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Abstract

Uniform confidence bands for densities f via nonparametric kernel estimates were first

constructed by Bickel and Rosenblatt [Ann. Statist. 1, 1071–1095]. In this paper this

is extended to confidence bands in the deconvolution problem g = f ∗ ψ for an ordinary

smooth error density ψ. Under certain regularity conditions, we obtain asymptotic uni-

form confidence bands based on the asymptotic distribution of the maximal deviation

(L∞-distance) between a deconvolution kernel estimator f̂ and f . Further consistency of

the simple nonparametric bootstrap is proved. For our theoretical developments the bias

is simply corrected by choosing an undersmoothing bandwidth. For practical purposes we

propose a new data-driven bandwidth selector based on heuristic arguments, which aims
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at minimizing the L∞-distance between f̂ and f . Although not constructed explicitly

to undersmooth the estimator, a simulation study reveals that the suggested bandwidth

selector performs well in finite samples, both in terms of area and coverage probability of

the resulting confidence bands. Finally the methodology is applied to measurements of

the metallicity of local F and G dwarf stars. Our results confirm the ”G dwarf problem”,

i.e. the lack of metal-poor G dwarfs relative to predictions from ”closed-box models” of

stellar formation.

Keywords: astrophysics; asymptotic normality; bootstrap; confidence band; deconvolution;

nonparametric density estimation; bandwidth selection
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1 Introduction

Nonparametric function estimation is an important tool for analyzing data, both for purposes

of statistical inference as well as for graphical visualization. In the latter context, one has

to distinguish whether a feature of the curve estimate is only due to random fluctuations, or

whether it captures relevant structure of the unknown curve. To this end, interval estimates

are frequently employed, and uniform confidence intervals (i.e. confidence bands) seem to be

more appropriate than pointwise confidence intervals.

In a pioneering work, Bickel and Rosenblatt (1973) constructed confidence bands for a density

function of i.i.d. observations, based on the asymptotic distribution of the supremum of a

centered kernel density estimator. Since then, their method has been further developed both

in the density estimation and also in a regression framework. For example, Giné, Koltchin-

skii and Sakhanenko (2004) derived the asymptotic distributions of weighted supremum-type

statistics for kernel density estimators. Hall (1993) investigated bootstrap confidence bands,

and Hall and Owen (1993) used empirical likelihood methods. In a regression context, Härdle

(1989) constructed asymptotic confidence bands for M -smoothers. Eubank and Speckman
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(1993) for the Nadaraya-Watson estimator and Xia (1998) for local polynomial estimators,

respectively, suggested confidence bands based on an explicit bias correction and not on un-

dersmoothing. Bootstrap confidence bands for nonparametric regression were proposed by

Neumann and Polzehl (1998) and by Claeskens and van Keilegom (2003).

Although there is quite a variety of methods for constructing confidence bands in direct

regression and density estimation models, in indirect models such as inverse regression or

deconvolution density estimation there seem to be no techniques available yet. Our goal in

this paper is to partially fill this gap by constructing confidence bands in ordinary smooth

deconvolution problems.

To be more precise, let X1, . . . ,Xn be i.i.d. observations from the model

Xi = Zi + εi, (1)

where we assume that the εi are i.i.d. with known density ψ and independent of the Zi. The

object of interest is the density f of the Zi, which is related to the density g of the Xi via

g = f ∗ ψ, (2)

the convolution of f and ψ. Recovering f from the noisy observations X1, . . . ,Xn is therefore

called the deconvolution problem (e.g. Fan, 1991a/b; Diggle & Hall, 1993; Delaigle & Gijbels,

2002). It is well-known that the optimal rate at which f can be estimated depends on the

smoothness of f as well as on the smoothness of the error density ψ. To fix the notation,

denote the Fourier transform of f by Φf (t) =
∫

R
f(x) exp(itx) dx. Roughly speaking, the

error density is called ordinary smooth if its Fourier transform |Φψ(t)| decays at a polynomial

rate as t→ ∞, in which case the optimal rate for estimating f is also of polynomial order. In

contrast, if |Φψ(t)| decays at an exponential rate as t→ ∞, ψ is called supersmooth and the

optimal rate for f is typically only of logarithmic order (an exception is the case in which f

is also supersmooth). For details see Fan (1991a) and Pensky and Vidakovic (1999), among

others.

In the deconvolution problem, several nonparametric estimators for f are available: kernel-

based estimators (e.g. Stefanski and Carroll, 1990), estimators based on wavelets (Pensky

and Vidakovic, 1999) or iterative methods (Hesse and Meister, 2004). Here we will restrict
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ourselves to kernel estimators. Suppose that f is p-times continuously differentiable for some

p ≥ 0. Under the assumption that Φψ(t) �= 0 for all t ∈ R and that Φk, the Fourier transform

of the kernel K, has compact support, the kernel deconvolution density estimator for the jth

derivative of f , given by,

f̂ (j)
n (x) = f̂

(j)
n,h(x) =

1
2π

∫
R

(−it)j exp(−itx)Φk(ht)
Φ̂n(t)
Φψ(t)

dt, 0 ≤ j ≤ p, (3)

is well-defined. Here h > 0 is a smoothing parameter called bandwidth, and Φ̂n is the

empirical characteristic function of X1, . . . ,Xn.

The estimator f̂ (j)
n can be written in kernel form as follows:

f̂ (j)
n (x) =

1
nhj+1

n∑
k=1

K(j)
n

(x−Xk

h

)
, (4)

where

K(j)
n (x) =

1
2π

∫
R

(−it)j exp(−itx) Φk(t)
Φψ(t/h)

dt 0 ≤ j ≤ p. (5)

Notice that K(j)
n depends on n through h. Asymptotic normality of f̂ (j)

n (x) was derived by

Fan (1991b) and van Es and Uh (2005), both in the ordinary smooth and in the super smooth

cases under some regularity conditions. Practical suggestions of how to choose the bandwidth

in order to minimize the MISE are given in Delaigle and Gijbels (2004).

In this paper we construct confidence bands for f (j) in the ordinary smooth deconvolution

problem. In Section 2 we discuss regularity properties related to an ordinary smooth error

density ψ. In particular, we will require that the Fourier transform of ψ decays exactly at a

polynomial rate. Such a condition was also used by Fan (1991b) to prove asymptotic normality

of f̂ (j)
n (x). In Section 3 we obtain asymptotic confidence bands by using the method of Bickel

and Rosenblatt (1973). Our regularity condition on the error density ψ guarantees that the

deconvolution kernel (5) has a simple asymptotic expression (cf. equation (8)), which makes

the Bickel-Rosenblatt argument applicable. In Section 4 we construct bootstrap confidence

bands via the simple non-parametric bootstrap. Hall (1993) showed in the direct density esti-

mation context that bootstrap confidence bands have a much better coverage accuracy than

asymptotic confidence bands. His arguments are based on the Edgeworth expansion. How-

ever, in the deconvolution problem such elaborate arguments seem to be rather inaccessible.
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Therefore we give a simpler and direct proof of consistency of the bootstrap which relies on a

method to show consistency of the bootstrap of the empirical process due to Shorack (1982).

In our theoretical developments we simply correct the bias by choosing an undersmoothing

bandwidth.

Section 5 contains an extensive simulation study. After an introductory outline of the sim-

ulation framework in Section 5.1, for practical purposes we introduce in Section 5.2 a new

data-driven bandwidth selection procedure. Heuristic arguments indicate that the proce-

dures aims at minimizing the L∞-distance between the density estimator and the unknown

true density f . This is in accordance with our aim to construct a confidence band in the

L∞-norm. While we do not provide a theoretical justification for this bandwidth selector

and in particular, do not construct it explicitly to undersmooth the estimator, the simulation

study reveals that the resulting confidence bands perform well in terms of coverage prob-

ability and area. Let us mention that most bandwidth selection methods suggested in the

literature for deconvolution problems have a tendency to oversmooth the estimator. While

these bandwidths lead to satisfactory results for estimating f itself, the resulting confidence

bands typically have coverage probabilities far below their nominal levels. In Section 5.3,

we compare the performance of asymptotic confidence bands and of confidence bands based

on the bootstrap. Finally, in Section 5.4 we investigate the sensitivity of the constructed

confidence bands w.r.t. misspecification of the error distribution.

