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Consider
Y = By + B1 X,
X =A+ A1 7,

(B.1)

where Y, X, Z are observed random scalars, and A = (A, A1)’, B = (By, B1)’ are unobserved random

coefficients. We impose the following two basic assumptions.
Assumption 1. The random vector (A’, B')' has a continuous Lebesgue density fap.
Assumption 2 (Exogeneity). Z and (A', B') are independent.

When analyzing the triangular RC model (B.1), it will often be convenient to pass to the reduced
form model by inserting the second equation into the first one.

Y =Cy+ C1 2,

X = AO —+ A1 Z.

(B.2)

where C' = (C(),Cl), Co = Bo+ B1Agp and C1 = B1A;.
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Assumption 3 (Independence and moment assumption). Suppose that B = (By, B1) and A; are

independent, and that AII is absolutely integrable.

C Estimation under full support

C.1 Estimation of the scaling constant

Assumption 4. We impose that fz(z) > cz max{1l,|z|} 7 for all z € R where cz >0 and v > 1 are

constants.

Assumption 5. There is a C4 > 0, such that for all M > 1,

2 -
/(/ /fA(:E—alz,al)daldz) v(:z)deCAM_l,
R R\[-M,M] JR

as well as
suﬁ ‘ / [fAO,Al (:L’ — alz,al) — fa0,4: (a: - alw,al)]dal‘ < Cylz—w| z,weR.
TE R
Let (X(;),Y(5),Z(j)), 5 = 1,...,n, denote the sorted sample for which Z) < --- < Z,), and let
v: R — [0,00) be a smooth probability density, M > 0 a truncation parameter. Set
n—1

V(X)) (ZG+1) = Z) Y—it<zy) <2500 <01}
=1

<

Proposition 1. Given Assumptions 4 and 5, for M, ~n@ D we have that
E(&n(Mn) . E|A1‘_1)2 _ O(n_l/(27+1))~
Proof of Proposition 1. Let

sc:= E\A1|_1:/Rv(x)/RfX‘Z(ﬂz)dzdx,

so that

E(an(M) — s¢)* = EVar (an(M)|oz) + E[E(an(M)|oz) — sc]”. (C.1)
As before,
Var (i, (M)|o7) < > C2 (Zgen) — Z)"
—M<Z(j)<Z(j+1)<M

where (', is a bound for v, and from Lemma F.1,

EVar (a,(M)|oz) < Cn~' M*. (C.2)
Further, we have that
E(an(M |UZ / / f(x,2)dzde,
f(@,2) > Fx12(@1Z()) Lz, 20400) (2)-

—M<Z;<Z1)<M



Using the Cauchy-Schwarz inequality twice, we estimate
R 2
E[E(an,(M)|oz) — sc]
- Z(G+1) 9
<6MFE Z / / fX‘Z |z) — fX|Z(x|Z(j))] dzv(z)dx

Z
<Z(;y<Zyn<M @

<
max (Z(1y,— M) 2
+3E / / fx)z(z|2) dz) v(z)dx

A e

For the first term, we proceed as before and obtain

ME Z3G+1) , 2d ]
S [ Unistek) - fxinlel )] o)

~M<Z(;)<Z11)<M

<Cn 2M3+1,

For the second two terms, using Assumption 5 and Lemma F.1, we estimate

E/ /mm(z{w ~)f)qz(:c|z) dz)Qv(a?) dx

. —M 2
<CP(Zny > —-M) —i—/R ( / fx1z(z|2) dz) v(x) dz
§C(exp(—ncz.7\;[1_”/('y— 1)) +M_1).

Summarizing, we obtain

E(dn(M) - 80)2 =C[n™* M* 4 M~ 4 p =23+ +exp(—ncy MY~V /(y - 1)].

The given choice of M balances the first two terms and gives the rate, the other terms are negligible. O

C.2 Nonparametric estimation of the density fz

We now turn to nonparametric estimation of the density fp itself. By Assumption 2 we can relate

the identified conditional characteristic function of (X,Y) given Z = z to ¢4 ¢ via

¢X7y|Z(t1,t2|z) = E(eXp(ith + it Y)|Z = Z)

(C.3)
= Fexp (itl(Ao + Ay12) +ita(Co + C’lz)) = U)A,C(tla t1z,t9,t92)

where z € supp Z.

Assumption 6.
/ |t] ‘ / exp (it(bo + blx)) B, 40,4, (b, x — a1z, a1) day dbg dbl‘ dz dtdr < co.
R3 R3
From part (ii) of Theorem 3 in HHM (and under Assumption 6), we set

g(bo,b1) = //|t| exp(—ithy) Vx y|z(—tb1,t|2) dt dz,
R JR

1
(2m)?

3



so that
fB(bo, b1) = g(bo, b1) - (E|A1’_1)_1 '

Assumption 7. a. There exists 3 > 0 such that

2
/ /(1—1—752)5‘/z/JA,c(—tbl,—ubl,t,u) du‘ dt db; < oco.
[~L,1] JR

b. There are « > 1/2, cp > 0, so that for allb; € [-L, L], t € R, z > 0 we have that

max (/OO WJA,C(—tbL —uby, t,u) ‘ du,/

—z

‘ pa,c(—tby, —uby,t,u) ’ du) < cpmin(z~%1).

We still require an estimate of g(bg, b1). For a weight function w(t) and a h > 0, we define the following

approximation to g(bo, b1):
. 1 .
g(bo,b1; h) ::2/ / [t| w(ht) exp(—itho) Vx y|z(—tb1,t|z) dt dz (C4)
(2m)? Jr Jr

:/// K(y — bz —bos h) fxyz(x,yl|z) dedydz.
where
K(x;h):(%lr)z /R 1#] exp(itz) w(ht) dt.

