d(β2) as n→ ∞.

(ii) Suppose that in model (1) with independent zero mean homoscedastic errorsAssumptions 3, 4 and

5 (cf. the appendix) are satisfied. If d(β2) > 0 we have that
√

n
(

Rn − d(β2)
) L−→ N

(

0,4σ2d(β2)
)

as
n→ ∞.

The proof of Theorem 1 is given in the appendix. Using Theorem1, we construct an asymptotic test
for H∆ : d(β2) > ∆ versusK∆ : d(β2) ≤ ∆ as follows. Given∆ > 0, rejectH∆ with levelα > 0 if

Rn ≤ ∆ + 2σ̂uα
√
∆/
√

n, (7)

whereuα denotes theα-quantile of the standard normal distribution.
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Remark 1.

(i) The results of Theorem 1 can be generalized to heteroscedastic linear models with scaled errors from
a distribution having finite(4+ δ)-th absolute moment as follows. Let

Z = X̃β + ǫ̃ = X̃1β1 + X̃2β2 + ǫ̃

be a heteroscedastic linear model, whereǫ̃ := (σ1ǫ1, . . . , σnǫn)′ with ǫ1, . . . , ǫn being i.i.d. with mean
zero and variance1. Further let D := diag(σ2

1, . . . , σ
2
n) and D−1/2 := diag(1/σ1, . . . ,1/σn), where

diag(a1, . . . ,an) denotes a diagonal matrix with a1, . . . ,an on the main diagonal. Since the linear
model D−1/2Z = D−1/2X̃1β1 + D−1/2X̃2β2 + D−1/2ǫ̃ has now homoscedastic errors, the statement of
the corresponding theorem as well as its proof for the heteroscedastic errors are straightforward
from Theorem 1 and its proof, respectively. Thus the corresponding statistics Rheter

n is given by

Rheter
n := Z′

(

D−1X̃[X̃′D−1X̃]−1X̃′D−1 − D−1X̃1[X̃′1D−1X̃1]−1X̃′1D−1
)

Z/n

and Assumption 1 is, for example, reformulated asX̃′D−1X̃→ G.

(ii) Statement (i) of Theorem 1 remains valid if the design matrix X contains random regressors inde-
pendent of error vectorǫ and E(X′X)/n → G. This can be seen in decomposition(A.4) from the
Appendix, where E(S1|X) and E(S2|X) would be independent of X. However statement (ii) on con-
vergence of asymptotic distribution does not hold, since the leading term S2 in (A.4) of asymptotics
is a sum of dependent variables of unknown structure.

2.2. Testing when having a valid super-model

Theorem 1 is only valid if the larger model (1) is correct. However, if we apply the test sequentially,
then we will possibly also have the situation where the larger model is not true either, because we already
excluded covariates with too small an influence, which are however non-zero. Therefore, we now study the
situation where the larger model is also not correct. However, we assume that at least the linear regression
model with all covariates is correct, thus, there is a valid super-model.

Changing the notation slightly, suppose that we already erroneously believe that at most the following
sub-model

Y = X1β1 + X2β2 + ǫ, (8)

of the true super-model

Y = Zβ + ǫ, Z = [X1,X2,X3], β = [β′1,β
′
2,β
′
3]′, (9)

contains all the relevant covariates, and that we want to check the validity of the smaller sub-modelY =
X1β1 + ǫ. to Note thatX1 ∈ R

n×p, X2 ∈ R
n×q1, X3 ∈ R

n×q2, β1 ∈ R
p, β2 ∈ R

q1, β3 ∈ R
q2. Further the

errorsǫi ’s are independent identically distributed (i.i.d.) withE(ǫ1 = 0), Var(ǫ1) = σ2 and not necessarily
normal. For convenience letX := [X1,X2] and letQX,X1 := PX − PX1. Now define

d̃n(β2,β3) :=
1
n

(

β′2X′2 + β
′
3X′3
)

QX,X1

(

X2β2 + X3β3

)

. (10)

The quantityd̃n(β2,β3) is the normalized (by a factor of 1/n) length of then−vectorX2β2 + X3β3 when or-
thogonally projected byQX,X1 onto the orthogonal complement of the space spanned by the column vectors
of X1 in the space spanned by those ofX. As in Section 2.1 we impose here the following assumption on
the design matrixZ.

Assumption 2. The regressorsZ are non-random and we haveZ′Z/n → G as n → ∞, whereG ∈
R

(p+q1+q2)×(p+q1+q2) is a symmetric positive definite matrix.

Split G into blocks as follows

G =





G11 G12 G13

G21 G22 G23

G31 G32 G33



 ,
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whereG11 ∈ R
p×p, G22 ∈ R

q1×q1, G33 ∈ R
q2×q2, G12 = G′21 ∈ R

p×q1,G13 = G′31 ∈ R
p×q2 andG23 = G′32 ∈

R
q1×q2. Under Assumption 2 it follows also forn→ ∞ that

X′X/n→
(

G11 G12

G21 G22

)

=: Gr1,2.

Lemma 1. LetAssumption(2) hold for the design matrix Z of model(9). Then

d̃n(β2,β3)→ d̃(β2,β3) := β′2Aβ2 + β
′
3BA−1B′β3 + 2β′3Bβ2 as n→ ∞,

where
A := G22 −G21G

−1
11G12, B := G32 −G31G

−1
11G12. (11)

The proof of Lemma 1 is given in the appendix.
For∆ > 0 Lemma 1 allows to consider a testing problem

H̃∆ : d̃(β2,β3) ≥ ∆ against K̃∆ : d̃(β2,β3) < ∆, (12)

which is an asymptotic version of

H̃∆,n : d̃n(β2,β3) ≥ ∆ against K̃∆,n : d̃(β2,β3) < ∆.

The test statistic̃Rn for (12) is derived by substitutingβ2 andβ3 in d̃(β2,β3) with their consistent LS
estimateŝβ2 andβ̂3 based on model (9), i.e.̃Rn := d̃n(β̂2, β̂3). It should be noted that the test statisticR̃n

can be rewritten as

R̃n =
1
n

(

MS E(β̂r1
) − MS E(β̂r1,2

)
)

=
1
n

Y′
(

PX − PX1

)

Y,

whereβ̂r1
is the restricted LS estimator in model (2) andβ̂r1,2

the restricted LS estimator in model (8). Here
additional zeros have been added to obtain the same dimension asβ.

Theorem 2.

(i) Suppose that in model (9),Assumption 2 is satisfied. Then E(R̃n)→ d̃(β2,β3) as n→ ∞.

(ii) Suppose that in model (9),Assumptions 3, 6 and 7 (cf. the appendix) are satisfied. Ifd̃(β2,β3) > 0

we have that
√

n
(

R̃n − d̃(β2,β3)
) L−→ N

(

0,4σ2d̃(β2,β3)
)

as n→ ∞.

Theorem 2 allows to construct an asymptotic test for the testing problem (12). Indeed, given∆ > 0,
rejectH̃∆ versusK̃∆ with levelα > 0 if

R̃n ≤ ∆ + 2σ̂uα
√
∆/
√

n, (13)

whereσ̂ is an estimate ofσ based on the full super-model (9).

Remark 2.

(i) The proof of Theorem 2 is similar to the proof of Theorem 1 and is therefore omitted.

(ii) The results of Theorem 2 can be generalized to heterogeneous linear models in the same way as in
Theorem 1 (compare to Remark 1 (i)).

(iii) Statement (i) of Theorem 2 remains valid if the design matrix Z contains random regressors indepen-
dent of error vectorǫ and E(Z′Z)/n→ G.