This work is motivated by an astrophysical problem, namely the estimation of the density

of metallicities of F and G dwarfs, i.e. of stars very similar to the Sun. In Section 6 we

compute bootstrap confidence bands for estimates of this density for a sample of such stars in

the Solar neighbourhood, and confirm the ”G-dwarf” problem (see e.g. van den Bergh, 1962;

Schmidt, 1963; Sommer-Larsen, 1961), which is characterized by a substantial lack of low

metallicity F- and G-dwarf stars as compared to certain standard theories of star formation.

It is important to note that our analysis confirms this conclusion for the data after correction

(deconvolution) for measurement errors in the observed metallicities. Moreover, observing the

confidence bands for the estimator of the metallicity density it appears to be very unlikely

that the lack of metal-poor G dwarfs is due to observational errors.

5



Finally, all proofs are deferred to an appendix.

2 The ordinary smooth deconvolution problem

In this section we discuss regularity properties of the deconvolution problem (2) in the ordi-

nary smooth case, that will be of importance subsequently, and also introduce some relevant

notation. In general, the deconvolution problem is called ordinary smooth if the character-

istic function Φψ of the error variable ε satisfies Φψ(t) �= 0 for all t ∈ R, and if there exist

c, C, β > 0 such that

c|t|−β ≤ |Φψ(t)| ≤ C|t|−β, (6)

for |t| sufficiently large. Minimax-rates in the deconvolution problem can be derived under (6),

c.f. Fan (1991a) or Mair and Ruymgaart (1996). However, to obtain an explicit asymptotic

formula for the variance of the estimator (3) as well as its asymptotic normality, the following

stronger requirement becomes necessary,

Φψ(t)tβ → Cε, t→ ∞, (7)

for some β ≥ 0 and Cε ∈ C \ {0}. Note that this implies that Φψ(t)|t|β → C̄ε, t → −∞. If

(7) holds, the deconvolution kernel K(j)
n given in (5) has a simple asymptotic form. In fact,

from the dominated convergence theorem,

hβK(j)
n (x) → K(j)(x), h→ 0,

where

K(j)(u) =
1

2πCε

∫ ∞

0
(−ix)j exp(−iux)xβΦk(x) dx

+
1

2πCε

∫ 0

−∞
(−ix)j exp(−iux)|x|βΦk(x) dx, (8)

c.f. Fan and Liu (1998). Note that the second term in (8) is the complex conjugate of the first,

so that K(j)(u) is in fact real-valued. This allows e.g. to obtain an explicit asymptotic formula

for the pointwise variance of the estimator (3), which is proportional to h−2β−2j−1 n−1 g(x).

No such formula seems to be available in the general case (6), and in fact the order of the
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Table 1

density characteristic fct. β Cε

Gamma distr. xα−1 exp(−x)/Γ(α), x, α > 0 (1 − it)−α α iα

Laplace distr. exp(−|x|)/2 1/(1 + t2) 2 1

Table 1: Error densities, characteristic functions and constants

variance is not clear. Therefore, in order to construct confidence bands, we will require the

stronger regularity assumption (7).

Let us mention that for certain supersmooth deconvolution problems, in particular for normal

deconvolution, there is also an asymptotic formula for the pointwise variance (cf. van Es and

Uh, 2005) available. However, e.g. in case of normal deconvolution, this limit variance no

longer depends on f and x, but only (in a global way) on the error distribution. Furthermore,

there is no analogue of the limit form (8) of the deconvolution kernel K(j)
n available. There-

fore, our methods do not extend to this case, and in fact we conjecture that the asymptotic

distributions of supremum-type statistics might be different.

To conclude this section let us consider two examples.

Example 1. Suppose that Φψ is the reciprocal of a polynomial, i.e.

1
Φψ(t)

=
β∑
j=0

ajt
j, aj ∈ C.

It is evident that (7) is satisfied with Cε = 1/aβ . Specific examples are given in Table 1.

Example 2. Let ψ0 be a density with characteristic function satisfying (7), and consider the

mixture

ψ(x) = λψ0(x− μ)/2 + λψ0(x+ μ)/2 + (1 − λ)ψ0(x)

for some 0 < λ < 1/2 and μ �= 0. In this case the resulting characteristic function is

Φψ(t) =
(
1 − λ+ λ cos(μt)

)
Φψ0(t).

Here (6) is satisfied, but (7) is not.
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3 Asymptotic confidence bands

In this section we construct asymptotic confidence bands on a compact interval in the ordinary

smooth case. For simplicity we formulate our results for the interval [0, 1], however, they can

be easily extended to any compact interval [a, b] ⊂ R. We start by studying the distribution

of the maximum of the process

Y (j)
n (t) =

n1/2hβ+j+1/2

g(t)1/2
(
f̂ (j)
n (t) − Ef̂ (j)

n (t)
)
, t ∈ [0, 1].

Let us list the regularity conditions that we require in the following.

Assumption 1. The Fourier transform Φk of k is symmetric, three times differentiable and

supported on [−1, 1], Φk(t) = 1 for t ∈ [−c, c], c > 0, and |Φk(t)| ≤ 1.

Assumption 2. A.
∫

R
|K(j+1)

n (x)||x|3/2(log log+ |x|)1/2 dx = O(h−β), where log log+ |x| =

0 if |x| < e, and log log+ |x| = log log |x|, otherwise.

B. For some δ > 0,
∫

R

|hβK(j+1)
n (x) −K(j+1)(x)||x|1/2(log log+ |x|)1/2 dx = O(h1/2+δ),

where K(j+1) is given in (8).

Assumption 3. A. The density g is bounded and bounded away from 0 on [0, 1]. Further-

more, g1/2 is differentiable with bounded derivative.

B. The Fourier transform Φf of f satisfies
∫

R

|Φf (t)||t|r−1 dt <∞ for some r > p+ 1.

We will discuss these assumptions and how they can be verified subsequently in Remark 1.

Now we are in the position to state the following limit theorem. Let ‖·‖I denote the sup-norm

on an interval I ⊂ R.

Theorem 1. Under the Assumptions 1 – 3, if h → 0 and hn/ log3(n) → ∞, then for

0 ≤ j ≤ p,

P
((

2 log(1/h)
)1/2(‖Y (j)

n ‖[0,1]/C
1/2
K,1 − dn

) ≤ x
)
→ exp(−2 exp(−x)),
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where

dn =
(
2 log(1/h)

)1/2 +
log

(
1
2πC

1/2
K,2

)
(
2 log(1/h)

)1/2
,

and

CK,1 =
1

2π|Cε|2
∫

R

x2(β+j)Φ2
k(x) dx, CK,2 =

∫
R
x2(β+j+1)Φ2

k(x) dx∫
R
x2(β+j)Φ2

k(x) dx
. (9)

From Theorem 1 one can directly construct confidence bands for the smoothed version Ef̂ (j)
n

of f (j). In order to construct confidence bands for f (j) itself, we have to deal with the bias

of f̂ (j)
n . Now Ef̂

(j)
n (x) = kh ∗ f (j)(x), kh(x) = k(x/h)/h, does not depend on the error

distribution, and in principle we could expand the bias and use an explicit bias correction by

estimating its dominating term (see Eubank and Speckman, 1993; Xia, 1998, for bias-corrected

confidence bands in a regression context). However, this strategy has specific disadvantages

in the deconvolution context, for a discussion see Remark 1 and Section 5. Therefore, for

our theoretical developments we correct the bias by choosing an undersmoothing bandwidth.

