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1 Identification

Consider the conditional mixture

F (y|B) = (1− π(B))F0(y) + π(B)F1(y), y ∈ R, B ∈ Bp, (1.1)

with mixture weight function π and component distribution functions F0 and F1. To identify
the components in (1.1), assume that

A1. 1. there exist B0, B1 ∈ Bp such that 0 < π(B0), π(B1) < 1, π(B0) 6= π(B1).
2. there exists a y0 ∈ R such that F1(y0) 6= F0(y0).

Further, consider the following tail conditions.

C1. limy→−∞ F1(y)/F0(y) = 0

C2. limy→+∞(1− F0(y))/(1− F1(y)) = 0

C3. limy→+∞ F̃0(y)/F̃1(y) = 0

Hohmann and Holzmann (2013, Theorem 3) show that mixture (1.1) is identifiable under
A1 and assuming C1 and C2/C3. The following example shows that it does not suffice to
impose only one of the tail conditions above.

Example 1. Assume that mixture (1.1) is identifiable in the sense of Theorem 3 in Hohmann
and Holzmann (2013). Let π2 : Bp → [0, 1] be a different weight function such that π2(B0) <
π1(B0), and set

π2(B) = 1− (1− π1(B))(1− π2(B0))

1− π1(B0)
, B ∈ B\{B0}. (1.2)
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Further, set G1 = F1, and define G0 according to

G0(y) =
1− π1(B0)

1− π2(B0)
F0(y) +

(
1− 1− π1(B0)

1− π2(B0)

)
F1(y).

Then, G0 is indeed a distribution function due to π1(B0) > π2(B0), and by construction the
ratio ρ = (1 − π1(B))/(1 − π2(B)) does not depend on B, so for all y ∈ R and B ∈ Bp we
obtain that

G(y|B) = (1− π2(B))G0(y) + π2(B)G1(y) = F (y|B).

Also, G0 and G1 meet C1 since

G1(y)

G0(y)
=

F1(y)
/
F0(y)

ρ+ (1− ρ)F1(y)
/
F0(y)

−→ 0 as y → −∞,

while, in general, they satisfy neither of the conditions C2 and C3.

The next example shows that also the role of the conditioning events {Z ∈ B0} and
{Z ∈ B1} is important for the nonparametric identification of a two-component mixture. In
fact, even with known mixture proportion π, regularity conditions such as C1 and C2 do
not provide the identification of an ordinary mixture

F (y) = (1− π)F0(y) + πF1(y). (1.3)

Example 2. Assume that F0 and F1 in (1.3) are absolutely continuous with densities f0
and f1, respectively, and assume that there exist a, b ∈ R, a < b, such that F0 is strictly
concave on the interval (a, b) and

f0(y) +
π

1− π
f1(y) ≥ F0(b)− F0(a)

b− a
, a ≤ y ≤ b. (1.4)

Set G0 = F01[a,b){ + F ba and G1 = F1 + 1−π
π (F01[a,b) − F ba), where

F ba(y) =
((y − a)F0(b)− (y − b)F0(a)

b− a

)
1[a,b)(y).

(1.4) guarantees that G1 is non-decreasing and thus a distribution function. Now G0 and
G1 adopt C1 and C2 from F0 and F1, and the mixture G(y) = (1− π)G0 + πG1(y) satisfies
G = F .
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2 Estimating quotients in the tails

Let X1, X2, . . . and Y1, Y2, . . . be mutually independent sequences of i.i.d. observations with
distribution functions F and G, respectively, and assume that

F (y)/G(y) −→ θ as y → −∞ (2.1)

and

F̃ (y), G̃(y) −→ 0, F̃ (y)/G̃(y) −→ η as y →∞ (2.2)

hold for some θ > 0 and η ∈ C\{0}, where F̃ and G̃ denote the characteristic functions of
F and G. We shall construct asymptotically normal estimators of θ and η. In the following,
suppose that ln and mn are sequences in N such that ln,mn � n as n→∞.
To estimate η in (2.2), let

ηn = F̃n(hn)/G̃n(hn), F̃n(y) =
1

ln

ln∑
k=1

exp(iyXk), G̃n(y) =
1

mn

mn∑
k=1

exp(iyYk),

with hn a sequence tending to infinity. Decompose

ηn − η = (ηn − η̄n) + (η̄n − η), η̄n = F̃ (hn)/G̃(hn).