Remark. (Choice of weight function) For our theoretical developments, we shall choose w(t) =
1j_1,1)(t). In practice, however, smoother versions of w(t) are preferable, see HKM, where also closed-

form formulas for K (z;h) for various weight functions can be found. o

For an additional truncation parameter M > 0, we consider the estimator
n—1
g(bo,by: b, M) == | K (Yyg) = b1X(g) = boi h) (Z(gn) = Zg)) -z <250y <0}
j=1

If dn(M ) denotes the above estimator of the scaling constant, as an estimator of fp we finally take

; ~ G(bo, bi; h, M)
Do, by: b, M, M) = JP000 M)
fB(bo, b1 ) o (37)

Theorem 2. Impose Assumptions 1, 2, 3, 4 and 7, and moreover suppose that the support of fp, B,

is contained in R x [—L, L] for some L > 0, as well as E|A1| + E|C1| < oo. Then letting M, ~
n2B/ Ay B+26+3) gnd h,, ~ n~ Y@ B+H2843) e have that

~ ~ B
/ / | £ (60 b1 oy Moy, M) — (b0, br)| dbo dby = Op (n” 7545553
—L,0] JR
Proof of Theorem 2. It suffices to show that

MSE(j) = E / / 16(bo, b1 hun, M) — g(bo, by)|* dbg dby = Op (n~ 2555,
[-L,L] JR
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then the result will follow by using Proposition 1. We have that
. N - 2
MSE(§) <2E / / |(bo, b1; k) — G(bo, br; h)|” dbo dby
[-L,L] JR
+2/ / |g(b0,b1;h)—g(bo,b1)|2db0db1 :211+2IQ
[-L,L] JR
Using the Parseval equality w.r.t. by, we may estimate the bias term I, as
1
L= — / /t2(1 - w(ht))2’ /1/)A7c(—tb1, —tzby,t,tz) dz
2m [-L,L] JR
1 2
1 / / (1- w(ht))z‘ /wA,C(_tbl, —uby, t,u) du‘ dt db,
27 [-L,L] JR

2
(1—w(ht))” 1 9 2
< A 1 8 — _
<owp Sy o /[_m L+ [vactthr,—ubr,tu) ] atan

< Cpras h*”

2
dt dby

for some constant C'gras, when making use Assumption 7, a. For I7, using again the Parseval equality we

obtain

1
I = — / /t2 w(ht)zE’/1/)X,Y|Z(*tblat|z) dz
21 Ji—r,r) Jr
n—1

) (C.5)
= exp (it — it X)) (Zi1) = Z) vz <2 <] dbdby.
j=1
Let oz again denote the o-field generated by Z1, ..., Z,. For fixed ¢, b1, consider
n—1 2
E‘ > exp (itYy) — ithy X(5)) (Z41) — Z03) 1-m<z0,<Zisan)<M — /wX,Y\Z(_tblvﬂz) dz‘
j=1
n—1
=B [Var (3 exp (itYyy) = ity X(3)) (Zi41) — Z5) 1<z <200 | 02 )|
j=1
n—1 2
+ E ’E <Z exp (itY(j) — itbl X(])) (Z(j+1) — Z(])) 1—M§Z(j)<Z<j+1)<M’ Uz) — /1/)X,y|z(7tb1,t|z) dZ
j=1
=I5+ I4.

Since the (X(;),Y(;)) are independent conditional on oz, for the conditional variance term we have that

n—1

2
Is < Z E(Z(J"Fl) B Z(J)) 17M§Z(j)<Z(j+1)<M7
j=1
and its contribution in I; in (C.5) is bounded by

n—1

_ 2
SCh Y B(Zn) — 2()) 1-m<z)<Zgany<i-
j=1
For the conditional expectation, we have
n—1
E (Y exo (itYy) — ith X)) (Zgsn) = Z0p) 1wz <20 0m<nt | 02)
j=1
n—1 .
= Uxyiz(=thi, 1 Z)) (Zg+) — Z)) L=<z <240y <M = / b(=tby,t; 2) dz,
7 R

<.
Il



where

n—1
(=t b 2) = Z bx v z(=th1 1 2)) Yz 2000 (2) LM<z <240 <M
=1
Therefore,
2
& ( > exp (it — ith X)) (Z41) — Z03)|02) - /¢X,le(*tblvt|z) dz

—M<Z<ZGyn<M

) 2 max(—M,Z ) P
<3 ‘/ b —thy, —tzby, t,t2) dz’ +3 )/ b —thy, —tzby, t,t2) dz’
min(Z,y,M) —00

Z(+1) )
+6M Z [a,c(—thy, —tzby, t,t2) — ha.c( — th, —tZ;b1, t,t Z(5))| " dz
~M<Z () <Zpn<M 720

Let us bound each term. First,

Z(41) 9
> [a,c(—thy, —tzby, t,tz) — ac(— th, —tZgyb, t,t Z;)| dz
~M<Z(;)<Z(+1y<M 7 Z0)

n—1
3
S‘t|2(|b1|E|A1|+E|Cl Z Z(J+1)_ J)) LMSZ<J'><Z<J'+1><M’
j=1

and the contribution in I; in (C.5) is bounded by

n—1

3
<Ch™M Z (G+1) Z(j)> lonm<z)<z0y<M-
j=1
By Assumption 7 b., for t # 0

‘ / a,c(—thy, —tzby,t,t2) dz
min(Z,y,M)

< 117" e (12,500 min (M) 1) + 1z, <ar).

max(—M,Zy)
)/ Ya,c(—tby, —tzby, t,tz) d2’ <[t en (1z(l><—M min (([tM])7%, 1) + 1Z<1>2—M>~

Thus

o) 2
7/ /tzw(ht)z‘/ b o(—thy, —tzby, 1, 12) dz’ dt db,
L, L min(Z(n),M)

< C/ ht 1Z(n)>M [mln ((|t|M)_a71)]2+ lZ(n)SM) dt

1/M 0o
< Clg, >m (/ Ldt+ M—2¢ / \t|’2“dt) +h 1z, <M
—1/M 1/M

SCM71 + hig 1Z<")§M7
and similarly for Z(;y. Summarizing, we obtain using Lemma F.1

_ 3
L<ChPE > (Zgsny = 2))° +Ch° ME > (Zi41) — Z(5)
—M<Zj<Zn<M —M<Zj<Zyn<M

+CM ' +Ch? (P(Z(n) <M)+P(Zay > —M))
< C(hm +h P M+ P TP MY L M pexp (— ez MUY /(v - 1))).