Using Assumptions 1 and 3 B., one can derive the following estimate for the bias

∣∣Ef̂ (j)
n (x) − f (j)(x)

∣∣ =
1
2π

∣∣ ∫
R

(−it)j exp(−itx)(1 − Φk(ht))Φf (t) dt
∣∣ = o(|h|r−j−1), (10)

uniformly in x. Moreover we have to estimate the unknown density g of the observations. We

require an estimator g̃n of g which satisfies

‖g̃n(t) − g(t)‖[0,1] = oP
(
(log(1/h))−1

)
, (11)

where h is the bandwidth used to estimate f . In this way we get the following asymptotic

confidence bands.

Corollary 2. Let g̃n be an estimator of g satisfying (11). Under the Assumptions 1 – 3, if

nh2(β+j)+1/ log(1/h) → ∞ and nh2β+2r−1 log(1/h) → 0, we have

P
(
f̂ (j)
n (t) − bn(t, x) ≤ f (j)(t) ≤ f̂ (j)

n (t) + bn(t, x) for all t ∈ [0, 1]
) → exp(−2 exp(−x)), (12)

where

bn(t, x) =
( g̃n(t)CK,1
nh2(β+j)+1

)1/2( x

(2 log(1/h))1/2
+ dn

)
.
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Notice that the width of the bands is of order
(
log(1/h)/(nh2β+2j+1)

)1/2, thus the first

condition on the bandwidth ensures that this converges to 0. Furthermore, it implies that

the bandwidth assumption hn/ log n → ∞ is satisfied. We notice that the slower h → 0, the

smaller the band. However, since we undersmooth in order to correct for the bias, h has to

tend to 0 in such a way that nh2β+2r−1 log(1/h) → 0. Notice that both conditions can be

met simultaneously since r > p+ 1 and j ≤ p.

Remark 1 (Discussion of the assumptions). Here we discuss the Assumptions 1 – 3, and

how they can be verified.

Kernels satisfying Assumption 1 are called flat-top kernels (cf. Politis and Romano, 1999).

They have good bias properties in the sense that in contrast to kernels of finite order, they

achieve optimal rates for all possible degrees of smoothness r > p+ 1 of the density as shown

in (10). However, as also indicated in (10), for flat-top kernels there is no simple form for the

leading term of the bias, and therefore explicit bias correction is not possible. For ordinary

smooth deconvolution as considered in this paper, one could also simply use the Gaussian

kernel. If f is at least j+2 times differentiable, then for the Gaussian Ef̂ (j)
n (x) = kh ∗ f (j)(x)

is of order h2, and its leading term could be estimated by estimating f (j+2). However, in

a simulation study it turned out that when using the Gaussian kernel there is not practical

gain in explicit bias correction for deconvolution problems, since estimating f (j+2) is an even

more sensitive matter than estimating f (j).

Next let us consider Assumption 2. As for Assumption 2 A., if Φψ is three times continuously

differentiable, from twofold partial integration we obtain

K(j+1)
n (x) =

1
2π

∫
R

(−it)j+1 exp(−itx) Φk(t)
Φψ(t/h)

dt

=
(−i)j−1

2πx2

∫
R

exp(−itx)
(
tj+1Φk(t)
Φψ(t/h)

)′′

dt.

Therefore it suffices to show that

∫
R

∣∣∣ tj+1Φk(t)
Φψ(t/h)

∣∣∣dt = O
(
h−β

)
and

∫
R

∣∣∣
(
tj+1Φk(t)
Φψ(t/h)

)′′ ∣∣∣ dt = O
(
h−β

)
. (13)

These properties will typically be satisfied for a general ordinary smooth deconvolution prob-
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lem, i.e. if (6) holds. Concerning Assumption 2 B., we have

|hβKj+1
n (x) −Kj+1(x)| ≤ 1

2π

(∫ ∞

0
|tj+1Φk(t)|

∣∣∣ hβ

Φψ(t/h)
− tβ

Cε

∣∣∣ dt
+

∫ 0

−∞
|tj+1Φk(t)|

∣∣∣ hβ

Φψ(t/h)
− |t|β
Cε

∣∣∣ dt) (14)

and

|hβKj+1
n (x) −Kj+1(x)| ≤ 1

2πx2

( ∫ ∞

0

∣∣∣(tj+1Φk(t)
( hβ

Φψ(t/h)
− tβ

Cε

))(2)∣∣∣ dt
+

∫ 0

−∞

∣∣∣(tj+1Φk(t)
( hβ

Φψ(t/h)
− |t|β
Cε

))(2)∣∣∣ dt). (15)

Therefore we only have to check that the integrals in (14) and (15) are of order O(h1/2+δ).

Note that regularity property (7) together with the dominated convergence theorem implies

that (14) tends to zero. In order to additionally obtain the rate h1/2+δ in (14), one needs

a stronger version of (7), e.g.
(
Φψ(t)tβ − Cε

)
t1/2+β → 0, t → ∞. Let us mention that

Assumption 2 B. in fact implies (7). Therefore, Assumption 2 B. can be considered as a

technical refinement of (7).

Assumption 3 A. is imposed for simplicity of formulation. However, since g is determined

by ψ, a known density, and by f , the density of interest, it is more natural to formulate the

conditions in terms of f and ψ. If f is bounded, it is simple to see that g is also bounded

since ψ is integrable. Further, suppose that the derivative of f1/2 is bounded. Since under

sufficient regularity,

g′(x) =
∫

R

f ′(x− y)ψ(y) dy,

and from the Schwarz inequality,

g1/2(x) ≥
∫

R

f1/2(x− y)ψ(y) dy,

it follows that g′/g1/2 is also bounded. Finally, there are several conditions on f and ψ

that guarantee that g is bounded away from 0 on [0, 1]. If ψ is bounded away from 0 on

some interval [−ε, ε] for ε > 0, this will follow if f is bounded away from 0 on [0, 1]. In this

case, which includes e.g. the case of Laplace deconvolution, one can simply replace g by f in

Assumption 3 A. However, if ψ has support on (0,∞), like e.g. the exponential distribution,

one requires that f is bounded away from 0 on some interval [−ε, 1].
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Finally, Assumption 3 B. is a smoothness assumption on f . It implies in particular that f is

p-times continuously differentiable, and it is satisfied if f is more than p-times differentiable.

Example 1 (continued). If Φψ is the reciprocal of a polynomial as in Example 1, it is easy to

check that (13) holds, and therefore Assumption 2 A. is satisfied. Furthermore we evidently

have Cε = 1/aβ . Since Φψ(−t) = Φψ(t), it is clear that if β is even, aβ ∈ R, while if β is odd,

aβ ∈ iR. Therefore the leading terms in (14) and (15) cancel out, and only terms of order

O(h) remain. Thus Assumption 2 B. holds true as well.

4 Bootstrap confidence bands

In this section we construct bootstrap confidence bands for the deconvolution problem. We

consider the simple nonparametric bootstrap, where we resample n-times from the observa-

tions X1, . . . ,Xn, and in this way obtain an i.i.d. sample X∗
1 , . . . ,X

∗
n with distribution Gn,

the empirical distribution function of the X1, . . . ,Xn.

In a direct density estimation problem this method was studied by Hall (1993) via the Edge-

worth expansion. Hall (1993) concluded that bootstrap confidence bands perform much bet-

ter than asymptotic bands. Here we give a simple argument to show that the nonparametric

bootstrap also works to construct confidence bands in the deconvolution problem. We denote

by E∗ and P ∗ conditional expectation and conditional probability, given X1, . . . ,Xn. The

bootstrap estimator of f (j) is given by

f̂∗(j)n (x) =
1

nhj+1

n∑
k=1

K(j)
n

(x−X∗
k

h

)
. (16)

Since the empirical characteristic function Φ̂∗
n of X∗

1 , . . . ,X
∗
n, satisfies E∗Φ̂∗

n(t) = Φ̂n(t), using

formula (3) we see that

E∗f̂ (j)∗
n (x) = f̂ (j)

n (x).