3. Model validation and model selection

Test decisions based on (7) or (13) will obviously strongly depend on the choice of∆. For example,
in (7), ∆ is a threshold ford(β2), the limit of the distancedn(β2), which as mentioned above measures the
normalized (with factorn−1) squared distance of the projected vectorX2β2. This has to be seen in relation
with the total normalized squared lengthβ′X′Xβ/n, and thus, a general recommendation for a numerical
value of∆ (like 0.1) does not make sense. Therefore, in the following we suggest objective procedures for
choosing∆, and discuss how the resulting tests can be used for model selection purposes within a backward
selection procedure.
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3.1. Model selection based on̂Dα,n
First consider the hypothesisH∆ in (6) for arbitrary∆. Using (7) one can, for a given levelα (e.g.

α = 0.05), determine a critical threshold̂∆crit(α,n) for which H∆̂crit(α,n) can be rejected at levelα, while H∆
cannot be rejected for∆ < ∆̂crit(α,n), i.e. ∆̂crit(α,n) is defined as

∆̂crit(α,n) :=
(

(

Rn + σ̂
2u2
α/n
)1/2 − σ̂uα/

√
n
)2
.

Then we suggest to normalizê∆crit(α,n) by an estimate of the total normalized squared length and take
square roots to obtain

D̂α,n :=
(

∆̂crit(α,n)

β̂
′
X′Xβ̂/n

)1/2
,

whereβ̂ is the LSE ofβ in (1). The quantityD̂α,n can be nicely interpreted as the estimated maximal
relative error one makes (with levelα) if one uses sub-model (2) instead of the full model (1). In fact, one
has

D̂α,n→
[

d(β2)/(β′Gβ)
]1/2

:= D

in probability asn → ∞. Note thatD depends on the unknown regression vectorβ which for brevity is
suppressed in the following. Variable identification with strong effects on the response now proceeds in
terms ofD̂α,n: If D̂α,n is less than some fixed value which we allow as maximal relative error (say 0.1), we
identify the variables included in the smallest sub-model as variables with strong effects.

Let us describe how the above method can be used in a backward selection procedure. After fixing the
level α, we computeD̂α,n for all sub-models of the full model (1) which exclude one covariate. Let the
sub-model with minimalD̂α,n, denoted byD̂1

α,n, be M1. Next we computêDα,n, relative to the full model
(1), for all sub-models ofM1 which exclude a further covariate. Let the sub-model among the sub-models
of M1 with minimal D̂α,n, denoted byD̂2

α,n, beM2. Let us stress that in each step we computeD̂α,n relative
to the full model (which we assume to be correct so that we haveno misspecification), since we possibly
already excluded covariates with small but still notable influence. In this way we obtain a decreasing
sequence of sub-modelsM1 ⊃ M2 ⊃ . . . with increasing sequencêD1

α,n ≤ D̂2
α,n ≤ . . . with corresponding

relative errors w.r.t. the full model (1). One can now choosethe model from the sequenceMi , e.g. as the
model for which the relative error is just below some threshold t (e.g. 0.1). Note that we usêDα,n, which is
always normalized by the same factorβ̂X′Xβ/n. Therefore, the orderM1 ⊃ M2 ⊃ . . . in which the model
is reduced is the same as for the F-test and the AIC and BIC, only the stopping is more transparent as it is
based on the maximal relative error. We further discuss thisin the simulation study in Section 4.

3.2. Model selection based oñDα,n
For the testing problem̃H∆ versusK̃∆ in (12) and for a given levelα, the threshold̃∆crit(α,n) for which

H̃∆crit(α,n) can be rejected at levelα, while H̃∆ cannot be rejected for∆ < ∆̃crit(α,n), is determined by using
(13) as follows:

∆̃crit(α,n) :=
(

(

R̃n + σ̂
2u2
α/n
)1/2 − σ̂uα/

√
n
)2
,

whereσ̂ is an estimator ofσ in (9). We suggest to normalizẽ∆crit(α,n) by an estimate of the total normal-
ized length in model (8)

D̃α,n :=
(

∆̃crit,α,n

β̂
′
r1,2

X′Xβ̂r1,2
/n

)1/2
,

whereβ̂r1,2
is the LSE in (8). The interpretation of̃Dα,n is also that of an estimated relative error, since

d̃(β2,β3) only involves the normalized length ofZβ when orthogonally projected onto the orthogonal com-
plement of the column space ofX1 in that of X = [X1,X2]. However, it takes into account the whole
contribution ofX2β2 + X3β3, and is therefore not exclusively relative to the intermediate model (8). Note

that D̃α,n →
√

d(β2,β3)/β′r1,2
Gr1,2βr1,2

=: D̃ in probability asn→ ∞. Note thatD̃ depends onβ2 andβ3,

which we omit in the sequel.
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Table 1: Simulation setups

Scenarios forβ = (β0, β1, β2, β3, β4, β6)′ Sample sizen
1 β = (2,2,2,2,0.1,0.1,0.1)′ a) 200
2 β = (10,5,5,1,1,0.05,0.05)′ b) 400
3 β = (10,15,7,3,1.5,0.7,0.3)′ c) 1000

d) 5000
Error distribution
i) t-distribution with 5 degrees of freedom
ii) standard normal distribution

The backward selection procedure based onD̃α,n proceeds as follows. After fixing the levelα and
a threshold valuet for D̃α,n, we computeD̃α,n for all sub-models of the correct super-modelM0 which
exclude one covariate. Let the sub-model ofM0 with minimal D̃α,n, denoted byD̃1

α,n, be M̃1. Next we
computeDα,n, relative toM̃1, for all sub-models ofM̃1 which exclude a further covariate. Thus here we are
possibly already in the situation where the intermediate model is incorrect, since we compare relative to the
(possibly already incorrect) sub-modelM̃1. Let the sub-model among the sub-models ofM̃1 with minimal
D̃α,n, denoted byD̃2

α,n, beM̃2. In this way we obtain a decreasing sequence of sub-modelsM̃1 ⊃ M̃2 ⊃ . . .
with (not necessarily increasing) relative errorsD̃1

α,n, D̃
2
α,n, . . .. Now one chooses the first model from the

sequenceM̃i for which D̃i
α,n is below the thresholdt, while D̃i+1

α,n is larger than the thresholdt. Note that the
denominator ofDi

α,n changes in each step, since the intermediate models (8) are changing. This implies
that the order in which the models are reducedM̃1 ⊃ M̃2 ⊃ . . . may be different from that for the AIC, the
BIC and the method based on̂Dα,n.

4. Simulation study

In the simulation study we consider three different scenarios for the regression effects. First we choose
strong equal regression effects (Scenario 1), one set of variables with very strong and one set with medium
strength regression effects (Scenario 2) and finally regression effects which vary from very strong to weak
effects (Scenario 3). The specific values of the regression coefficients are given in Table 1 whereβ0 is an
intercept.

For i = 1, . . . ,6 the covariate vectorxi is drawn independently from a uniform distribution on [−1,1]n.
The n−dimensional unit vectorx0 corresponds to the interceptβ0. For the corresponding design matrix
X = [x0, x1, x2, x3, x4, x5, x6] Assumption 1 (Assumption 2) is satisfied with

X′X/n→ G = diag (1,1/3, . . . ,1/3)
(

Z′Z/n→ G = diag (1,1/3, . . . ,1/3)
)

.