Choosing M,, and h, as in the theorem balances the three terms h%%, h=3n=! M?7, and M~!, and gives the

rate, the other terms are negligible. O



D Nonparametric estimation under limited support

Next, we consider nonparametric estimation for compactly supported Z. First, we recall the following

lemma from HHM.

Lemma D.1. Let (A", B")', A = (Ao, A1), B' = (Bo, B1) be a four-dimensional random vector with
continuous Lebesque density, which satisfies Assumptions 8 and 6, and for which Fafp is integrable.
Set Cyp = By + B1Ay, C1 = B1 Ay and C' = (Cy, C4), and let 14 ¢ denote the characteristic function
of (A',C"). Then

fB(bo,b1) = (271T)2/R/Rexp(—itbo)w,&c(—tbl,—tzbl,t,tz)\t\dtdz (ElA )7 (D.1)

We always maintain the Assumptions 1, 2, and 3, and as above, let (X(;),Y(;),Z(;), j = 1,...,n,
denote the sorted sample for which Z(j) < -+ < Z(;. Consider

Assumption 8. Assume that Z has support [—1,1], and a density fz with fz(z) > cz for all z €
[—1,1] for some cz > 0.

Assumption 9. In model (B.2), all the absolute moments of A1 and C; = B1A; are finite and satisfy
lim ik(E’A1|k +E’Cﬂk) =0
k—oo k! ’

for all fized d € (0,00).

Under these additional assumptions, we obtain identification as in Theorem 6 in HHM.
For nonparametric estimation, we require an estimator of 1y y|z(z,y|z) for all 2 € R (or an increasing
range of values of z) and not only for those z which are contained in the support [—1,1] of Z. To this

end we use analytic continuation, and first introduce the normalized Legendre polynomials

Ly(x) = 7Vk+l/2d—k(x2 L (D.2)

kK12 dxk

which satisfy the following orthogonality relations

1 1, forj=k,
/ Ly(z)Lj(x)dz =
-1 0, otherwise.

Thus the orthogonal projection Py f of some f € La([—1,1]) onto the linear span of the polynomials
with the degree < J can be represented by

J 1
Pof]@) = 3" Leta) [ F)Luw)dy. D3)
k=0 -1



Clearly the function z — ¥ x y|z(z,y|2), 2z € [-1,1], is located in Ly([—1,1]) so that this function can
take the role of f in the above expansion. The Ly([—1,1])-inner product of ¢ x y|z(x,y|-) and Ly is
estimated by

. n—l Z+1)
Yr(z,y) = Zexp (i:UX(j) + z'yY(j)) /Z Li(2)dz,
j=1 (@)

As an estimator of ¥ x y|z(7,y|z), we consider
J
Qi ylz) = > Li(2) dn(z,y) . (D.4)
k=0
Note that the domain of Q(z,y|z) can be continued from z € [-1,1] to z € R in a unique natural
way as the function z — Q(az, y|z) represents a polynomial.

Motivated by Lemma D.1, we define

(b, by) = (271T)2 / / exp(—ithy)w(tho)w(zh1 ) [£| 0.y (—thy, t]2) dt d=

1 4 .
= —— [ exp(—itbo)w(tho)|t| w(zh1)Lg(z)dz - Y (—tby, t)dt
(27T)2/ p 0 0 kzzo/ 1)Lk k 1
1 n—1
= 2n)? / { exp(—itby) Z w(tho)|t| exp ( — ith1 X ;) + itY(;))
j=1
J Z(4)
. w(zhy)Lg(z)dz - Li(u)du pdt (D.5)
g/ o /Z(j) ’ }

as an estimator of g(bg, b1) for a kernel function K and two bandwidth parameters hg and h;. Therein

we allow for the parameters h; and J to depend on t.
Assumption 10 (Support). The support of fp, p, is contained in [—L, L} for some L > 0.

The final estimator is then defined by

1
Fotbo by =000 ([ atto.bn)diodn)
—LL

In order to study the asymptotic MISE of this estimator some quantitative conditions are required.

With respect to the density of (A, C') we impose that
2
/(/ sup ‘le,C((L'(),(L'l,xQ,xg)‘d(L'g) dre < 0. (D.6)
T0,T1

Furthermore we assume that
max{|A1],|C1|} < R as., (D.7)

which strengthens Assumption 9. We provide



Theorem 1. (Consistency) Impose Assumption 10 as well as conditions (D.6) and (D.7). Fiz
ho = (logyn)/(cnologn) with some constant cpo > 0; and T < (logn)~° for some & > 0. We
select J = hy = 1 when |t| < T. On the domain |t| > T we choose J = Cj(logn)/logyn, and
hi = |t| - (logyn)/(ch1logn) with some constants Cy,cp1 > 0 where log;, denotes the k-fold iterated

logarithm. Moreover we impose that

Cy<1/(3+39), (D.8)
cho +cn1 < CJ/(4LR exp(l)) ) (D.9)
Then the above estimator of gg satisfies
lim E |6(bo, b1) — g(bo, b1) by dby = 0,

oo [_LvL]2

and further,
/ | f(bo, b1) — fB(b07b1)‘2dbl dbg = op(1).
[7L7L]2

The statement about fB follows from that about g, since over a finite domain, Ls-convergence implies

Li-convergence and hence convergence of the integrals.

Remark. In order to establish convergence rates in the context of Theorem 1 some smoothness

restrictions on the density f4 ¢ are required such as

2
/(1+x2)ﬁ (/ sup |¢A,C(960,551,x27963)\d$3> dry < cg,
20,21

for some uniform constant cg where [ denotes the smoothness level, which is very similar to Assump-
tion 7 a. Then our estimator attains the convergence rates (logy n/logn)?%if § > 23 as an inspection
of the proof of Theorem 1 shows. These slow rates compare well to the results of Goldenshluger (2002)

and Meister (2007) in related estimation problems.

Proof of Theorem 1.