The bootstrap approximation of Y (j)
n (t) is given by

Y ∗(j)
n (t) =

n1/2hβ+j+1/2

g̃n(t)1/2
(
f̂∗(j)n (t) − f̂ (j)

n (t)
)
.

In order to construct bootstrap confidence bands, we simulate the distribution ‖Y ∗(j)
n ‖[0,1].

Let q∗1−α denote its 1 − α quantile. In this way we obtain the bootstrap level-α confidence
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band,

f̂n(t) −
q∗1−αg̃

1/2
n (t)√

nhβ+j+1/2
≤ f(t) ≤ f̂n(t) +

q∗1−αg̃
1/2
n (t)√

nhβ+j+1/2
, t ∈ [0, 1]. (17)

The following theorem shows that this method works asymptotically. Let d denote the Pro-

horov metric on the space of probability measures on R. The precise definition is not relevant

for us, we mainly need that it is a metric for weak convergence of probability measures on

R. Further, if U and V are real-valued random variables and a ∈ R, d
(L(U),L(V )

)
=

d
(L(U − a),L(V − a)

)
. Here L denotes the law (distribution) of a random variable.

Theorem 3. Suppose that ‖g̃n − g‖[0,1] = o
(
(log(1/h))−1

)
a.s.. Under Assumptions 1 – 3

and the bandwidth assumptions of Corollary 2, setting cn =
(
2 log(1/h)

)1/2 we have that

d
(
L(cn‖Y j

n ‖[0,1]),L∗(cn‖Y ∗(j)
n ‖[0,1])

)
→ 0 a.s., (18)

where L∗ is the conditional law given (Xi)i≥1. Therefore,

P ∗
(
cn

(‖Y ∗(j)
n ‖[0,1]/C

1/2
K,1 − dn

)
< x

)
→ exp(−2 exp(−x)) a.s.,

where the constants dn and CK,1 are as in Theorem 1.

The almost sure uniform convergence ‖g̃n−g‖[0,1] = o
(
(log(1/h))−1

)
of g̃n to g on the compact

interval [0, 1] is e.g. satisfied for kernel density estimators with bandwidth h if the kernel is of

bounded variation and has compact support, if f and hence also g is differentiable, c.f. Stute

(1982). Note that this condition in particular implies the convergence in probability (11).

Further observe that without the bandwidth assumption of Corollary 2, Theorem 3 yields

the consistency of the bootstrap for constructing confidence bands for the smoothed version

Ef̂
(j)
n of f (j).

Remark 2. Neumann and Pohlzehl (1998) construct bootstrap confidence bands in a regres-

sion context by using the so-called wild bootstrap. They use rather sophisticated arguments

to construct a version of the bootstrap process which approximates the original process di-

rectly, not only in distribution as in (18). However, in our context the approximation in

distribution appears to be sufficient and in addition is much simpler, since we can apply the

theory of empirical processes.
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Further, Neumann and Pohlzehl (1998) do not require a limit theorem like Theorem 1 for

their process (and in fact are uncertain about the limiting distribution of their statistics).

Instead, they only derive a lower bound on the probability that the supremum statistic of

the bootstrap process falls into small intervals. In addition with their bootstrap approxi-

mation result, this is enough to obtain valid bootstrap confidence bands. Such a technique

might be useful when studying less regular deconvolution problems, which satisfy (6) but not

necessarily (7).

5 Simulation results

5.1 Simulation framework

In this section we investigate the methods discussed above in a simulation study. To this end

we generate data from the model (1). We consider two different densities for Z. The first one

is the normal density

f1(x) = φ0.5,0.09,

where φa,b denotes the density of a normal random variable with mean a and variance b,

and is therefore an infinitely smooth density. The second density represents the case of finite

smoothness, and is given by

f2(x; k, θ) = xk−1 exp(−x/θ)
θkΓ(k)

, forx > 0,

i.e. a Gamma distribution, where we fix the shape parameter to k = 6 and the scale parameter

to θ = 0.08. We assume the error terms εi to be independent from the Zi and have Laplace

density ψ(x;λ) = (λ/2) exp(−λ|x|), x ∈ R, where λ = 3 for the simulations involving the

underlying density f1, and λ = 10 for those which involve f2. This amounts to ”signal-to-

noise” ratios
√

Var(f1)/Var(ψ) = 0.6 and
√

Var(f2)/Var(ψ) = 1.4, respectively. Moreover,

we will perform some simulations with underlying density f2 and Gaussian noise of variance

σ2 = 0.02, i.e. with the same variance as a Laplace density with parameter λ = 10.

Our procedure to determine confidence bands for the density f of Z is as follows. First, we

estimate f by the estimator (3), based on the compactly supported flattop kernel with Fourier

14



Figure 1
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Figure 1: Coverage probability and area of asymptotic confidence bands for estimation of

the densities f1 (left panel) and f2 (right panel) from 500 observations. The area of the

confidence bands has been determined by numerical integration and is normalized in this plot

to a maximum value 1 in both panels. The nominal coverage probability of the confidence

bands is 90%.
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Figure 2
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Figure 2: L∞-distance between the true densities f1 (left) and f2 (right) and estimates f̂n,h

in dependence of the bandwidth. The samples in the simulations consist of 500 observations

contaminated by Laplace distributed noise with λ = 3 for simulations involving f1 and λ = 10

for those involving f2, respectively. The four different lines correspond to four random datasets

each for estimation of f1 respectively f2.

transform

Φk(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if |t| ≤ c

exp −b exp(−b/(|t|−c)2)
(|t|−1)2 if c < |t| < 1,

0 if |t| ≥ 1

with b = 1 and c = 0.05 (Politis and Romano, 1999) and bandwidth hf . In our simulations

(not displayed) it turned out that this kernel results in better, more stable, numerical per-

formance of f̂ (j)
n than the sinc-kernel with Fourier transform Φ(t) = 1[−1,1](t). This is mainly

due to the fact, that Φk(t) is both infinitely differentiable and flat near the origin. Then

we construct a confidence band in the interval [0, 1] according to the methods discussed in

Theorem 1 for the asymptotic confidence bands and along the lines described in Section 4 (cf.

(17)) for the bootstrap confidence bands, respectively. Here we estimate the density g of X

with a kernel density estimator with Gaussian kernel φ0,h2
g

of bandwidth hg.

5.2 Bandwidth selection

We will now discuss selection of the bandwidths hf and hg. The more easy part is to choose the

bandwidth hg for ”direct” density estimation of g due to the additional smoothness imposed
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Figure 3
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Figure 3: L∞-distance d(∞)
j,j+1 between estimates of f1 (left) and f2 (right), respectively, in

dependence of the bandwidths hj , using the same line style for the same random datasets

(and hence estimates) as in Fig. 2.