As error distribution we choose at−distribution with 5 degrees of freedom (df) and the standardnormal
distribution. Note that the errorsǫi for i = 1, . . . ,n should be scaled by a factorS F in such a way that
observations with signal to noise ratio (SNR) larger than 2 approximately form 40%–50% of the whole
data. Here SNR is just a ratio of mean to standard deviation ofan observation. Finally sample sizes
n = 200,400,1000 and 5000 are investigated. Thus for each combination ofβ, n and an error distribution
given in Table 1 we apply our methods.

In Section 4.1 we illustrate in detail how our methods work inScenario 1 and 2 for regression coeffi-
cients. Section 4.2 contains a simulation study in which we investigate the performance of model selection
based onD̂α,n andD̃α,n as compared to the standard model selection criteria AIC andBIC. We give results
for two choices of the thresholdt and discuss its choice. Finally in Section 4.3 we investigate the quality
of the normal approximation in Theorems 1 and 2 fort−distributed errors. In all model selection methods,
we use backward elimination and always keep the intercept, thus only choosing from the covariates.

4.1. Illustrating examples
Consider Scenario 1 where the vector of regression coefficientsβ is set asβ = (2,2,2,2,0.1, 0.1,0.1)′.

Now we chosen = 200 andt−distributed errors with 5 df scaled by the factorS F=
√

0.8. This results that
8



Table 2: Results of model selection procedure based on theD̂α,n− andD̃α,n−methods for a data set of sizen = 200 simulated with
β = (2,2,2,2,0.1,0.1,0.1)′ andt−distributed errors with 5 df scaled byS F=

√
0.8. The levelα is equal to 0.05.

stepi sub-model discarded cov. D̂i
α,n D D̃i

α,n D̃
1 x0, x1, x2, x3, x4, x5 x6 0.106 0.020 0.106 0.020
2 x0, x1, x2, x3, x5 x4 0.107 0.028 0.107 0.020
3 x0, x1, x2, x3 x5 0.113 0.035 0.112 0.020
4 x0, x1, x3 x2 0.488 0.040 0.488 0.408
5 x0, x3 x3 0.643 0.578 0.503 0.447

Table 3: Results of model selection procedure based on theD̂α,n−method for a data set simulated withβ = (10,5,5,1,1,0.05,0.05)′

andt−distributed errors with 5 df scaled byS F= 4. Noteα = 0.05,β1 = (10,5,5)′, β2 = (1,1,0.05,0.05)′ andD ≈ 0.08.

discarded
Stepi Sub-Model covariate D̂i

α,n
n =

200 400 1000 5000
1 x0, x1, x2, x3, x4, x6 x5 0.120 0.048

x0, x1, x2, x3, x4, x5 x6 0.076 0.022
2 x0, x1, x2, x3, x4 x5 0.080 0.030

x0, x1, x2, x3, x4 x6 0.120 0.057
3 x0, x1, x2, x4 x3 0.061

x0, x1, x2, x3 x4 0.125 0.105 0.070
4 x0, x1, x2 x3 0.147 0.127 0.094

x0, x1, x2 x4 0.081
5 x0, x2 x1 0.350 0.263

x0, x1 x2 0.293 0.272

the variance of scaled errors is equal to 1.33. Table 2 contains the results of our model selection procedures
for one sample, together with the estimatedD̂α,n andD̃α,n as wells as with the true valuesD andD̃. Models
which containx1, x2 andx3 result in estimated relative error (D̂α,n or D̃α,n) around 0.1, however models
which miss one ofx1, x2 andx3 have estimated relative error larger than 0.4. Thus, there are only two
reasonable choices for possible models. Either one is willing to except a relative error at about 0.2 and only
keepsx1, x2, x3, or one keeps all the covariates.

For the second illustration we consider Scenario 2 for regression coefficients,t−distributed errors with
5 df and sample sizesn = 200,400,1000 and 5000. Note that this scenario has several orders of magnitude
for the regression coefficientsβ’s. The scaling factorS F is set to 4 and it ensures for example that 48%
observations have a SNR>2 for n = 200. Table 3 contains the results of the model selection procedure for
one sample, together with the values ofD̂α,n. Here we are interested in identifying the large effects, namely
covariatesx0, x1 andx2 in the presence of moderate effectsx3 andx4. Thus the regression vectorβ is split
as (β′1,β

′
2)′, whereβ1 = (10,5,5)′ andβ2 = (1,1,0.05,0.05)′. Further the true theoretical value ofD for

identifying β1 is equal to 0.08. If we would now use the thresholdt = 0.1 then the important covariates
x1 andx2 should be chosen by thêDα,n−method. In each column of Table 3 the value ofD̂i

α,n is bolded as
soon asDi

α,n > 0.1 for a first time. This implies that the method chooses the previous model above. For
n = 200 our model selection procedure witht = 0.1 does not choose any sub-model with 5 covariates and
therefore the full model cannot be simplified. When now samplesizes increases to 400, then the sub-model
with x1, x2, x3 andx4 is identified which contains the medium regression effectsx3 andx4. For n = 1000
andn = 5000 the desired sub-model is detected with thresholdt = 0.1, even though the empirical values
of D̂α,n are slightly larger then the true valueD = 0.8. This example shows that for small and moderate
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Table 4: Number of times specific sub-models are chosen usingD̂α,n, D̃α,n, BIC and AIC among 1000 simulated data sets with
β = (2,2,2,2,0.1,0.1,0.1)′. The first column identifies models including an intercept through their sub-indices of covariates. We
want to identify covariatesx0, x1, x2, and x3. Note β1 = (2,2,2,2)′, β2 = (0.1,0.1,0.1)′, D ≈ 0.04 for the D̂α,n−method and
β1 = (2,2,2,2)′, β2 = 0.1,β3 = (0.1,0.1)′, D̃ ≈ 0.02 for theD̃α,n−method.

Model D̂α,n D̃α,n BIC AIC
t = 0.1 t = 0.15 t = 0.1 t = 0.15

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

t-errors with 5 degrees of freedom (S F=
√

0.8)
“12345” 283 3 4 0 271 0 1 0 3 5 50 105
“12356” 271 11 4 1 261 6 2 1 2 16 60 103
“12346” 289 5 5 0 281 3 3 0 3 3 56 96
“1234” 44 118 54 1 41 59 23 0 64 92 165 155
“1235” 34 88 49 2 40 38 21 0 45 65 129 134
“1236” 46 76 42 0 49 29 15 0 50 61 132 145
“123” 33 699 842 996 57 865 935 999 833 758 408 262

Normal errors (S F=
√

4/3)
“12345” 318 5 1 0 313 1 0 0 1 7 44 100
“12356” 277 4 3 0 272 1 1 0 3 6 55 123
“12346” 305 4 3 0 296 1 1 0 4 4 64 84
“1234” 26 106 48 0 28 38 18 0 48 70 163 159
“1235” 31 98 48 0 33 34 22 0 47 66 150 145
“1236” 23 100 47 0 23 41 15 0 40 73 113 133
“123” 20 683 850 1000 35 884 943 1000 857 774 411 256

sample sizesn such as 200 or 400 a correction for threshold valuet is needed. We discuss this point in the
next section in more detail.

4.2. Model selection performance

Here we report results of an extensive simulation study to compare the performance of our model
selection criteria based on thêDα,n− andD̃α,n−methods with the AIC, the BIC, the Lasso and the relaxed
Lasso. For thêDα,n− andD̃α,n−methods, in each simulation we choose the levelα = 0.05 and sample size
200 as wells as 400.