L
E . |3(bo, b1) — g(bo, by)| by dbo < E/ /\Q(bo,bl)—g(bo,bl)fdbodbl
—L,L)? —rJr

1 L n—1 - ‘ J
= %/ /|t|2E’Zw(tho)exp(fztle(j)+th(j))~Z/w(zh1)Lk(z)dz
-LJR j=1 k=0

Z(G+1) 2
/ Li(u)du — /wX’y‘Z(—tbl,ﬂz)dz‘ dt dby | (D.10)

Z(5)



by Parseval’s identity. For any fixed ¢t € R we consider that

n-l Z(j+1)

E‘Z (tho) exp(—ztb1 —l—th(J) Z/ (zh1)Lg(2)dz - / Li(u)du

j=1 Z(j)

2
- /wX7Y|Z(_tb1at|Z)dZ’

n—1 J
= Evar(Zw (tho) exp —ith X +th(j) Z/ (zh1)Li(2)dz
Jj=1 k=0

Z3G+1)
/ Lk(u)du’02>
Z()
n—1 J
+ E’E( > wlthe) exp (—ith Xj) +itY() - > / w(zhy) Ly(2)dz
Jj=1 k=0

Z(j+1)
/ Li(u )du az /szy‘z by, ] dz‘ (D.11)

Zj)
where we write o for the o-field generated by Z1,..., Z,. We deduce that

Z(j+1)

J
E(w(tho) exp (— ithy X ;) + itY(;)) - Z / w(zhy) Ly (2)dz - / Lk(u)du‘az>
k=0

Z()

Z(+1)

J
= w(tho)E(exp (— ithy X ;) + itY{;))|oz) Z/w(zhl)Lk(z)dz/ Li(u)du
k=0 Z)

Z(j+1)

J
:w(tho)wxy‘z(—tbl,t|Z(j))Z/w(zhl)Lk(z)dz-/ Li(u)du. (D.12)
k=0

a0)

Moreover we obtain that

J Zj+1
var(Z (tho) exp —ztle(J —|—th(J)) Z/w(zhl)Lk(z)dz./ <+)Lk(u)du‘az)
k=0

J=1 ()

Z(+1) 2

Z5)

~var(exp ( —atb1 X(j) + th(])) ‘az)

n—1 J
9 2

< [w(tho) > (Zi = Z6)* - (32 / (sh) Li(2)dz| sup | Li(u )I)

j=1 k=0 u|<1

9 n—1 9 J 2
< (J+1/2)|w(the)]* Y (Zy1) — Zi3)) .(Z‘/w(zhl)Lk(z)dzD : (D.13)
j=1 k=0
almost surely where we have exploited the conditional independence of the (X;),Y(;)), j = 1,...,n given oz.

We use the inequality
|Li(z)] < VEk+1/2(2|z| +2)F, VzeR,
to show that (D.13) is bounded from above by

(J +1/2)%w(tho) | (2/hy + 2)*7+2 i (Zin) — Zi)” - (D.14)

10



Lemma F.1, for k = 2, yields that the expectation of term (D.14) is bounded from above by
26,2 |w(th) |*(J + 1/2)3(2/h1 + 2)>" T2 O(1/n) . (D.15)
Thus, the first addend in (D.11) obeys the uniform asymptotic upper bound (D.15). Let us now focus on the

second addend in (D.11). The equality (D.12) yields that this term equals

J 1
E’w(tho)Z/w(zhl)Lk(z)dm/4 O (t, by, u) Ly (u)du — /ﬂ’x,wz( thy,t|z)dz (D.16)

n—1

where
d(t, by, ) Z%{Y\Z —tb1, tZ() Lz, 20540)) (W) -

Jj=1

We consider that

E’w(tho) i
k=

0

/w(zhl)Lk(,z)dz-/_1 (W(t, b1, ) = i,y z(—thy, tu)) Li )du‘

§|w(th0)|2(i‘/ (sh) L (2)dz| E/ Dty by, w) — .y (—tb, H)|du

k=0

< |w tho
n-! Zii+1) . )
E |7/)(tv blau) - wX,Y|Z(7tb17t|U)| du
j=1 Z()
< w(tho)[2(J +1/2) - (2/hy +2)>+2 (E(1 i) + E(Zay + 1)
n—1
SR (LA + EICUYE S (Z ) - Zo)
j=1

< |w(tho)|*(J +1/2) - (2/h1 + 2>’ F2(E(1 = Zn) + E(Zay + 1)
+20tP{ b |ElA | + EIC1|} ¢ - O(n~?))

by Lemma F.1 since, for u € [Z(j), Z(j+1)), we have
[Va,c(—tby, —tb1 Z(j), t,tZ()) —
D12 2 { b1 Bl AL + E|Cy V.

Ya,c(—thy, —thyu, t, tu)|

|l/;(t, bi,u) — x v z(—thy, t|u)]

< fu =2
By Lemma F.1, (D.16) is bounded from above by the sum of
4lw(the) [P (J +1/2) - (2/h1 + 2272 (¢ 'n ™" + Pt { |1 |[E|AL| + E|C1 |} - O(n™2)), (D.17)
(D.18)

and the deterministic expression

2‘10 tho)/w(Zhl)[Pﬂ/)X7Y|Z(—tbl,t|'ﬂ (2)dz — /1/’X,Y|Z thy, t| )dz’

For any u € R we apply the decomposition

=a,c(—thi, Ty(t,bi;u) + Ry(t, bisu),

wX7y|Z(—tb1,t|U) —tblu,t,tu) =

11



with the Taylor polynomial

J luk dk'wA,C
B (do)
k=0

TJ(t,bl;U) = (7tb1, 7tbl’l),t,t’0)

5
v=0

and the residual term R;(t,b1;u) which satisfies

1 J+1 d1]+1¢A C
[ul” " sup | ———5—
(J+1)! ver | (dv)T Tl

1 J
< +1 2t J+1 b J+1EA J+1 ElC J+1 D.19
< Sl ) LA+ B ), (D.19)

where we use the same bounding technique as in the proof of Lemma ?77. Note that

| R, (t, brsu)| <

(—tbl, —tbl’U, t, tv) ‘

PyTy(t,bry-) = Ty(t,b1s-),

since u +— Ty (t,b1;u) is a polynomial with the degree < J. Also note that by the definition (D.3) the operator