In order to handle the “variance term”, write

√
rn(ηn − η̄n) =

√
rn/mn

G̃n(hn)

(√
mn/ln F̃n(hn)− η̄nG̃n(hn)

)
, (2.3)

where F̃n =
√
ln(F̃n − F̃ ) and G̃n =

√
mn(G̃n − G̃) are the characteristic processes and

rn →∞. Assume that rn satisfies

rn/n→ 0, rn/
√
n→∞ as n→∞, (2.4)

and that hn →p ∞ is chosen such that

|G̃n(hn)| =
√
rn/mn(1 + oP (1)). (2.5)

We shall use strong approximations of the characteristic processes by

C(y) =

∫
exp(iyx)B(F (dx)) (2.6)

for F̃n(y), and similarly for G̃n. In order that these processes are sample-continuous and
that strong approximations work, some conditions on F and G are required, see Csörgő
(1981). We shall adopt the following sufficient condition: Assume that there exists γ > 0
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such that

yγH(−y) + yγ(1−H(y)) = O(1) as y →∞, H = F,G. (2.7)

Finally, we assume that there also exists a non-random sequences tn →∞ such that

tn = o
(
nγ/(2γ+4)(log n)−(γ+1)/(γ+2)

)
, (2.8)

|hn − tn| = oP (1), (2.9)

|G̃(hn)− G̃(tn)| = oP
(√

rn/mn

)
, (2.10)

with γ determined by (2.7).
To estimate θ in (2.1), let

θn = Fn(hn)/Gn(hn), Fn(y) =
1

ln

ln∑
k=1

1{Xk≤y}, Gn(y) =
1

mn

mn∑
k=1

1{Yk≤y},

where the level hn is specified below. Write

θn − θ = (θn − θ̄n) + (θ̄n − θ), θ̄n = F (hn)/G(hn).

Again assume that rn →∞ satisfies (2.4), and that hn →p −∞ is chosen such that

Gn(hn) = rn/mn + oP (rn/n) = rn/mn (1 + oP (1)). (2.11)

(2.11) is satisfied if we choose in particular hn = Ymn(brnc), where brnc is the largest integer
smaller than rn, and where Ymn(brnc) denotes the brnc-th largest order statistic of the sample
Y1, . . . , Ymn , since Gn(hn) = brnc/mn = rn/mn(1 + o(1)).

Theorem 3. Suppose that (2.4), (2.5) and (2.7)-(2.11) hold. If there exists τ > 0 such that
mn/ln → τ , then

√
rn

 θn − θ̄n
Re
(
ηn − η̄n

)
Im
(
ηn − η̄n

)
 N

0
0
0

 ,
1

2

2(τθ + θ2) 0 0
0 τ + |η|2 0
0 0 τ + |η|2

 .

The proof of Theorem 3 proceeds in several steps. The asymptotic normality of
√
rn(ηn−

η̄n) was shown in Hohmann and Holzmann (2013). We continue by showing that
√
rn
(
θn − θ̄n

)
 N

(
0, τθ + θ2

)
, (2.12)

for which we need the following additional results.

Lemma 4. Let rn →∞, rn/n→ 0 as n→∞, and log n/
√
rn → 0. Then on a sufficiently

rich probability space there exist versions of the Xk and Yk, and independent sequences B1,n
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and B2,n of standard Brownian bridges on [0, 1] such that∥∥Fn −B1,ln ◦ F
∥∥
∞ = oP

(√
rn/n

)
,
∥∥Gn −B2,mn ◦G

∥∥
∞ = oP

(√
rn/n

)
.

See del Barrio, Deheuvels and van de Geer (2007).

Lemma 5. Let ln be a sequence in N, Bn be a sequence of standard Brownian bridges on
[0, 1], and Xn be a random sequence (not necessarily independent of Bn) such that Xn →p γ
for some γ ≥ 0. For all real cn ↓ 0 it holds that∣∣Bln(cnXn)−Bln(cnγ)

∣∣ = oP (
√
cn) .

Proof. Let Z1, Z2, . . . be a sequence of standard normal variables, and for n ∈ N and t ∈ [0, 1]
define Wn(t) = Bn(t) + tZn. Then Wn is a sequence of standard Wiener processes, and

Bln(cnXn)−Bln(cnγ) = Wln(cnXn)−Wln(cnγ) + cn(γ −Xn)Zln

= Wln(cnXn)−Wln(cnγ) + oP (cn) ,

so that the limit behavior under consideration de facto only depends on the properties of
Brownian motion. For all ε, δ > 0,

P
(
c−1/2n |Wln(cnXn)−Wln(cnγ)| > ε

)
≤ P(|Xn − γ| > δ) + P

(
sup
|t−γ|≤δ

c−1/2n |Wln(cnt)−Wln(cnγ)| > ε
)