Table 4 displays the frequency of chosen sub-models for 1000data sets simulated withβ = (2,2,2,2,
0.1,0.1,0.1)′, a fixed design matrixX and the two error distributions from Table 1. Thet−errors are
scaled withS F =

√
0.8 while the normal errors are scaled withS F =

√
4/3. This implies that the both

type of scaled errors have the same variance and 44% of observations have the SNR>2 for n = 200.
Obviously, this regression model has three covariatesx1, x2 andx3 (model “123” in Table 4) corresponding
to β1 = (2,2,2,2)′ which we want to identify. The true value ofD (D̃) for identifying these is equal to
0.04 (0.02). However as we noticed in the previous section the threshold valuet should be corrected for
small and moderate sample sizes. Therefore we chose 0.1 or 0.15 as the thresholdt for the D̂α,n−method,
which are obtained by rounding 3· 0.04 and 4· 0.04 to the nearest numbers 0.1, 0.15 or 0.2. From our
experience the true relative errorD (D̃) for choosing the thresholdt for the D̂α,n−method (̃Dα,n−method)
should be multiplied by the factor 2, 3 or even 4 (3,4 or even 5)for sample sizes 200 or 400 when about
50% observations have SNR larger than 2 and only 6 covariatesare under consideration. For both methods
we use the same threshold values in order to illustrate the difference between them.

For t−errors both methods choose in over 99% the sub-model with three important covariatesx1, x2 and
x3 whent = 0.15 andn = 400. They clearly outperform BIC (AIC), which rather chooses the sub-model
with x1, x2 andx3 only in 76% (26%). If the sample size decreases from 400 to 200then theD̂α,n−method
is comparable with BIC and outperforms AIC. TheD̃α,n− method performs here clearly better than BIC
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and AIC. If the thresholdt = 0.1 then our methods are comparable with BIC only forn = 400 while for
n = 200 their performance is very poor with respect to BIC and AIC. It should be noted that when a sample
size increases then BIC and AIC start to detect the small and medium regression effects. In contrast, in
this situation the precision of our methods increases and they start to choose a smaller model with all large
regression effects. For normal errors we get similar results as for thet−error case.

We performed simulations for regression coefficients from Scenario 2 and the same design matrixX
in a similar manner. Thet−errors are now scaled withS F = 4 while the normal errors are scaled with
S F= 4

√
5/3. This ensures that the scaled errors have the same varianceand 48% of the observations have

SNR>2 for n = 200. Here we would like to identify strong regression effectsx1 andx2 (model “12” in
Table 5) corresponding toβ1 = (10,5,5)′ in the presence of the moderate effect regressorsx3 andx4. The
true value ofD (D̃) for identifying them is equal to 0.08 (0.05). We set the thresholdt for both methods to
0.15 and 0.2 which are argued by multiplying the true relative errorD = 0.08 by 2 and 3 and then rounding
them to the nearest numbers 0.1,0.15 or 0.2.

Table 5 displays how often sub-models have been selected for1000 data sets simulated according to
the above setup. We see that the correction of the true relative error by multiplying with 2 (t = 0.15) is
not enough forn = 200. To see a better performance of our methods in comparisonwith BIC and AIC,
the sample size should be increased to 400. The correction bythe factor 3 shows that our methods clearly
outperform BIC and AIC for the both sample sizes. A change of the error distribution does not change the
results by much. If a larger proportion of observations has aSNR larger than 2 then a correction factor 2
becomes acceptable. Table 6 shows the same results as in Table 5 but with different scale factorsS F’s.
The values forS F are chosen in such a way that 80% of observations have SNR>2. We see that for the
both error distributions our methods identify the desired model with a correction factor 2 or 3 for the true
threshold correctly, thus improving the precision of the methods. In contrast BIC and AIC start to choose
strong and intermediate regression effects together. A change of the error distribution does not change the
results by much.

Finally consider a scenario with no clearly separated orders of magnitudes for theβ’s. We choose
β = (10,15,7,3,1.5,0.7,0.3)′, i.e. Scenario 3 in Table 1. Thus regression effects decrease without having
strong separation of effects. Thet−errors are now scaled withS F = 4 while the normal errors are scaled
with S F= 4

√
5/3. The scaled errors for both error distributions thus have the same variance and 47.5% of

the observations have SNR>2 for n = 200. Now we want to identify covariatesx1, x2 andx3 (model “123”
in Table 7) corresponding toβ1 = (β0, β1, β2, β3)′. The true value ofD (D̃) for identifying them is equal
to 0.07 (0.06), which we use below to illustrate our methods at work. As above, we set the threshold as
t = 0.15 andt = 0.2 which are motivated by multiplying 0.07 by 2 and 3. Table 7 contains the results of the
model selection procedures for 1000 data sets simulated within Scenario 3. Here we see that a correction
factor 2 (t = 0.15) works well for our both methods and they outperform BIC and AIC for sample sizes 200
and 400. Thus forn = 200 theD̂α,n−method (̂Dα,n−method) chooses the sub-model withx1, x2, x3 in 64%
(74%) while the BIC does so in 35%. If now the threshold 0.2 is used then thêDα,n−method identifies the
desired model still better than the BIC (59% versus 35%) while D̃α,n−method fails to do this (25% versus
35%). Both our methods fail to identify the model withx1, x2 andx3 if a slightly smaller thresholdt than
above is used. Thus fort = 0.12, n = 200 andt−errors theD̂α,n− andD̃α,n−methods favor a larger model
with x0, x1, x2, x3 andx4 in 552 and 482 cases out of 1000, respectively. This indicates that when there
are no clear strong effects then our methods become sensitive to the choice of the correction factor for the
desired relative errorsD andD̃ and this correction should be done carefully.

Following the referees’ suggestion we also compared our model selection methods with the Lasso of
Tibshirani (1996) and the relaxed Lasso of Meinshausen (2007). These two methods are implemented
in the non-commercial statistical softwareR as packageslasso2 (Lasso) andrelaxo (relaxed Lasso).
Thus we applied the Lasso and the relaxed Lasso to the same data from simulation Scenarios 1, 2 and 3
with t−errors corresponding to Tables 4, 5 and 7. Table 8 presents the model selection performance of both
methods with penalty parameter chosen by cross-validation(s. Tibshirani (1996) and Meinshausen (2007)).
It is well known that a model selection based on Lasso estimators is not a consistent variable selection
procedure and chooses a larger set of covariates, however, containing important ones with probability 1
(s. Meinshausen (2007)). A comparison of the results for theLasso from Table 8 with the corresponding
results from Tables 4, 5 and 7 also exposes this fact, since the Lasso always prefers the full model with
all six covariates. In contrast, in Scenario 1 the model selection based on the relaxed Lasso prefers the
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Table 5: Number of times specific sub-models are chosen usingD̂α,n, D̃α,n, BIC and AIC among 1000 simulated data sets with
β = (10,5,5,1,1,0.05,0.05)′. The first column identifies models including an intercept through their sub-indices of covariates.
We want to identify covariatesx0, x1 andx2. Noteβ1 = (10,5,5)′, β2 = (1,1,0.05,0.05)′, D ≈ 0.08 for theD̂α,n−method and
β1 = (10,5,5)′, β2 = 1,β3 = (1,0.05,0.05)′, D̃ ≈ 0.05 for theD̃α,n−method.