P, can be extended to functions with the real line as their domain. Hence term (D.18) equals

2‘w(tho)</w(zh1)TJ(t,b1;z)dz—l—/w(zhl)[PJRJ(t7b1;.)] ()d2)
— [ exizthntionie]
SQ‘w@hO)(/w(Zhl)¢X,Y\Z(—tb1,t|Z)dz—/w(zhl)RJ(t’bl;z)dZ
* /w(Zhl)[PJRJ(fvbl;')] (2)dz) — /¢X,y|z(—tbl,t\z)dz

2
/It*

‘ 2

<4| [ (wthaueh /) - 1) cl-thr, ~buz.t, )iz

‘2 (D.20)

+ 4|w(tho)|2’ /w(zhl)([PJRJ(t, bi;)](z) — Ry(t,bi;2))dz

The second term in (D.20) has the upper bound

8|w(th0){2(§:‘/w(zhl)Lk(z)dzDQ/l Ry (t,by; u)[2du
k=0 -1

+ 8|w(tho)|2(/|w(zh1)||RJ(t,b1;z)|dz)2

(2|t|)2J+2
(J+1)12(2J 43

_9J— 2
hl 2J 2(2|t‘)2J+2{|b1|J+1E|A1|J+1_~_E|01‘J+1} , (D.21)

< 16]w(tho)|*(J + 1/2)(2/h1 + 2)27+2

){|b1|J+1E|A1|J+1 +E|Cl\‘]+1}2

- 32u(thy) P
(J+2)2

thanks to (D.19).

Now let us piece everything together. According to (D.15), (D.17), (D.21) and the first term in (D.20) The

MISE of § is bounded from above by a constant times the sum of

/ W (tho) [E2T2(2/ hy + 2)27+2dt - O(1/n), (D.22)
/wft(th0)|t|4J(2/h1 +2)2 24t . O(1/n?), (D.23)
/wft(th0)|t|2(2/h1 +2)2/ 2L (B A |7 + E|C’1|J“)2(2|t\)2”2/(J + 1)12dt, (D.24)
/ ‘ / [w!" (th)w!* (zhy Jt) — 1]t a.c(—thy, —blz,t,z)dzfdt. (D.25)
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On the domain [¢t| > T we choose J = C;(logn)/logyn and hy = |t| - (logy n)/(ch,1logn) with some constants
Cy,cp1 > 0. Condition (D.6) guarantees that the term (D.25) tends to zero by dominated convergence.
Moreover condition (D.7) yields that (D.24) obeys the upper bound

2Cylogn log (4(Ch,0 + cn,1) LR exp(1) ) }) 7

(’)(hg?’ P { logy n Cy

where we have used Stirling’s formula. Therefore the constraint (D.9) guarantees that the term (D.24) tends to
zero with a super-logarithmic rate. The terms (D.22) and (D.23) obey the asymptotic upper bounds

log[3cp1] loggm
logyn logy 1

O<h63J2exp{3CJlogn~< +1+5)—10gn}>,

and
log[3cp1]  loggn

o(hgf’Jexp {30](10gn) : ( +1 +6) - 2logn}),

logy n logyn
respectively, which decays faster than some polynomial rate with respect to n, thanks to (D.8). Finally we
conclude that the asymptotic behaviour of the statistical risk is governed by the term (D.25), which completes
the proof of the first part of the theorem.

O

E Contrast condition for the normal distribution

In Section 5.2 in HHM, we suppose that fp = fpg, belongs to the parametric family of models
{fBﬂ 10 e @}, where © C R? is a d-dimensional bounded cuboid. For § € © and t € R we let

o(0,t,1) = /I(.FfB’g)(t,t:c)d:z:.

Let v be a probability measure on R, and let I;,..., I, be finitely many (distinct) intervals. For

bounded functions ®;(¢, ;) and ®o(t,1;), t € R, j=1,...,q, we set

1 & 2
1®1() = @2() 13 = p Z/R |@1(t,Ij) — ®a(t, I)|” dv(t), (E.1)
j=1
Assumption 11. There exist intervals I, ..., I, and a probability measure v, such that

coo |0 — 0| <119(0,) — (¥, )%, < co1 |00

viqg =
for all 0,0" € © with some uniform constants ce ;, j =0, 1.

Note that in the context of Section 5.2 in HHM, the intervals I, ..., I, in addition have to satisfy the
support condition (5.1) (in HHM). Further, we included the scaling constant into the constants cg ;,
j=0,1.

In the following proposition, we show the claim of the example following the above assumption in

HHM, namely that it holds for the bivariate normal distribution.
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Proposition 3. Suppose that {fB’g 10 € G)} is the bivariate normal distribution, where the parameter
set O is restricted to a compact cuboid an the covariance matrices are all positive definite. Given any
interval I, there exist three disjoint subintervals I;, j = 0,1,2 and points 0 < tg < t1 such that if v

assigns mass 1/2 to the points to and t1, the resulting contrast function (E.1) satisfies Assumption 11.

O 61/2
= and = (05,04).
o] (91/2 0, ) w=(03,04)

Proof. We parametrize

For « = (z9, 71, 72) € I?, we introduce

V(0 t,2) = {(Ffo)ttor)},_y 5 = {exp (= 00t” — Orapt® — Oait® +ibst +impbat) }, o -

.....

We deduce that
(0, t,2) — (0, t,x) = D(t,x,0,0) W(t,z)(0—0), (E.2)

for any 6,0 € © where D(t,x,0,0") denotes the diagonal 3 x 3-matrix with the entries
Dyi(t,2,0,0) = /01 TN+ (1= N6, t,x)d\, k=0,1,2, (E.3)
and W(t,z) denotes the 3 x 5-matrix
—t2  —xot? —adt? it iwet

W(t,x)= | —t2 —at> —2¥® it ixgt

—t2 —wot?  —3t? it dwot

Writing V (¢, z, 0, é) = D(t,x,0, é)W(t, x) and (0, 0,t,t1, x) = Z}:o | (0,t;,z)— \I/(é, tj,z)|*, we deduce by
(E.2) that

0(0,0,s,t,2) = (0 — 0) Ulto, t1,2,0,0) (6 —6), (E.4)
where the 5 x 5-matrix U(to,tl,x,ﬁ,é) = Z}:O {V(tj,x,0,5)}TV(tj,x,0,9~) is Hermitian and positive semi-
definite.