Table 2

Nominal cov. (%) Method Cov. prob. Area Cov. prob. Area

Gaussian distribution Gamma distribution

80 Bootstr. 81.6 0.95 90.8 0.60

90 Bootstr. 88.0 1.10 97.6 0.68

95 Bootstr. 90.8 1.23 98.8 0.74

Table 2: Coverage probabilities and confidence band areas for estimating the Gaussian density

f1 and the density of a Gamma distribution f2 from 500 observations, contaminated by

Laplace distributed noise with variance 2/9 for simulations involving f1 and variance 0.02 for

those involving f2. The bandwidth h for the estimator f̂n,h was selected in a fully data-driven

way. See text for details.
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Table 3

Nominal cov. (%) Method Cov. prob. Area Cov. prob. Area

Gamma dist, J = 50 Gamma dist, Lap. ∗ Lap.-noise

80 Bootstr. 86.0 0.37 90.4 0.65

90 Bootstr. 90.0 0.42 94.8 0.75

95 Bootstr. 93.6 0.46 97.2 0.84

Table 3: Coverage probabilities and confidence band areas for estimating the density of

a Gamma distribution f2 from 500 observations, contaminated by Laplace noise and with

J = 50 (left) and by noise distributed according to a Laplace distribution with variance 0.02

convolved with itself (right). See text for details.

on g by the convolution with ψ. We found in our simulations that the coverage probabilities

and confidence band areas are quite insensitive to the value of hg and any of the standard

methods will be sufficient, e.g. cross validation or, where it is reasonable, a normal reference

estimator, as used in our simulations. However, hf has to be selected more carefully. This is

illustrated in Fig. 1, which shows the coverage probabilities and area for 90% nominal coverage

confidence bands as a function of the bandwidth hf used in the estimator (3). In this simula-

tion the true density is f1 and f2, respectively, and in each case we performed 250 simulations

with a sample size of 500, respectively. We conclude from Fig. 1 that for large bandwidth

the confidence bands are narrow, but the true coverage probability is far below its nominal

level. This is due to the (uncorrected) bias, which increases with the bandwidth. For small

bandwidths, we undersmooth the estimator, and the true coverage probability approaches

its nominal value. Hence, as a major conclusion, we see from this that undersmoothing is

advisable in order to maintain the coverage probability of the confidence bands. However, at

the same time this leads to an increase in the area of the confidence bands. Hence, choosing

the bandwidth hf implies a trade-off between meeting the nominal coverage probabilities and

reducing the area of the confidence bands.

In general, in a practical application we would not necessarily recommend selecting the band-

width such that it is undersmoothing, but certainly such that it is not oversmoothing. This is
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somewhat in contrast to estimating the function f itself, where slight oversmoothing typically

still recovers the main structural features of f , such as peaks, valleys and modes. In fact,

several approaches to data-driven bandwidth selection for deconvolution estimators have been

investigated in the past, mainly with the purpose to minimize the mean integrated square

error as optimality criterion. These include cross-validation procedures (Stefanski & Carroll,

1990; Hesse, 1999), bootstrap methods (Delaigle & Gibjels, 2001), and methods based on

plug-in and to some extend SEQ (solve-the-equation) ideas (Delaigle & Gijbels, 2004). The

bandwidth selected by these methods are in general oversmoothing and in some cases show a

large scatter (cf. Delaigle & Gijbels, 2004, Figs. 2, 4, 6, and 7). Therefore it is not straight-

forward to devise a general rule, how the bandwidth from one of the previously mentioned

methods could be adapted to our requirements directly.

An L∞-based bandwidth selector. Since the uniform confidence bands considered here

are based on an analysis of the L∞-distance between estimates f̂n,h and f , we therefore sug-

gest in the following a bandwidth selection procedure which aims at selecting the bandwidth

hopt which minimizes the L∞-distance between f̂n and the underlying density f as surrogate

optimality criterion.

In the following we pursue an approach based on estimation of the bandwidth hopt, which

minimizes the L∞-distance d(∞)(f, f̂n,h) between the underlying density f and the estimator

f̂n,h for bandwidth h. Let us mention that confidence bands based on hopt would by The-

orems 1 and 3 only be valid for Ef̂ (j)
n , since the bias remains uncorrected. However, our

simulation study shows that in finite samples, the subsequent bandwidth selection strategy

yields satisfactory results for f (j) itself in finite samples.

Fig. 2 shows for four different samples the L∞-distance between estimates f̂n,h and the un-

derlying densities f1 and f2, respectively, in dependence of h. For oversmoothing bandwidths,

i.e. h > hopt the estimators change only moderatly with increasing bandwidth, to the effect,

that the extrema of the estimated density increasingly get smoothed out. In consequence, the

L∞-distance changes only slowly. The situation is different for undersmoothing bandwidth

h < hopt. With decreasing bandwidth, those frequencies in the spectral domain where the

empirical characteristic function is dominated by noise in the data contribute more and more
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to the estimator, producing increasingly strong artificial oscillations. This results in a sudden

steep increase of d(∞)(f, f̂n,h) for decreasing bandwidth h < hopt. In consequence, h ≈ hopt

(or slightly smaller) is a straightforward choice for the bandwidth for generating the confi-

dence bands. This is, however, not accessible directly because the criterion d(∞)(f, f̂n,h) to

be evaluated depends on f itself. In the following this minimum will therefore be estimated.

We have argued in the previous paragraph that f̂n,h changes in a different way with band-

width h for h < hopt and h > hopt. In Fig. 3 we show for the same simulations as in Fig. 2

the L∞-distance

d
(∞)
j−1,j := d∞

(
f̂n,hj

, f̂n,hj−1

)
.

between estimators fn,hj
for two adjacent bandwidths of a sequence of bandwidths hj =

h0 · (j/20), j = 1, . . . , 20, where h0 is some oversmoothing pilot bandwidth. A comparison

of Figs. 2 and 3 indicates that the bandwidth, where d(∞)
j−1,j changes its slope suddenly, is a

good indicator of the bandwidth with minimizes the L∞-distance d(∞)(f, fn,h).

We therefore suggest the following two-step algorithm for a data-driven bandwidth selection.

Initialization step: Estimate a pilot bandwidth h0 which is oversmoothing. If the density

to be estimated is expected to be unimodal, a normal reference bandwidth estimator (cf.

Delaigle & Gijbels, 2004) is sufficient, however in general a more sophisticated selection

algorithm such as the plug-in estimator of Delaigle & Gijbels (2004) is to be preferred.

To make sure that the pilot bandwidth is not undersmoothing it could be increased by

a factor γ > 1, say γ = 1.5. For a guidance on how to select γ, compare, e.g. Figs. 2,4,6

and 7 in Delaigle & Gijbels (2004).

Selection step: Compute f̂n,hj
for a grid of J values hj = j · (h0/J), j = 1, . . . , J , where

J ≈ 20 is found to be sufficient in our case. Choose the largest bandwidth h∗ such

that the ”change between models for adjacent bandwidth” d(∞)
j−1,j is more than τ times

(τ > 1) larger than d(∞)
J−1,J in the case of the pilot bandwidth.

There are several parameters involved in this bandwidth selection algorithm, and we now

comment on the sensitivity of the resulting bandwidth when these are varied. Simulations

with a number of different values for γ showed that its precise choice does not impact the
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results for the bandwidth significantly. Most importantly here is to guarantee an initial

bandwidth h0 which is oversmoothing. Fine-tuning of the threshold parameter τ allows to

adapt the method to different possible purposes of the estimator f̂n,h - decreasing τ yields

larger bandwidths and in consequence smoother estimates of f . In our simulations τ ≈ 2

turned out to be a good choice for the confidence bands, independent of sample size and

”true” underlying density f . This is illustrated by Table 2, which gives the results of a small

simulation study of the bootstrap confidence bands consisting of 250 simulations with 200

bootstrap samples each. The confidence bands perform remarkably well for the estimates

based on our bandwidth selection algorithm.

Additional simulations where performed to test for a dependence of the estimated bandwidth

on the bin number J of the bandwidth selection algorithm, and on the noise density (in

particular the resulting degree of ill-posedness of the deconvolution problem). Table 3 reports

the results of these simulations. In the first part, we have modified the number J considered

for the selection of the bandwidth, which yields a slight improvement in the performance of

the confidence bands, particularly w.r.t. the mean area they cover. This is due to the fact

that now more different possible choices for the bandwidth hj are available to select from, and

the critical bandwidth h∗ can be determined more precisely. In consequence, it happens less

frequently in the simulations that a significantly too small bandwidth is chosen, which would

produce strong oscillations in the estimator f̂n,h, and eventually large confidence bands. As

second test we replaced the Laplace distribution of the noise terms by a Laplace convolved

with itself in order to increase the ill-posedness of the problem by changing β from 2 to 4.