Model D̂α,n D̃α,n BIC AIC
t = 0.15 t = 0.2 t = 0.15 t = 0.2

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

t-errors with 5 degrees of freedom (S F= 4)
“12345” 10 1 0 0 7 0 0 0 3 5 40 99
“12356” 6 1 0 0 4 1 0 0 1 0 6 9
“12346” 12 0 0 0 11 0 0 0 3 4 60 102
“12456” 7 0 0 0 2 0 0 0 1 0 7 8
“1234” 130 3 3 0 70 0 0 0 58 179 230 435
“1235” 19 0 0 0 7 0 0 0 1 5 28 18
“1236” 26 0 1 1 10 0 0 0 6 2 32 22
“1245” 22 0 1 0 8 0 0 0 3 5 38 21
“1246” 29 0 2 0 13 0 0 0 5 3 41 11
“1256” 2 0 0 0 1 0 0 0 0 0 7 1
“123” 211 112 72 2 180 14 12 0 169 203 131 116
“124” 251 112 82 0 215 27 23 0 225 237 203 119
“125” 26 5 1 0 6 0 1 0 8 5 21 5
“126” 22 2 5 0 5 0 0 0 1 7 17 7
“12” 227 764 833 997 461 958 964 1000 516 345 139 27

Normal errors (S F=
√

80/3)
“12345” 5 0 0 0 1 0 0 0 0 3 39 94
“12356” 5 0 0 0 1 0 0 0 0 0 8 7
“12346” 4 0 0 0 1 0 0 0 0 1 49 95
“12456” 3 0 0 0 1 0 0 0 0 0 8 7
“1234” 129 0 1 0 70 0 0 0 64 184 246 436
“1235” 19 0 0 0 12 0 0 0 8 4 37 21
“1236” 16 0 0 0 6 0 0 0 5 6 21 24
“1245” 25 0 0 0 10 0 0 0 5 4 37 17
“1246” 38 0 0 0 10 0 0 0 8 5 45 18
“1256” 4 0 0 0 2 0 0 0 0 1 4 3
“123” 228 92 70 1 190 12 11 0 176 187 152 101
“124” 273 98 78 0 234 10 18 0 233 217 202 130
“125” 27 4 6 0 10 0 0 0 10 3 15 5
“126” 26 5 3 0 14 0 0 0 9 13 20 6
“12” 198 801 842 999 438 978 970 1000 482 372 117 36

model with significant covariatesx1, x2 andx3 in 610 (466) cases out of 1000 forn = 200 (n = 400).
In the presence of strong as well as intermediate regressioneffects (Scenario 2), our methods and BIC
outperform the relaxed Lasso. In Scenario 3 the relaxed Lasso is consistent with the BIC forn = 200 and
asn increases to 400 a larger model with five covariates is favored. It should be noted that in the presence
of regression effects of different magnitude, BIC, AIC, Lasso and relaxed Lasso start to include more and
more covariates in a model as the sample size increases whileour approaches, contrarily, choose a favored
model in a small sample with higher probability whenn gets larger.

Now we discuss some of our results using a false discovery rate (FDR) criterion for multiple testing
problems introduced by Benjamini and Hochberg (1995). Thiscriterion has been found especially useful
when a large number of covariates are under consideration. Therefore its use became quite popular for
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Table 6: Number of times specific sub-models are chosen usingD̂α,n, D̃α,n, BIC and AIC among 1000 simulated data sets with
β = (10,5,5,1,1,0.05,0.05)′. The first column identifies models including an intercept through their sub-indices of covariates.
We want to identify covariatesx0, x1 andx2. Noteβ1 = (10,5,5)′, β2 = (1,1,0.05,0.05)′, D ≈ 0.08 for theD̂α,n−method and
β1 = (10,5,5)′, β2 = 1,β3 = (1,0.05,0.05)′, D̃ ≈ 0.05 for theD̃α,n−method.

Model D̂α,n D̃α,n BIC AIC
t = 0.15 t = 0.2 t = 0.15 t = 0.2

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

t-errors with 5 degrees of freedom (S F= 2)
“12345” 0 0 0 0 0 0 0 0 14 25 129 160
“12356” 0 0 0 0 0 0 0 0 0 0 0 1
“12346” 0 0 0 0 0 0 0 0 11 10 147 148
“12456” 0 0 0 0 0 0 0 0 0 0 3 0
“1234” 0 0 0 0 0 0 0 0 621 919 637 690
“1235” 0 0 0 0 0 0 0 0 3 0 4 0
“1236” 0 0 0 0 0 0 0 0 2 2 5 0
“1245” 0 0 0 0 0 0 0 0 2 0 8 0
“1246” 0 0 0 0 0 0 0 0 4 0 4 0
“123” 13 1 0 0 0 0 0 0 116 11 19 0
“124” 18 0 0 0 2 0 0 0 197 31 43 1
“125” 0 0 0 0 0 0 0 0 1 0 0 0
“12” 969 999 1000 1000 998 1000 1000 1000 29 2 1 0

Normal errors (S F=
√

20/3)
“12345” 0 0 0 0 0 0 0 0 19 14 139 154
“12356” 0 0 0 0 0 0 0 0 0 0 2 0
“12346” 0 0 0 0 0 0 0 0 11 25 124 153
“12456” 0 0 0 0 0 0 0 0 0 0 3 0
“1234” 0 0 0 0 0 0 0 0 618 921 663 691
“1235” 0 0 0 0 0 0 0 0 3 0 7 0
“1236” 0 0 0 0 0 0 0 0 6 0 5 0
“1245” 0 0 0 0 0 0 0 0 2 0 0 0
“1246” 0 0 0 0 0 0 0 0 5 1 7 1
“123” 8 0 0 0 1 0 0 0 125 16 18 0
“124” 11 0 0 0 1 0 0 0 188 22 32 1
“12” 981 1000 1000 1000 998 1000 1000 1000 23 1 0 0

microarray data (see e.g. Drigalenko and Elston (1997)), where an experimenter aims to detect a few
genes relevant to a disease among many ten thousands or even hundred thousands of genes. In order to
introduce the FDR criterion the related quantities such as the number of true positives (TP), the number
of false negatives (FN), the number of false positives (FP) should be characterized. In a model selection
procedure the relevant covariates to the response can be identified or not. Now the number of TP describes
the number of correctly identified relevant covariates while the number of FN describes the number of
relevant covariates which are not identified. Their sum results in the numberp of the important covariates
for the response (dimension ofβ1). Similarly, non-relevant covariates can be wrongly identified as relevant
or not. The number FP is just the number of non-relevant regression effects which are wrongly identified
as important. Now FDR is defined as follows

FDR :=
FP

FP+ T P
.

Thus FDR measures the rate of false discoveries among all discoveries. A low FDR with TP close top
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Table 7: Number of times specific sub-models are chosen usingD̂α,n, D̃α,n, BIC and AIC among 1000 simulated data sets with
β = (10,15,7,3,1.5,0.7,0.3)′. The first column identifies models including an intercept through their sub-indices of covariates. We
want to identify covariatesx0, x1, x2 andx3. Noteβ1 = (10,15,7,3)′, β2 = (1.5,0.7,0.3)′, D ≈ 0.07 for theD̂α,n−method and
β1 = (10,15,7,3)′, β2 = 1.5,β3 = (0.7,0.3)′, D̃ ≈ 0.06 for theD̃α,n−method

Model D̂α,n D̃α,n BIC AIC
t = 0.15 t = 0.2 t = 0.15 t = 0.2

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

t-errors with 5 degrees of freedom (S F= 4)
“12345” 4 0 0 0 3 0 0 0 57 156 297 496
“12356” 0 1 0 0 0 1 0 0 1 2 23 9
“12346” 3 0 0 0 1 0 0 0 16 26 127 146
“1234” 257 17 5 0 129 3 1 0 499 648 433 337
“1235” 37 2 1 0 8 0 0 0 50 33 41 6
“1236” 5 0 0 0 0 0 0 0 8 4 13 1
“1245” 3 0 0 0 0 0 0 0 3 0 0 0
“123” 642 929 568 157 743 693 256 13 349 131 65 5
“124” 41 14 35 2 40 4 4 0 11 0 1 0
“125” 0 0 1 0 1 0 0 0 1 0 0 0
“12” 8 37 390 841 75 299 739 987 5 0 0 0