For a vector y € C® such that U(tg,t1,,0, é) y = 0, it follows then that
1

0= yTU(to,tl,x,H,é)y = Z|V(tj,x,0,é)y|2,
§=0
and, hence, D(t;,x,0, é)W(tj,x)y =0, 757=0,1.
Fix some xo < 21 < x2 in I. Then, considering the diagonal entries (E.3), we may choose T' > 0 sufficiently
small such that, for all ¢t <T and k =0, 1,2, we have Dy (¢, ,0, é) # 0. Note that T is uniform with respect
to 0,0 € © thanks to the compactness of ©. Thus the matrices D(t;, x, 0,9~), 7 = 0,1, are invertible and we
conclude that
W(tj,x)y=0 ;5=0,1, (E.5)

whenever t; € (0,T) for j = 0,1 and ¢y # t;. Combining all three equalities from (E.5) for j = 0 with the first
two equalities for j = 1 we obtain that y lies in the kernel of the 5 x 5-matrix

—t3  —xotd —a3ti ity izoto

—t3  —xqt3 —atd ity ixgto

—t3  —mot? —a3t? ity dwato | - (E.6)

—t2  —xot?  —adt? ity ixoty

—t2 —xt? 232 ity it
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Applying appropriate rank-invariant linear transformations the matrix in (E.6) changes to

1 =z 0 0
1 =z 2} 0 0
1 a9 :1:% 0 0 ,

2

T xor ;3T 1—-7 x0(1—7)
T ot oait 1l—-7 x(1—71)

where 7 = t;/tg # 1. The upper left 3 x 3-submatrix represents a Vandermonde matrix, which is known to be
invertible since z¢g < x1 < x2. Also the lower right 2 x 2-submatrix has full rank as x; > xg so that invertibility
of the matrix (E.6) follows and, hence, y = 0. Thus we have shown that the matrix U(to, t1,z, 6, é) is invertible
and, therefore, (strictly) positive definite under the imposed restrictions on the t;, j = 0,1, and z, k =0, 1, 2.
Now we consider the random vector X = x + hU for some h > 0 and U = (Uy,Us, Us) where the components

of U are independent random variables which are uniformly distributed on the interval [—1,1]. Let us define
U(0,t) .= E¥(0,t,X),
1
1/%(9, 07 t07t1) = Z |\Ilh(97tj) - \Ijh(ovt])|2 )
§=0

so that

Vn(0,0,5,t) = (0 — 01U, (to, t1,60,0) (0 —0), (E.7)
where

1
Un(to,11,6,0) :== > {EV(t;,X,6,6)} EV(t;,X,6,6'),
j=0

which follows analogously as (E.4). The matrix Uh(to,tl,ﬁ,é) is Hermitian and positive semi-definite. For
j = 0,1, the parameterizations (1:,6,5) — V(tj,x,ﬂ,é) represent continuous mappings with respect to the
Frobenius norm || - || on the codomain. The domain of these parameterizations is restricted to the compact set
(x + [~h, h]?) x ©2. Since O is compact the Heine-Cantor theorem yields that

lim sup sup ||V(tj,x,0,é) —V(t;,y,60,0")||r = 0.
hi0g geo ly—z|<h

By the submultiplicativity of the Frobenius norm we deduce that
~ ~ 1 ~
HUh(t(h tlv 07 0) - U(t()v t1, xz, 97 e)HF < Z (”V(tjv z, 97 a)HF + E”V(tja Xv 97 9/)||F)
j=0

CE|V(tj,x,0,0) —V(t;, X,0,0)|r,

so that

lim sup ||Uh(t0,t1,9,é> — U(to,tl,aﬁ,e,@/)np = 0,
0,6c0

As the invertible 5 x 5-matrices form an open set with respect to the Frobenius norm we can select h >
0 sufficiently small — independently of 6,0 € © — such that the matrix Uy (to,t1,0,0) is positive definite.

Simultaneously we may arrange h > 0 small enough such that [z; — h,x; + h] C I, and that these intervals are
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disjoint. Since, for all 0y, 8}, 61,6] € O, we have
1
|Un(to, t1,00,00) — Un(to, t1,61,07)||r < Z ( sup [[V(tj,9,00,00)lr + sup [[V(t;,y,61,07)|F)
h

j=0 ly—=I< ly—z|<h

sup Hv(tjay700a0(l)) _V(tj7y70176/1)”F7
ly—z|<h

the mapping (6, 9~) > Uh(to,tl,&é) is continuous on the compact domain ©2 thanks to the continuity of the
parameterization of the matrix V(¢;,---) as mentioned above. The smallest and the largest eigenvalues of
Uy, (to, t1,0, 5) are denoted by 7 (to,t1,0, 5) and Ry, (to, 1,0, 5), respectively. As

Irn(to,t1,00,00) — ri(to,t1,01,67)] < ||[Un(to, t1,60,65) — Un(to, t1,61,67)|F
|Rh(t07t1790796) - Rh(t07t17917911)| S ||Uh(t0;t179079(l)) - Uh(t07t176170/1)||F7

the functions r, and Rj, are continuous with respect to (6, 5) The compactness of © provides that

inf T}L(to,the,@/) > 0, sup Rh(to,tl,e,é) < 00.
0,0c0 0,6c©

Putting ;41 = [z; — h,x; + k], ¢ = 3, v equal to the uniform probability measure on the discrete set {to, 1}
we obtain that
8h* (|90, -) — ®(0,)fy.g = ¥n(0,0,t0,11),

so that which suffices to verify Assumption 11. O

F Estimation: Technical assumptions and proofs

F.1 Preliminary results on order statistics

Lemma F.1. Let I'(z) denote the gamma function. For any k > 2 and n > 2, we have

(a) under Assumption 8 that

n—1
EZ (Z(j+1) — Z(]))ﬂ S n (TL — 1)_N CER HF(H),
j=1
max {E(1 — Z,))", E(Zqy + 1)} < ke"n™"T(k),

(b) under Assumption 4 that for M > 1,

n—1

K
EZ (Z(j+1) - Z(j)) oM<z <z 4)<M
j=1

max { P(Zy < M),P(Zy) > —M)} < exp (—ncz M7 /(y - 1)).