Again, the results in Table 3 show that our bandwidth choice is robust against this change in

the degree of ill-posedness.

The suggested bandwidth selection procedure requires the computation of estimates f̂n,h for

a grid of different bandwidths hj . In addition to the fully automatic bandwidth selection as

described above, it is recommendable to further examine these estimates visually, if possible.

In some preliminary simulations it turned out that the performance of the confidence bands

can indeed be improved further by visual examination of the estimates f̂n,hj
over a range of

bandwidth hk, . . . , hl, 1 ≤ k ≤ l ≤ J , and selection of the smallest amongst these bandwidths
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Table 4

Nominal cov. (%) n Method Cov. prob. Area

Asympt. 56.4 0.71
100

Bootstr. 74.1 0.80
80

Asympt. 58.4 0.41
500

Bootstr. 77.2 0.50

Asympt. 68.8 0.84
100

Bootstr. 88.8 0.95
90

Asympt. 70.8 0.49
500

Bootstr. 87.2 0.59

Asympt. 80.4 0.96
100

Bootstr. 93.3 1.07
95

Asympt. 80.8 0.55
500

Bootstr. 94.0 0.66

Table 4: Coverage probabilities and confidence band areas for estimation of the Gaussian f1

from 100 and 500 observations, respectively, contaminated by Laplace distributed noise with

variance 2/9.

for which the estimate does not show significant oscillations to negative values. We remark

that this approach is closely related to the scale space view of curve estimation (e.g. Chaudhuri

and Marron, 2000), where one examines the empirical scale space surface generated by f̂h(x)

as function of h, x for significance of present features such as peaks or valleys. A further

investigation of the theoretical properties of data-driven bandwidth estimation from a scale

space point of view for confidence bands in deconvolution density estimation would clearly be

of some interest, but is beyond the scope of this paper.

5.3 Comparison of asymptotic and bootstrap confidence bands

In order to investigate the performance of the bootstrap confidence bands in comparison to

the asymptotic case (cf. Corollary 2) in the following simulations we estimated in a first
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Table 5

Nominal cov. (%) n Method Cov. prob. Area

Asympt. 33.6 0.97
100

Bootstr. 80.0 1.06
80

Asympt. 48.8 0.94
500

Bootstr. 84.0 0.49

Asympt. 45.2 1.08
100

Bootstr. 86.0 1.21
90

Asympt. 58.8 1.04
500

Bootstr. 94.0 0.55

Asympt. 53.6 1.20
100

Bootstr. 92.0 1.30
95

Asympt. 70.4 1.14
500

Bootstr. 98.0 0.59

Table 5: Coverage probabilities and confidence band areas for estimation of the density of the

Gamma distribution f2 from 100 and 500 observations, respectively, contaminated by Laplace

distributed noise with variance 0.02.
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Table 6

Nominal cov. (%) n Method Cov. prob. Area Cov. prob. Area

correct specification misspecification

100 Bootstr. 88.0 0.62 78.8 0.50
80

500 Bootstr. 87.2 0.37 82.4 0.36

100 Bootstr. 94.4 0.72 86.4 0.58
90

500 Bootstr. 93.2 0.43 90.8 0.41

100 Bootstr. 96.8 0.80 92.8 0.65
95

500 Bootstr. 96.0 0.48 94.8 0.46

Table 6: Coverage probabilities and confidence band areas for estimating the density of

the Gamma distribution f2 from 100 and 500 observations, respectively, contaminated by

Gaussian noise with variance 0.02. The first two columns show the results for correctly

specified noise, while the last two columns show those for a misspecified noise model, where

the error is assumed to be Laplace distributed with variance 0.02.

step hopt by minimizing d∞(fi, f̂n,h), i = 1, 2, for several samples and subsequent averaging.

This procedure was performed for every combination of sample size 100, 500 with underlying

density f1 and f2, respectively. The bandwidth was then kept fixed in the subsequent simu-

lations. In the first part of our simulation study, we estimate the density f1 from samples of

sizes 100 and 500 generated according to model 1. We perform 250 simulation runs, and for

each simulation of bootstrap confidence bands, 200 bootstrap samples are generated. Table

4 presents the results for nominal coverage probabilities 80%, 90% and 95%. We simulated

coverage probabilites together with the area of the confidence bands for the estimator f̂1,n

of f1. From the table we observe that both for the asymptotic and the bootstrap confidence

bands the results improve with increasing sample size. In a second Monte Carlo study we have

used the Gamma density f2. Here, we focus on the confidence intervals for 0.25 < x < 0.7,

where the density departs significantly from 0. Apart from this we use the same simulation

setup as described above for the case of f1. Table 5 summarizes the results for asymptotic

and bootstrap confidence bands. Both methods produce reasonable results for the coverage
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probabilities with a clear advantage for the bootstrap bands. However, in comparison to

the simulations based on f1, the nominal coverage probabilities of the asymptotic confidence

bands are recovered less precisely for f2. This difference in the quality of approximation is

somewhat reflected by the difference in the rates of convergence of the function estimates

f̂1 and f̂2, which are O
(
log(n)5/4/

√
n
)

(Butucea, 2004) and O(n−1/3) (e.g. Fan, 1991a), re-

spectively. However, Fig. 4, which presents some typical examples for estimated asymptotic

confidence bands from 500 and 5000 simulations, shows that these still produce reasonable

results for moderate sample sizes such as n = 500. Finally, when comparing these results

based on the optimal bandwidths hopt to those obtained for our data–driven selection proce-

dure, one observes that the bootstrap confidence bands perform slightly better with h = hopt

than if the bandwidth is chosen in a data–driven way. In particular, the nominal coverage

probabilities are met to comparable precision for both bandwidth choices, but the areas of

the bands are smaller for h = hopt.

5.4 Robustness and misspecification of ψ

In many practical situations the true shape of the density ψ of the noise is known only

approximately and a polynomial decay of Φψ as in assumption (6) may not be satisfied. In

particular, Gaussian deconvolution is not covered by our theory and it might be of interest how

the bootstrap confidence bands in (17) perform in this case. An example from astrophysics

will be discussed below in Section 6. The following simulation study indicates that the

proposed bootstrap estimator of the confidence bands is robust against this kind of noise

model misspecification and still performs well (cf. Hesse, 1999; Meister, 2004). To this end

we have performed two additional sets of simulations with f2 as underlying density and the

same simulation setup as used so far. Now the noise term ε follows a normal density with

variance σ2 = 0.02, i.e. with the same variance as in our previous simulations. Note, that it

is not possible to use asymptotic confidence bands as in (12) anymore, however, we still can

implement their bootstrap version.

In the first part of the simulations we assume that the true noise density is known to be

φ0,0.02. The results are summarized in the first two columns of Table 6. Finally, in the second
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part, we assume in the definition of the deconvolution estimator f̂n that the noise density is

Laplace distributed with variance 0.02, i.e. we misspecify the noise model where we assume

the same variance in order to keep the results comparable. Results for this case are given in

the two rightmost columns of Table 6. From a comparison of the results in Table 5 with those

in Table 6 we conclude that the bootstrap estimator for the confidence bands is reasonably

robust against misspecification of the noise model and also performs well for the exponentially

ill-posed case of Gaussian noise.

The robustness indicated in our simulations fits well with theoretical results of Meister (2004).

He analyzed the effect of misspecification of the error density in density deconvolution on the

asymptotic behaviour of the mean integrated squared error [MISE] and found that if the true

error density is normal, but misspecified as Laplace in the density estimator f̂n, the MISE

does still possess an upper bound. On the other hand, Meister (2004) shows that if the true

error density is Laplace, but misspecified as normal in the setup of f̂n, then the MISE diverges

to infinity. He therefore recommends to select the Laplace density to set up f̂n, if a choice

between a normal and a Laplace distributed error density has to be made.