= P(|Xn − γ| > δ) + P
(

sup
|t−γ|≤δ

|W1(t)−W1(γ)| > ε
)

since, by Brownian scaling, each process y 7→ c
−1/2
n Wln(cny) is itself a standard Brownian

motion. Note also that, by the continuity of Brownian motion sample paths, the supremum
has to be taken over t ∈ Q only, what makes it a measurable function. The left probability
tends to zero for all δ > 0 because Xn →p γ. The right probability can be made arbitrarily
small by the choice of δ since, again by the almost sure continuity of W1,

lim
m→∞

P
(

sup
|t−γ|≤1/m

|W1(t)−W1(γ)| > ε
)

= P
( ⋂
m∈N

{
sup

|t−γ|≤1/m
|W1(t)−W1(γ)| > ε

})
= 0 .

Conclude that c−1/2n |Bln(cnXn)−Bln(cnγ)| →p 0.

Since B is zero mean Gaussian with covariance E
(
B(s)B(t)

)
= (s∧ t)− st, s, t ∈ [0, 1], it

readily follows that

c−1/2n B(cnγ) ∼d N
(
0, γ(1− cnγ)

)
−→ N(0, γ) as n→∞ . (2.13)

5



D. Hohmann, H. Holzmann Nonparametric Conditional Mixtures

Proof of (2.12). Write

√
rn
(
θn − θ̄n

)
=

√
rn/mn

Gn(hn)

(√
mn/lnFn(hn)− θ̄nGn(hn)

)
, (2.14)

where Fn =
√
ln(Fn − F ) and Gn =

√
mn(Gn − G) denote the empirical processes. By

Lemma 4 there exists a sequence B2,n of standard Brownian bridges such that

Gn(hn) = B2,mn(G(hn)) + oP
(√

rn/n
)
. (2.15)

Now, (2.4) and (2.11) imply that

n

rn

∣∣G(hn)− rn/mn

∣∣ ≤ n

rn
‖G−Gn‖∞ + oP (1) =

√
n

rn
OP (1) + oP (1) = oP (1),

yielding G(hn) = rn/mn

(
1 + oP (1)

)
. Inserting this in (2.15) and using Lemma 5 (with

γ = 1) we find that

Gn(hn) = B2,mn(rn/mn) + oP
(√

rn/n
)
.

Similarly for Fn(hn), there is an independent sequence B1,n of standard Brownian bridges
such that, using θ̄n →p θ and F (hn) = θ̄nG(hn) = rn/mn

(
θ̄n + oP (1)

)
,

Fn(hn) = B1,ln(θ rn/mn) + oP
(√

rn/n
)
.

Therefore, using (2.14) and (2.11),

√
rn
(
θn − θ̄n

)
=

√
rn/mn

Gn(hn)

(√mn

ln
Fn(hn)− θ̄nGn(hn)

)
=

√
mn/rn

1 + oP (1)

(√
τ B1,ln(θ rn/mn)− θB2,mn(rn/mn)

)
+ oP (1) , (2.16)

so that the result follows from (2.13) and the independence of B1,n and B2,n.

Proof of asymptotic independence in Theorem 3. We say that sequences of random vectors
Xn in Rp and Yn in Rq are asymptotically independent if

E
(
f(Xn)g(Yn)

)
− E

(
f(Xn)

)
E
(
g(Yn)

)
−→ 0 as n→∞

for all bounded, non-negative, Lipschitz functions f and g on Rp and Rq, resp. For the next
lemma see Example 1.4.6 in van der Vaart and Wellner (2000).

Lemma 6. If there exist independent random vectors X and Y such that Xn  X and
Yn  Y , and if further Xn and Yn are asymptotically independent, then (Xn, Yn)′  (X,Y )′.

The following lemma gives a criterion for asymptotic independence in case of Gaussian
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sequences, where boundedness and convergence of matrices is understood with respect to
the Frobenius norm given by ‖M‖F =

(∑
i,j |Mi,j |2

)1/2.
Lemma 7. If Xn and Yn are zero mean jointly Gaussian, the covariance matrices CoVXn

and CoV Yn are uniformly bounded above and uniformly bounded away from zero, eventually,
and if CoV(Xn, Yn)→ 0, then Xn and Yn are asymptotically independent.