IN

ke, "T(K)M"™ n(n —1)7",
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Proof of Lemma F.1. : First, for the second part of (a),

& 1
E(1- Z(n))ﬂ — / P[l —Zn) > tl/“]dt — ,.;/ P[Z(n) < S](l _ S)“_lds
0 -1
1

= /g/_ll (1 - 81 fz(u)du)n(l —s)"lds < /@/ exp (—nez(1—s))(1 - ) tds

-1

oo
< /ﬁl/ exp (—negt)t" ldt = ke n T (k),
0

and the bound for E(Z;) + 1)* follows analoguously. For the second part of (b), we compute

P(Zyy < M) = (1- /MOO fz2(2)dz)" < (1—cz /00 2 dz)"

=1-cz M 7/(v=1))" <exp(—necz M"7/(y-1))

Second, we consider jointly the first parts of (a) as well as of (b), in case (a) we set M = 1. Let

R = (=M, M). By exchanging the order in the sums we deduce that

n—1 n
> (Zgey = 23)" 1= (Z) 1R () = D (Z5 = 2Z5)" - 1r(Z)) - 1r(Z5)
j=1 j=1

holds almost surely where

L i Z; > Zy, Wk =1,....n
’ min{Z, : Z), > Z;}, otherwise.
Thus we have
n—1
Ezl (ZG+1) = 2)" - 1=(Z(5) - 1R(Z(541) Z Bl (Z;) E(R(Z]) - (2] = 25)" | Z5)
=
= En:Em(Zj) /O(M_Zj)ﬁ P|Z; > Z;+ "% | Z;]dt

(M—Z;)"
gZElR ) [ Placg (Zaz 0 2

/ /M Z 1—/ f2(x)d _1ns“*1dsfz(z)dz

n/ /M ) exp (— (n—1)ezM™7s) ks Ldsfy(2)dz

| /\

IA

| /\

/ /exp (n—1)ez M 7s)ks" dsfz(2)dz

n/ exp (— (n— 1)CZM_73)/<§8"“_1ds
0

= ke, "T(k)M™n(n —1)""

IA
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G Linear instrumental variables

In this subsection, we extend the result for IV estimation to bivariate W.

Consider
Y = By + B1X + By 1 Wi + Ba s W, (@)
X =A0+ A Z+ Ay 1 W1 + Ap oW
Further we assume the regressors to be normalized:
EZ=EX=EW;=0, j=1,2, EW; Wy =0. (G.2)

Assumption 12 (Independence and moment assumption). Suppose that B = (By, B1, By)' and A,

are independent, and that Afl s absolutely integrable.

Proposition 4. Assume that (Y, X, Z, W1, W3) follow model (G.1), for which we maintain the As-
sumptions 2 (exogeneity) and 12 (independence assumption). If the random coefficients and the co-

variates Z, W1, Wy have finite second moments, the covariates are standardized as in (G.2), and

EA, (EZ2EW2EWZ — EW? (EZW,)® — EWZ (EZW1)?) #0

then the linear IV estimator based on an i.i.d. sample from (Y, X, Z, W1, Ws) converges at rate n=1/2
to
EBy+ EB1Ay
EB;

Hiv =
EByy + EB1Ay 1 — EB1EAy

EBo+ EB1Ays — EB1EAs»
In particular, the linear IV estimate is consistent for £ By, and it is consistent for /B3 » if the coefficient
Az 9 of Wy in the first equation is deterministic.
In (G.2) is not yet satisfied, we pass to
X=X-EX, Z=Z—-EZ, W,=W,—EW,

BE(WiWs) — _
fW]_, where WQ = W2 — EWQ,
E(W)?

/WQ = V_VQ —
which satisfies

Y = Eo +Bi X + 52,1 W1 + B Wm
X =Ag+ A Z + g2,1’Wv1 + A2,2W27

where
~ ~ E(WWs)
By = By + Bl(EX) + Bg@(EWl) + BQQ(EWQ), Bg,l = 3271 4+ — BQ’Q,
E(W)?
_ - E(WW-
Ag = Ao+ A1(EZ) + Aa 1 (EW) + Ago( EWo), Ao = As1 + ]_fj(f/{i/);) Az .
1
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This system still satisfies Assumptions 2 and 12, and the coefficients By, A1, B2 and A remain

unchanged, so that the above consistency still applies.
Proof of Proposition 4. Assume (G.2), and let V = E(Y, YZ, YW, YWQ)/ and

1 X Wy Wo

/ Z ZX ZWy ZW, 1 0
M:E(1727W17W2) (17X7W17W2):E = y
Wy WiX  WE Wi W

Wy WoX WiW, W2

where

EXZ EZW, EZW,
M=|EW,X EW? 0o |- (G-3)
EW,X 0 EW}

Under our assumptions, linear IV consistently estimates at rate n=/2 the vector M1V, provided the

matrix M is invertible. Using exogeneity and normalization, we immediately compute

EB() —+ EBlX

v _ | BBAXZ + BBy EZW1 + BBy BZW, G4)
EBXW, + EBy  EW? '