5.5 Summary

From the simulation study we have found that both the asymptotic and the bootstrap con-

fidence band yield reasonable results if interactively post-processed bandwidths are used,

with some advantage for the bootstrap method, particularly for underlying densities of finite

smoothness. This is in accordance with Hall’s (1993) findings for the direct case. Moreover,

the bootstrap confidence bands seem to be reasonably robust against a misspecified noise

model, notably, if the deconvolution density leads to a severly ill-posed problem. In prac-

tical applications, if visual selection of the bandwidth is not possible or desirable to avoid

any subjectiveness of the estimate, the data-driven bandwidth selectior with bootstrap confi-

dence bands provides a sound method, which is rather insensitive to the precise choice of the

parameters γ, τ,N of the algorithm, and to the underlying densities f and ψ.

In conclusion, as it is well-known from indirect density estimation and regression, bandwidth

selection has to be done very carefully, and appears to be in general more difficult than in
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Figure 4
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Figure 4: Estimate f̂n and associated 90% nominal coverage probability asymptotic confidence

bands (solid lines) of the true densities f1 (l.h.s., dashed lines) and f2 (r.h.s., dashed lines)

from 500 and 5000 observations, respectively.
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the direct case.

6 Metallicity distribution of F and G dwarfs in the Solar

neighbourhood

The apparent lack of metal-poor G dwarfs relative to predictions from ”closed-box models”

of stellar formation (the so-called ”G dwarf problem”) is an interesting observation that has

to be explained by stellar formation theory. In this section we apply our method to a sample

of approximately 1900 stellar metallicities from the Geneva-Copenhagen survey of kinematic

properties, ages and metallicities of F and G dwarfs in the Solar neighbourhood (Nordström

et al., 2004).

Metallicities such as Z := [Fe/H], i.e. the log-based relative fraction of iron compared with

hydrogen, are a measure of the fraction of heavy elements in the star. Since the formation

of the universe stars have continuously enriched the interstellar gas, out of which stars form,

with metals. Stars of different age thus contain different amounts of metals, which makes the

latter quantity of significant interest to understand the formation history of the Milky Way

and to test models of stellar formation (Pagel, 1997).

It is not possible to measure stellar metallicities in situ. Instead, they can be derived from

observations of the brightness of a star in certain spectral bands using calibrations, which are

rather difficult to determine (e.g. Schuster and Nissen, 1989; Edvardson et al., 1993; Chen

et al., 2000). We assume that the error made in this conversion is to a reasonable extend

of stochastic nature, as indicated e.g. by Fig. 8 in Nordström et al. (2004), and can be

estimated from the dispersions σ between the metallicities derived for the same star from

different calibrations. For our data typical values are σ ≈ 0.1 (Nordström et al., 2004), which

is the value we use below. We assume further that the observed metallicities X1, . . . ,Xn may

be modelled as

X = [Fe/H] +W,

where the noise W is distributed according to a centered Laplace distribution with variance

σ2, and [Fe/H] is stochastically independent of W . A standard assumption in astronomy
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Figure 5
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Figure 5: Estimates and associated 90% nominal coverage probability bootstrap confidence

bands of the metallicity density of F and G dwarfs in the solar neighbourhood. Left figure:

estimate and confidence bands for f̂n based on Laplace distributed noise with variance 0.12

(solid lines and shaded area), and estimate and confidence bands for f̂n based on normal noise

with variance 0.12 (dashed lines). Right figure: estimates and associated confidence bands for

f̂n based on Laplace distributed noise with variance 0.082 (dashed lines), 0.12 (solid lines) and

0.122 (lines with dots), respectively. Note that the confidence bands in the case of variance

0.122 nearly coincide with those for variance 0.12.
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would also be that the noise follows a Gaussian law. However, in general, the distribution

of the noise is not known very well, and as we have seen in section 5 both a Laplace and a

Gaussian density with a certain variance lead to similar results. In accordance with these

results, and with the recommendations of Meister (2004) we use a Laplace density to set up the

density estimator f̂n. However, to facilitate a further comparison of this approach, the figure

also shows confidence bands for the estimator f̂n based on a normal noise assumption with

the same variance σ2 = 0.12 as used in the case of Laplace distributed noise. Moreover, since

the variance of the noise is known only approximately, we have also determined confidence

bands for f̂n for a Laplace distributed noise with variance 0.082 and 0.122, respectively. We

note that in all these computations we followed the procedure described in section 5 to select

the bandwidth.

Fig. 5 presents the estimators f̂n of the density of [Fe/H] and the associated confidence bands

with nominal coverage probility 90% from 500 bootstrap replications for the different setups

of the density estimator f̂n. From the figure we conclude that neither the misspecification

considered for the error density in the setup of f̂n, nor a reasonable amount of misspecification

of the noise variance do change the result strongly.

A comparison of our results with Fig. 7 in Sommer-Larsen (1991) confirms the ”G dwarf

problem” in ”closed-box models” models of stellar formation, i.e. they predict significantly

too many F- and G-dwarfs of low metallicity ([Fe/H] ≤ −0.6). However, a comparison with

Figs. 16 and 17 in Jørgensen (2000) shows that the theoretical infall models of Lynden-Bell

(1975) and Pagel and Tautvaisiene (1995) reproduce the F and G dwarf metallicity distribution

approximately within the confidence bands, which gives further evidence to these models.
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Appendix

Proof of Theorem 1. Following Bickel and Rosenblatt (1973), we will prove Theorem 1 by approxi-

mating Y (j)
n by a Gaussian process which does not depend on the density f , and then apply a result for

the distribution of the supremum of a Gaussian process. Some steps of the proof are similar to those

in Piterbarg and Penskaya (1993), who use the method of Bickel and Rosenblatt to determine the

asymptotic distribution of the integrated squared error. However, in order to obtain the asymptotic

distribution of supremum-type statistics, finer approximations are required (cf. Lemmas 4 and 5).

To keep the proof more transparent we have split it into several lemmas. Let G denote the distribution

function of the Xi. W.l.o.g. we can assume that Xi = G−1Ui, where the Ui are i.i.d. uniform on [0, 1],

and G−1(q) = inf{t ∈ R : G(t) ≥ q}. Let Gn be the empirical distribution function of X1, . . . , Xn,

and let αGn (t) =
√
n
(
Gn(t)−G(t)

)
be the empirical process. From Komlós et al. (1975) we can assume

that there exist Brownian bridges Bn such that

sup
t∈R

|αGn (t) −Bn(G(t))| = OP

(
log(n)/

√
n
)
.

Further Bn(t) = Wn(t) − tWn(1), where Wn are Wiener processes. Partial integration and the fact

that K(j)
n (x) → 0, |x| → ∞ gives

Y (j)
n (t) =

hβ−1/2

g(t)1/2

∫
R

K(j)
n

( t− x

h

)
dαGn (x)

=
hβ−3/2

g(t)1/2

∫
R

K(j+1)
n

( t− x

h

)
αGn (x) dx t ∈ [0, 1]. (19)

As approximations to the process Y (j)
n we consider the processes

Y
(j)
n,0 (t) =

hβ−1/2

g(t)1/2

∫
R

K(j)
n

( t− x

h

)
dBn(G(x))

and

Y
(j)
n,1 (t) =

hβ−1/2

g(t)1/2

∫
R

K(j)
n

( t− x

h

)
dWn(G(x)).

From the partial integration formula for stochastic integrals (c.f. Øksendal, 1998, p.46) one obtains

expressions for Y (j)
n,0 (t) and Y (j)

n,1 (t) which are analogous to (19).

Lemma 4. Under Assumptions 1, 2 A. and 3 A.,

‖Y (j)
n − Y

(j)
n,0‖[0,1] = OP

(
h−1/2n−1/2 log(n)

)
.