Normal errors (S F=
√

80/3)
“12345” 2 0 0 0 1 0 0 0 59 172 290 531
“12356” 1 0 0 0 0 0 0 0 4 8 18 20
“12346” 0 0 0 0 0 0 0 0 19 22 118 123
“1234” 270 14 1 0 134 1 0 0 505 633 434 311
“1235” 34 2 0 0 8 0 0 0 49 31 43 9
“1236” 5 0 0 0 0 0 0 0 7 9 16 2
“1245” 1 0 0 0 1 0 0 0 0 0 0 0
“1246” 2 0 0 0 0 0 0 0 2 0 0 0
“123” 643 932 593 152 753 697 255 11 345 125 80 4
“124” 28 7 39 0 30 0 3 0 8 0 1 0
“125” 1 0 1 0 0 0 0 0 0 0 0 0
“12” 13 45 366 848 73 302 742 989 2 0 0 0

indicates a good performance of the method. In Table 9 we giveaveraged values of TP, FN and FP for
all investigated methods based on 1000 simulated data sets when errors are distributed according to the
scaledt−distribution with 5 df. The FDR given in Table 9 is then computed using the average values
of FP and TP. For Scenario 1 whenβ = (2,2,2,2,0.1,0.1,0.1)′ the BIC performs better than AIC for
n = 200 and 400. Our methods clearly outperform BIC forn = 400 andt = 0.15. Forn = 200 a
threshold oft = 0.1 is too small to achieve a better performance than BIC. For Scenario 2 whenβ =
(10,5,5,1,1,0.05,0.05)′ we obtain similar results, i.e.t = 0.2 andn = 400 outperform BIC. For Scenario
3 whenβ = (10,15,7,3,1.5,0.7,0.3)′ we see a difference. Here a thresholdt = 0.15 is outperforming BIC
and AIC. However the average TP value is lower for our methodscompared to AIC and BIC, i.e. too small
models are identified by our methods. For normal errors we obtained similar results. Therefore we omit
them for brevity. Overall we see that our tailored methods toidentify relevant covariates outperform all
purpose model selection criteria such as the BIC, the AIC, the Lasso and the relaxed Lasso.

4.3. Quality of the normal approximation

Finally, we investigate the quality of the normal approximations in Theorems 1 and 2. Since the true
value of d(β2) and d(β2,β3) are usually not known we usedn(β2) and dn(β2,β3) instead ofd(β2) and
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Table 8: Number of times specific sub-models are chosen using Lasso (L) and relaxed Lasso (RL) methods for scaledt−distributed
errors with 5 df.

Model Scenario 1 Scenario 2 (S F= 4) Scenario 3
L RL L RL L RL

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

“123456” 365 513 0 0 253 338 0 0 516 704 0 0
“12345 175 125 58 97 185 219 94 127 259 205 285 430
“12356 128 131 42 97 32 16 13 10 8 3 5 17
“12346 158 128 52 86 216 209 100 150 137 65 102 115
“12456 0 0 0 0 36 35 16 19 1 0 0 0
“1234” 49 36 116 74 122 111 142 266 67 22 416 366
“1235” 54 28 61 80 24 6 13 9 1 1 17 10
“1236” 47 30 61 100 18 16 11 17 8 0 3 2
“1245” 0 0 0 0 35 17 22 13 0 0 0 0
“1246” 0 0 0 0 35 19 22 13 0 0 0 0
“1256” 0 0 0 0 8 0 0 2 0 0 0 0
“123” 24 9 610 466 10 7 95 84 3 0 168 60
“124” 0 0 0 0 16 5 165 127 0 0 1 0
“125” 0 0 0 0 6 0 9 3 0 0 0 0
“126” 0 0 0 0 2 1 5 3 0 0 0 0
“12” 0 0 0 0 2 1 293 157 0 0 3 0

d(β2,β3) in Theorem 1 and Theorem 2, respectively. By virtue of Assumption 4 and Slutsky’s theorem the
above change does not affect the limiting normal distribution.

For Theorem 1, we test the complete model (1) against the model given in (2). We useβ = (2,2,0.1,0.1,
0.1,2,2)′ andt−errors with 5 df scaled by the factorS F =

√
0.8. The design matrixX is constructed in a

similar manner as in the previous sections. Model 2 is definedby excluding the covariatex6 corresponding
to the regression coefficient β6 = 2. We simulate the statisticRn 10000 times forn = 50,100 and 200.
For visualization in Figure 1 we use P-P plots. They showα ∈ [0,1] on they−axis and the empirical
probability α̂n of the event{

√
n[Rn − dn(β2)] ≤ Qα,n} on thex−axis. HereQα,n is theα-quantile of the

asymptotic normal distribution of Theorem 1 with consistently estimated variance 4 ˆσ2Rn. Note thatσ̂2 is
the estimate of the error varianceσ2 in model (1).

Similarly for Theorem 2, we test a sub-model without the covariate x6 against a sub-model where the
covariatex5 and x6 are excluded, and simulate the statisticR̃n 10000 times forn = 50,100 and 200 and
scaledt− distributed errors with 5 df as above. Thusβ2 andβ3 from Theorem 2 are both equal to 2. Figure
2 shows for eachα ∈ [0,1] on they−axis the empirical probability ˆαn of the event{

√
n[R̃n − d̃n(β2,β3)] ≤

Q̃α,n} on thex−axis. HereQ̃α,n is theα-quantile of the asymptotic normal distribution of Theorem2 with
consistently estimated variance 4 ˆσ2R̃n. Note thatσ̂2 is the estimate of the error varianceσ2 in model (9).
¿From the top row of Figures 1 and 2 we see that the asymptotic approximation is quite good already for
rather small sample sizes. Note that for the test decisions (7) and (13), the approximations for smallα’s are
relevant, which can be assessed using the bottom row.

5. College spending data

To illustrate our method in a practical application we analyze the college spending data from U.S. News
and World Report 1994 College Guide. The complete data can befound in Dielman (1996) and its short
description is given in Table 10. The variable of interest iseducational spending per full-time equivalent
(SPEND) given for 147 US colleges. A simple explorative dataanalysis shows that there is a presence of
variance heterogeneity and a log transformation of the response SPEND is needed. Further, for numerical
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Table 9: Averaged values of true positives (TP), false negatives (FN), false positives (FP) and the corresponding falsediscovery rate
(FDR) based on the averaged values among 1000 simulated data sets for t−errors with 5 degrees of freedom.