EB 1 XWy + EBy s EW3
Now, using the independence assumption,
EB1X = EB, Ao,
EB1XZ = EA{EB\EZ* + EB1As 1 EZW, + EB1 Ay s EZWs,
EB1XW, = EAJEBiEZW; + EB1 Ay 1 EW?E,
EB1XWy = EA\EBEZW» + EB Ay o EW?.
Similarly, for M we compute
EXZ =EAIEZ* + EAy 1 EZW, + EAg o EZ W,
EXW) = EA{EZW, + EAy1 EW?, (G.6)
EXWy = EA{EZWy + EAg o EWS.
Inserting (G.6) into (G.3) we compute
det M = d = EA, (EZ2EWZEWS — EW} (EZWs)? — EW3 (EZW1)?),

so that M is invertible and

M—l — d—l .
EWZEWZ2 —~EW1Z EW$ —~EW>Z EW?
—EWZ(EA1EZW; + EA31EW}?) EA(EZ?EWJ — (EZW3)?) + EAx 1 EZW1 EW 3 EWsZ (EA1EZW1 + EAs 1EW3)
—EWZ(EALEZWs3 + EAg o EW3) EW1Z (EA1EZWy + EAg o EWS) EAL(EZ?EW? — (EZW1)?) + EA2 o EZW2 EW}
Further, inserting (G.5) into (G.4), M~V is simplified after some calculations into piy . O
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H Estimation including exogenous regressors

Finally, we discuss how to extend the estimators from the previous sections to the model

Y:Bo—l-BlX—FBQVV,
X =Ay+ A1 Z + A W.

(H.1)

Assumption 13 (Exogeneity). (Z,W) and (A', B') are independent.

We maintain the identification Assumptions 13 and 12.

H.0.1 Nonparametric estimation

First consider the nonparametric setting as in Section C. Following HKM, it is quite straightforward

to extend a Nadaraya-Watson approach to the case of exogenous covariates W, as follows:

G(bo, b1, bo; h, M) =~ Ko (Y; — by — i Xj — baWis h) Ajnw,
= (H.2)

. 1
)\j,NW = 1M_1§ fZ,W(Zwaj)(n fZ,W(Zj7 WJ))

where fzy is a density estimator and M — oo a trimming parameter, and

Ko(z;h) = (2711)3 /R]t]z exp(itz) w(ht) dt.

The estimator for the scaling constant also needs to be modified in a similar fashion. Although
conceptually simple, the Nadaraya-Watson weights \; yw require additional smoothing and trimming
parameters and will be quite unstable. At least for semiparametric estimation and bounded support,

we rather recommend extensions of the Priestly-Chao weights, as discussed below.

H.0.2 Semiparametric estimation and bounded support

Assume that the support Sz, = Iz of Z given W = w is a compact interval, independent of w (the
conditional distribution itself may depend on w), and that the support of W is the compact interval

Iy . Further, impose the support restriction for a rectangle I'x x Iy C supp (X, W), i.e.

~ Ay — wA
supp (x;%luw) C supp (Z|W =w) = I, ¥ (z,w) € Ixx Iy . (H.3)

Moreover, for the joint density of (Z,W) we assume that fzw(z,w) > ¢ > 0 for all z € [-1,1],

w € Iy, for some ¢ > 0.
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H.0.3 Estimation of the scaling constant

From HHM, Theorem 5, for all (z,w)" € Ix x Iy,

1
ElAy = / Fxiz(alzw) de

Choose a bounded weight function v : R? — (0, 00) with suppv C Ix x Iy and [v = 1, then we have
that

1
E’Al|_1 :/ U(l“?w)/ Ix|zw(x]z,w) dz dv dw.
IxXIW —1

The Nadaraya-Watson type estimator of this expression is
n
dIXXIW,n = ZU(Xj, W]) )\ijw.
j=1
Note that we do not need the trimming parameter M — oo for the weights A; yw in (H.2), at least
asymptotically, since we assume that the density fzw is bounded away from zero. In the bounded

support context we recommend the use of the following Priestly-Chao type weights
Nipo = Area{ (s, w) € Iz x Iy [(2,w) = (23, Wy)| < |(5,0) = (Zi Wi, Yk =1,...n )}

j = 1,...,n. In the univariate situation of Section C without W, this corresponds to the weight
Ajpc = (Z(jﬂ) — Z(j,l))/2, which gives the same results asymptotically as Z(;;1) — Z(;) as chosen
in that section. In the multivariate situation it is hard to compute the \; pc analytically. However, it
is straightforward to approximate them using Monte Carlo: for given N € N (we use N = 200 in the
simulation section), generate i.i.d. Uy, ..., U,.n, uniform on Iz x Iy, and take A; pc as the proportion
of all of those Uy, ...,Un.y, closest to (Z;, W;), multiplied by Area (Iz x Iy ), where Area denotes the
Lebesgue area. This requires N - n? comparisons. The resulting estimator of the scaling constant is

n
aryxnyn = Y v(Xj, Wj) Ajpe. (H.4)
j=1
H.0.4 Semiparametric estimator
To proceed, let I x C Ix and Iy C Iy be subintervals. From Theorem 5 in HHM we obtain

1
/ / explity) / Froxizw (4, 7lz w)de dw dy dz
-1 Ik:,X Il,W (H5)

:E|A1|‘1-/ / (Ffa)(t, te, tw) du dw = ®(0, ¢, I x, ).
Ip. x J1Iw

We estimate the left hand side of (H.5) by

n
S (t, I x, Iow) o= Y exp(it ;) 1y, (Xi) 1 4 (Wi) Aj po-
j=1
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Given intervals Iy x,...,Ip x C Ix and I1w,...,I,w C Iw and a probability measure v on R, we

define the contrast

g p
- p . 2
| 2C) =20, )igp =D > / Dy, (¢, I x, ow) — Gn - @(0,¢, I x, Lw) |~ dv(?), (H.6)
k=1 i1=1 'R
where a4, = Gy x1,y,n- The minimizer of this criterion is taken as estimator én for . For B ~ N(u,X)
multivariate normal, and v the normal N (0, s?)-distribution, after dropping terms not depending on

the parameters, we have to minimize

p
M(p,%)=>" Z(dn / / @ (05 pa (g — 21) + po(wa — wr), (1, 21, w1)B(1, 21, wy)’
I x <1, x J I wxIw

k=1 1=1

(1, 2, w2)2(1, 2, ZUQ), + 8_2)_1) dlL‘l d{L‘Q dw1 dw2

_l’_

n

) Z/I /[ ‘P(O? Y] — Mo — 1T — pow, ((l,x, w)z(l,aj, w)/ + 3_2)71)
7j=1 k,X LW

Lo x (X5) 11,4, (W5) Aj P d dw) .

22