Proof. Using (19) and its analogue for Y (j)
n,0 , for t ∈ [0, 1] we get

|Y (j)
n (t) − Y

(j)
n,0 (t)| ≤ hβ−3/2

g(t)1/2
‖αGn −Bn(G)‖R

∫
R

∣∣K(j+1)
n

( t− x

h

)∣∣ dx
Substituting u = (t− x)/h and using Assumptions 2 A. and 3 A., we obtain the result.
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Lemma 5. Under Assumptions 1 and 3,

‖Y (j)
n,0 − Y

(j)
n,1‖[0,1] = OP

(
hβ+j+1/2

)
.

Proof. We have

|Y (j)
n,0 (t) − Y

(j)
n,1 (t)| =

hβ−1/2

g(t)1/2
|Wn(1)|

∣∣∣
∫

R

K(j)
n

( t− x

h

)
g(x) dx

∣∣∣
From Parseval’s formula, we get

∣∣∣
∫

R

K(j)
n

( t− x

h

)
g(x) dx

∣∣∣ =
∣∣∣ 1
2π

∫
R

h exp(iut)(ihu)j
φk(−hu)
Φψ(−u)

Φψ(u)Φf (u) du
∣∣∣

≤ 1
2π
hj+1

∫
R

∣∣∣Φf (t)
∣∣∣ dt.

Next let W be a two-sided Wiener process on R, and consider the processes

Y
(j)
n,2 (t) =

hβ−1/2

g(t)1/2

∫
R

K(j)
n

( t− x

h

)
g(x)1/2 dW (x)

and

Y
(j)
n,3 (t) = h−1/2

∫
R

K(j)
( t− x

h

)
dW (x),

where K(j) is given in (8). Notice that the process Y (j)
n,2 has the same finite-dimensional distributions

as Y (j)
n,1 . Moreover, from a partial integration,

Y
(j)
n,2 (t) =

hβ−1/2

g(t)1/2

∫
R

(
K(j+1)
n (u) g(t− hu)1/2 + hK(j)

n (u)
g′(t− hu)
g1/2(t− hu)

)
W (t− hu) du. (20)

Lemma 6. Under Assumptions 1 - 3 with δ as in Assumption 2 B.,

‖Y (j)
n,2 − Y

(j)
n,3‖[0,1] = OP

(
hmin(1/2,δ)

)
.

Proof. From (20) and a corresponding formula for Yn,3 we get

|Y (j)
n,2 (t) − Y

(j)
n,3 (t)| ≤ h1/2

g(t)1/2

∣∣∣
∫

R

hβK(j)
n (u)

g′(t− hu)
g1/2(t− hu)

W (t− hu) du
∣∣∣

+
h−1/2

g(t)1/2

∣∣∣
∫

R

g(t− hu)1/2
(
hβK(j+1)

n (u) −K(j+1)(u)
)
W (t− hu) du

∣∣∣
+h−1/2

∣∣∣
∫

R

(g(t− hu)1/2

g(t)1/2
− 1

)
K(j+1)(u)W (t− hu) du

∣∣∣
The claim follows from Assumptions 2 - 3 and the law of the iterated logarithm for the Wiener process

(c.f. Karatzas and Shreve, 1991, p. 112).

The proof of Theorem 1 now follows from Lemmas 4 - 6 and an application of Theorem A1 in Bickel

and Rosenblatt (1973) to the process Y (j)
n,3 .
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Proof of Corollary 2. Consider the processes

Y
(j)
n,4 (t) =

n1/2hβ+1/2

g̃n(t)1/2
(
f̂ (j)
n (t) − Ef̂ (j)

n (t)
)
, Y

(j)
n,5 (t) =

n1/2hβ+1/2

g̃n(t)1/2
(
f̂ (j)
n (t) − f (j)(t)

)
.

From Theorem 1, ‖Y (j)
n ‖[0,1] = OP

(
log(1/h)

)
. Since

Y (j)
n (t) − Y

(j)
n,4 (t) =

g̃
1/2
n (t) − g1/2(t)

g̃
1/2
n (t)

Y (j)
n (t),

we conclude that ‖Y (j)
n − Y

(j)
n,4‖[0,1] = oP

(
(log(1/h))−1/2

)
. Furthermore, from (10), uniformly for

t ∈ [0, 1],

|Y (j)
n,4 (t) − Y

(j)
n,5 (t)| =

n1/2hβ+j+1/2

|g̃n(t)1/2|
∣∣Ef̂ (j)

n (t) − f (j)(t)
∣∣ = OP

(
n1/2hβ+r−1/2

)
.

Therefore the conclusion of Theorem 1 also remains valid for the process Y (j)
n,5 , and (12) follows from

rearranging the terms.

Proof of Theorem 3. We start by recalling an approximation to the bootstrap empirical process due

to Shorack (1982). Let U∗
1 , U

∗
2 , . . . be i.i.d. uniform on [0, 1], and let B∗

n, n ≥ 1, be Brownian bridges,

where both the U∗
i and the B∗

n are independent of the Xi, such that

‖α∗
n −B∗

n‖[0,1] = OP∗
(
log(n)/

√
n
)

a.s., (21)

where α∗
n is the empirical process of the U∗

i , and a.s. is with respect to the observations Xi. In the

bootstrap procedure, w.l.o.g. we can assume that X∗
i = G−1

n U∗
i , i = 1, . . . , n. Let G∗

n be the empirical

distribution function of the X∗
i , i = 1, . . . , n, and let αGn

n (t) =
√
n
(
G∗
n(t) − Gn(t)

)
be the bootstrap

empirical process. Since αGn
n (t) = α∗

n

(
Gn(t)

)
, it follows from (21) that

‖αGn
n −B∗

n(Gn)‖R = OP∗
(
log(n)/

√
n
)

a.s.. (22)

Since Brownian bridge is Hölder continuous a.s. with every exponent 0 < α < 1/2, we have

∣∣B∗
n(Gn(x)) −B∗

n(G(x))
∣∣ ≤ Cα,n|Gn(x) −G(x)|α a.s., x ∈ R, (23)

for a sequence of random variables Cα,n the conditional distribution of which does not depend on n.

Furthermore from Csörgö and Révész (1981, p. 156),

‖Gn −G‖R = O
(
(log log+(n)/n)1/2

)
a.s. (24)
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Using (22), (23) and (24) we compute that for fixed 0 < α < 1/2,

‖αGn
n −B∗

n(G)‖R = ‖α∗
n(Gn) −B∗

n(G)‖R

≤ ‖α∗
n −B∗

n‖[0,1] + ‖B∗
n(Gn) −B∗

n(G)‖R

≤ OP∗
(
logn/

√
n
)

+ |Cα,n|‖Gn −G‖α
R

≤ OP∗
(
logn/

√
n
)

+OP∗(1)O
(
(log log+ n/n)α/2

)

= OP∗
(
log(n)/nα/2

)
a.s. (25)

Now consider the process

Y
∗(j)
n,0 (t) =

hβ−3/2

g(t)1/2

∫
R

K(j+1)
n

( t− x

h

)
B∗
n(G(x)) dx, t ∈ [0, 1].

Using (25), the following lemma is proved with the same arguments as Lemma 4 and Corollary 2.

Lemma 7. Under the assumptions of Theorem 3, we have that

‖Y ∗(j)
n − Y

∗(j)
n,0 ‖[0,1] = oP (c−1

n ) a.s.

Lemma 7 implies that

d
(
L∗(cn‖Y ∗(j)

n ‖[0,1]

)
,L∗(cn‖Y ∗(j)

n,0 ‖[0,1]

)) → 0 a.s.,

and Lemma 4 that

d
(
L(
cn‖Y (j)

n ‖[0,1]

)
,L(

cn‖Y (j)
n,0‖[0,1]

) → 0.

But L(
cn‖Y (j)

n,0‖[0,1]

)
and L∗(cn‖Y ∗(j)

n,0 ‖[0,1]

))
coincide a.s. An application of the triangle inequality

finishes the proof of (18). The final conclusion follows directly from Theorem 1.
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