Proof. Let f and g be positive, bounded, and Lipschitz. Denoting by φ(Xn,Yn) the joint
density and by φXn and φYn the marginal densities of Xn and Yn,∣∣E(f(Xn)g(Yn)

)
−E
(
f(Xn)

)
E
(
g(Yn)

)∣∣ ≤ ∫∫ f(x)g(y)
∣∣φ(Xn,Yn)(x, y)−φXn(x)φYn(y)

∣∣ dx dy .
By the boundedness of CoVXn and CoV Yn, and by the convergence CoV(Xn, Yn)→ 0,

|φ(Xn,Yn)(x, y)− φXn(x)φYn(y)| −→ 0 , x, y ∈ R .

Hence, minding that the densities are uniformly bounded above by an integrable function
due to the boundedness of CoVXn and CoV Yn, the result follows in view of Lebesgue’s
dominated convergence.

We are now ready to come back to the estimators θn and ηn. Regarding (2.16), (2.3)
and Lemma 12 in Hohmann and Holzmann (2013), under certain assumptions there exist
independent sequences B1,n and B2,n of standard Brownian bridges such that

√
rn
(
θn − θ̄n

)
=

√
mn/rn

1 + oP (1)

(√
τ B1,ln(θ rn/mn)− θB2,mn(rn/mn)

)
+ oP (1),

√
rn
(
ηn − η̄n

)
=

zn
(1 + oP (1))

(√
τ C1,ln(tn)− ηC2,mn(tn)

)
+ oP (1),

where

C1,n(y) =

∫
exp(iyx)B1,n(F (dx)), C2,n(y) =

∫
exp(iyx)B2,n(G(dx)).

Hence, it suffices to concentrate on the sequences

An =
√
mn/rn

(√
τ B1,ln(θ rn/mn)− θB2,mn(rn/mn)

)
,

Bn =

(
Re
(
zn
(√
τ C1,ln(tn)− ηC2,mn(tn)

))
Im
(
zn
(√
τ C1,ln(tn)− ηC2,mn(tn)

))) .
By construction of the stochastic integrals Ck,n(t), the vector (An, B

′
n)′ is zero mean trivari-

ate Gaussian. In view of (2.13),

VarAn = τθ(1− θ rn/mn) + θ2(1− rn/mn) .
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The variable zn
√
τ C1,ln(tn)−znηC2,mn(tn) is complex Gaussian, having variance σ2n = τ(1−

|F̃ (tn)|2)+|η|2(1−G̃(tn)|2) and relation ρn = z2nτ(F̃ (2tn)−F̃ (tn)2)+z2nη
2(G̃(2tn)−G̃(tn)2)

)
.

Hence, both VarAn and

CoVBn =
1

2

(
σ2n + Re ρn Im ρn

Im ρn σ2n − Re ρn

)
are uniformly bounded above and uniformly bounded away from zero. For the asymptotic
independence of An and Bn, it thus remains to show that CoV(An, Bn)→ 0, which we will
do exemplarily for An and B1

n, the first coordinate of Bn.
First, note that B1,ln is independent of C2,mn , and B2,mn is independent of C1,ln . This

yields

CoV(An, B
1
n) =

√
mn

rn

(
τ CoV

(
B1,ln(θ rn/mn),Re(znC1,ln(tn))

)
+ θCoV

(
B2,mn(rn/mn),Re(ηC2,mn(tn))

))
=

√
mn

rn

(
τ Re zn E

(
B1,ln(θ rn/mn) ReC1,ln(tn)

)
− τ Im zn E

(
B1,ln(θ rn/mn) ImC1,ln(tn)

)
+ θRe ηE

(
B2,mn(rn/mn) ReC2,mn(tn)

)
− θ Im ηE

(
B2,mn(rn/mn) ImC2,mn(tn)

))
.

Hence, the last four expectations should be o
(√

rn/mn

)
. Exemplarily again, we only consider

the first one. For convenience, set B = B1,ln , C = C1,ln , and let W be a standard Brownian
motion on [0, 1], so that the processes B(t) and W(t) − tW(1) are equal in distribution.
With this,

E
(
B(θ rn/mn) ReC(tn)

)
= E

((
W(θ rn/mn)− rn

mn
W(1)

)
·
(∫ 1

0
cos(tnF

−1(y))W(dy)−W(1)

∫ 1

0
cos(tnF

−1(y)) dy
))

=

∫ θ rn/mn

0
cos(tnF

−1(y)) dy − rn
mn

∫ 1

0
cos(tnF

−1(y)) dy

which is in fact of the required order. Therefore, An and Bn are asymptotically independent,
and in view of Lemma 6 we have proven Corollary 3.
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