β = (2,2, 2,2,0.1, 0.1,0.1)′, S F=
√

0.8 and desired sub-modelx0, x1, x2, x3

D̂α,n D̃α,n BIC AIC
t = 0.1 t = 0.15 t = 0.1 t = 0.15

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

TP 4 4 4 4 4 4 4 4 4 4 4 4
FN 0 0 0 0 0 0 0 0 0 0 0 0
FP 1.81 0.320 0.171 0.005 1.756 0.144 0.071 0.002 0.175 0.2660.758 1.042

FDR 0.312 0.074 0.041 0.001 0.305 0.035 0.017 0.000 0.042 0.062 0.159 0.207
β = (10, 5,5,1,1, 0.05,0.05)′, S F= 4 and desired sub-modelx0, x1, x2

D̂α,n D̃α,n BIC AIC
t = 0.15 t = 0.2 t = 0.15 t = 0.2

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

TP 3 3 3 3 3 3 3 3 3 3 3 3
FN 0 0 0 0 0 0 0 0 0 0 0 0
FP 1.071 0.243 0.174 0.004 0.696 0.044 0.696 0 0.573 0.867 1.463 1.917

FDR 0.263 0.075 0.055 0.001 0.188 0.014 0.188 0 0.160 0.224 0.328 0.390
β = (10, 15,7,3,1.5, 0.7,0.3)′, S F= 4 and desired sub-modelx0, x1, x2, x3

D̂α,n D̃α,n BIC AIC
t = 0.15 t = 0.2 t = 0.15 t = 0.2

n = n = n = n = n = n =
200 400 200 400 200 400 200 400 200 400 200 400

TP 3.948 3.949 3.574 3.157 3.884 3.697 3.257 3.013 3.980 4 3.999 4
FN 0.052 0.051 0.426 0.843 0.116 0.303 0.743 0.987 0.020 0 0.001 0
FP 0.360 0.035 0.042 0.002 0.186 0.009 0.005 0 0.723 1.053 1.382 1.646

FDR 0.084 0.009 0.012 0.001 0.046 0.002 0.002 0 0.154 0.208 0.257 0.292

Table 10: Variables of college spending data in USA from 1994

Notation Short description
SAT –average SAT score

TOP10 –freshmen in the top 10% of their
high school class (in percentage)

ACCRATE –acceptance rate (in percentage)
PHD –faculty with PhD (in percentage)

RATIO –student faculty ratio
SPEND –educational spending per full-time

equivalent student (in dollars)
GRADRATE –graduation rate (in percentage)

ALUMNI –alumni giving rate (in percentage)

stability, all variables including the response log(SPEND) are centered and normalized by their sample
mean and sample standard deviation.

For our methods we set the desired relative errorsD andD̃ equal to 0.1 and choose the nominal level
α = 0.05. Further we use the correction factor 3 forD andD̃ which works forn = 200 well as we have
seen in the previous section. This results in the threshold valuet = 0.3 for theD̂α,n− andD̃α,n−methods. In
the top part of Table 11, the results of a backward selection procedure for theD̂α,n−method, the BIC and
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Figure 1: P-P plots for
√

n[Rn − dn(β2)] based on 10000 replications whenβ1 = (2,2,0.1,0.1,0.1,2)′, β2 = 2 and errors are scaled
t−distributed with 5 df (top rowα ∈ (0,1), bottom rowα ∈ (0,0.1)).
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Figure 2: P-P plots for
√

n[R̃n − d̃n(β2,β3)] based on 10000 replications whenβ1 = (2,2,0.1,0.1,0.1)′, β2 = 2, β3 = 2 errors are
scaledt−distributed with 5 df (top rowα ∈ (0,1), bottom rowα ∈ (0,0.1)).
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the AIC, applied to the college spending data, are given.
As in the simulation study we always keep the intercept in thesub-models. One can see that the

D̂α,n−method, the BIC and the AIC have the same sequence of preferred sub-models when the number of
the covariates decreases stepwise. However they choose completely different sub-models which are bolded
in Table 11. The BIC chooses a sub-model consisting of the three covariates SAT, TOP10 and RATIO,
and the AIC prefers a model with 4 covariates. Note that the values for the BIC for the sub-models with
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Table 11: Results of a backward selection procedure for college spending data based on theD̂α,n−, D̃α,n−methods, BIC and AIC.

Model selection based on̂Dα,n, BIC and AIC

stepi sub-model discarded cov. D̂i
α,n BIC AIC

1 SAT, TOP10, ACCRATE,
PHD, RATIO, ALUMNI GRADRATE 0.164 253.7 229.8

2 SAT, TOP10, ACCRATE,
PHD, RATIO ALUMNI 0.165 248.8 227.9

3 SAT, TOP10, PHD,RATIO ACCRATE 0.185 245.5 227.5
4 SAT, TOP10, RATIO PHD 0.215 243.5 228.5
5 TOP10, RATIO SAT 0.278 247.0 235.1
6 TOP10 RATIO 0.650 326.1 317.1

Model selection based oñDα,n

stepi sub-model discarded cov. D̃i
α,n

1 SAT, TOP10, ACCRATE,
PHD, RATIO, ALUMNI GRADRATE 0.164

2 SAT, TOP10, ACCRATE,
PHD, RATIO ALUMNI 0.164

3 SAT, TOP10, PHD, RATIO ACCRATE 0.389
4 SAT, TOP10, RATIO PHD 0.394
5 SAT, TOP10 RATIO 0.484
6 SAT TOP10 0.640

2 - 5 covariates, and the values of the AIC for 3-6 covariates are rather close together, thus making a clear
decision in favor of any of these sub-models difficult. TheD̂α,n−method evidently chooses the sub-model
with covariates TOP10 and RATIO.

The D̃α,n−method behaves somewhat differently as the bottom part of Table 11 displays. It prefers
the sub-model with five covariates SAT, TOP10, ACCRATE, PHD and RATIO which are given in bold
face. This sub-model is “almost” chosen by the AIC since the difference in AIC between 227.9 and 227.5
is negligible. Thus all four model selection procedures choose different sub-models consisting of 2-5
covariates which indicates a high model uncertainty in the college spending data. ThẽDα,n−method is
sensible to the uncertainty present and it results in the choice of the largest sub-model among all chosen
sub-models. In the presence of model uncertainty the smaller sub-model with four covariates cannot be
preferred to the larger sub-model with five covariates taking into account the existence of the super-model
with all 6 covariates. In this situation the numerators ofD̂α,n andD̃α,n are approximately of the same order
but the denominator of̃Dα,n is smaller than the denominator ofD̂α,n. Therefore we may observe large
values ofD̃α,n compared to the corresponding ones ofD̂α,n as for example Table 11 displays for stepsi = 3
and 4. Note that the order in which the variables are discarded by theD̃α,n−method differs from that taken
by the other methods, and̃Dα,n needs not be monotone. Finally we also applied Lasso and relaxed Lasso
with optimal chosen penalty parameter to the college spending data. As expected the Lasso prefers the
largest model among all methods, namely the full model reduced by GRADRATE. In contrast, the relaxed
Lasso favors the model with SAT, TOP10 and RATIO chosen also by the BIC.
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6. Conclusions and discussion

Model selection is one of the most important and difficult problems in statistics. Even in classical linear
models with normal errors, where exact distributions of many statistics are known, there is no universal
solution for selecting the relevant covariates. In this paper we solve this problem by means of relative
errorsD̂α,n andD̃α,n for discarding non-relevant covariates from a starting full model with all covariates. In
general, there are two reasonable approaches to measure these relative errors. The first approach consists
in estimating a maximal relative error (D̂α,n) of a sub-model with respect to the full model. In the second
approach a maximal relative error (D̃α,n) of a sub-model is evaluated with respect to a larger model which is,
in turn, nested under the full model. Obviously, the relative errorsD̂α,n andD̃α,n allow for model selection
strategies based on a threshold valuet for them. These model selection methods, in contrast to many
other selection criteria, have an interpretable distance (difference in relative errors) between compared
sub-models, which makes them attractive.

The D̂α,n− and D̃α,n−methods rely on critical values of the tests given by (6) and (12). They do not
require the normality of errors in a linear regression modeland utilize the asymptotic normality of the
test statistic for the above testing problems. The accuracyof the normal approximation in Theorems 1
and 2 is investigated in a simulation study. The corresponding PP-plots show that the asymptotic normal
approximation can already be quite satisfactory for samplesizesn = 50 and 100.

A natural choice of the thresholdt for the D̂α,n− andD̃α,n−methods is a desired relative error that one
allows when excluding non-relevant covariates. Our simulation study illustrates that for small and moderate
small samples a correction of the desired relative errorsD andD̃ is needed. For instance, in linear models
with moderate covariate number and intercept for sample sizesn = 200 the desired relative errorsD and
D̃ should be multiplied by factor 3 or 4 when about 50% of observations have a SNR> 2. If a larger
proportion of data have a SNR>2 then the correction factor can appropriately be decreased.

It is well known that classical model selection procedures such as the AIC and the BIC have certain
optimality properties, i.e. in terms of a Bayesian a-posteriori rule (for the BIC) or in terms of efficiency
(for the AIC). In contrast, our methods are designed to select a model with a certain maximal relative error.
In this sense they intend to identify the most relevant covariates.

Theorems 1 and 2 remain valid if instead of LS estimators, distinct estimators such as ridge
estimators are used to estimate the quantitiesdn(β2) and d̃n(β2,β3). It would be of some interest to
extend the approach of Toro-Vizcarrondo and Wallace (1968)in order to compare the performance
of other estimators such as ridge estimates. Such generalization would allow for a construction of
more general model selection methods thanDα,n and D̃α,n. This issue will be addressed in the future.
Generalized linear models (GLM’s) are an extension of classical linear models where the distribution of
the response is a member of a general exponential family (seeMcCullagh and Nelder (1989)). In GLM’s
the AIC and the BIC are also widely used for model selection. It would be of substantial interest to have
such interpretable model selection criteria for GLM’s similar to theD̂α,n− andD̃α,n−methods. This is the
subject of future research.
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Appendix A. Assumptions and proofs

Assumption 3. The errorsǫ1, . . . ǫn are i.i.d. withE(ǫ1) = 0, Var(ǫ1) = σ2 andE|ǫ1|4+δ < ∞ for some
δ > 0.

Assumption 4. We have that
√

n
(

n−1X′X −G
)

→ 0 as n→ ∞. (A.1)
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Remark 3. Note that Assumption 4 is more restrictive than Assumption 1. In Assumption 4 we require
theo(n−1/2) rate of convergence in Assumption 1.

Assumption 5. The entries of the covariate matrixX2 lie in a compact setK ⊂ R for all n.

Note that from Assumptions 4 and 5 it follows that

√
n
[

(1
n

X′X
)−1 −G−1

]

→ 0 as n→ ∞ (A.2)

since taking the inverse of a matrix is a Lipschitz continuous mapping on compact sets.

Proof of Theorem 1.(i) From Theil (1971, P. 146) it follows

PX − PX1 = QX1X2(X′2QX1X2)−1X′2QX1 =: QX,X1, (A.3)

whereQX1 = In − PX1. The matrixQX,X1 is symmetric and idempotent and satisfiesQX,X1X1 = 0. For
convenience, here and in the sequel we drop the subindex of the matrixQX,X1, i.e. we useQ instead of
QX,X1. Thus the statisticRn can be decomposed as

Rn =
1
n

Y′(PX − PX1)Y

=
1
n
ǫ′Qǫ +

2
n
β′2X′2Qǫ +

1
n
β′2X′2QX2β2

=: S1 + S2 + dn(β2). (A.4)

Noting thatES1 = σ
2tr(Q)/n = σ2q/n → 0 asn → ∞ andE(S2) = 0, the first statement of Theorem 1

now follows from (5).

(ii) First note that relationships (6) and (A.2) imply

√
n
(

dn(β2) − d(β2)
)

→ 0.

Since by assumption,d(β2) > 0, dn(β2) will be bounded away from 0 and we get

√
n

Rn − d(β2)

2σ
√

dn(β2)
=
√

n
1
nY′(PX − PX1)Y − dn(β2)

2σ
√

dn(β2)
+ o(1). (A.5)

Consider now decomposition (A.4) forRn. By virtue of Theorem 1.6 from Seber and Lee (2003), the
variance of the first termS1 in (A.4) is given by

Var (S1) =
1
n2

[

(µ4 − 3σ4)h′h+ 2σ4tr(Q)
]

,

whereµ4 := E(ǫ4
1
) andh is the vector of diagonal elements of the matrixQ, for whichh′h ≤ q2. Thus

S1 = OP(|ES1| + |S1 − ES1|) = OP(n−1).

Furthermore,ES2 = 0 and

Var (S2) =
4
n
· σ2dn(β2) ∼ 4

n
· σ2d(β2),

and therefore the termS2 dominates the asymptotics in (A.4). It remains to show asymptotic normality of
S2. For this we check the Lyapounov condition

1
n(4+δ)/2

n
∑

i=1

E |biǫi |4+δ =
E|ǫ1|4+δ

n2+δ/2

n
∑

i=1

|bi |3→ 0 as n→ ∞,

20



whereb′ := 2β′2X′2Q = (b1, . . . ,bn). It will be enough to show that the entriesbi divided byn are uniformly
bounded. From Assumption 5 it follows that

max
i=1,...,n

|bi |
n
=

1
n

max
i=1,...,n

∣

∣[QX2β2] i

∣

∣

≤ 1
n

max
i=1,...,n

{

n
∑

k=1

|[Q] ik | · |[X2β2]k|
}

≤ C
n

max
i=1,...,n

{

n
∑

k=1

|[Q] ik |
}

,

whereC > 0 and [· ] ik denotes the (i, k)-th entry of the corresponding matrix. SinceQ is symmetric and
positive semi-definite,|[Q] ik | ≤ (Qii + Qkk)/2, and thus

max
i=1,...,n

|bi |
n
≤ C

n
max

i=1,...,n

{

1
2

n
∑

k=1

([Q] ii + [Q]kk)

}

=
C
n

max
i=1,...,n

{

n
2

[Q] ii +
1
2

tr(Q)

}

≤ C
n

n+ 1
2

tr(Q)

≤ Cq for n ≥ 1

This finishes the proof of Theorem 1.

Proof of Lemma 1.Using (10), (A.3) and notingQX1 = 0, we have

d̃n(β2,β3) =
1
n
β′2X′2QX1X2β2 +

2
n
β′3X′3QX1X2β2

+
1
n
β′3X′3QX1X2(X′2QX1X2)−1X′2QX1X3β3

=: T1 + T2 + T3. (A.6)

ConsiderT1 in (A.6). By virtue of Assumption 2 it follows that

T1 :=
1
n
β′2X′2QX1X2β2

= β′2

(

X′2X2

n
− X′2X1

n

[

X′1X1

n

]−1 X′1X2

n

)

β2

→ β′2
(

G22 −G21G
−1
11G12

)

β2 as n→ ∞
= β′2Aβ2.

Similarly, one can show that

T2 :=
2
n
β′3X′3QX1X2β2

→ 2β′3
(

G32 −G31G
−1
11G12

)

β2

= 2β′3Bβ2 as n→ ∞

and

T3 :=
1
n
β′3X′3QX1X2(X′2QX1X2)−1X′2QX1X3β3

→ β′3BA−1B′β3 as n→ ∞.
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Assumption 6. We have that

√
n
(

n−1Z′Z −G
)

→ 0 as n→ ∞.

Remark 4. Note that Assumption 6 is more restrictive than Assumption 2. In Assumption 6 we require
theo(n−1/2) rate of convergence in Assumption 2.

Assumption 7. The entries of the covariate matrix [X2,X3] lie in a compact setK ⊂ R for all n.
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