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Abstract

We provide the details for the results stated in our contribution to the discussion of
“Large covariance estimation by thresholding principal orthogonal complements” by Fan,
Liao and Mincheva (2013). In particular, we present the rates for estimating the covariance
matrix as well as the lagged covariance matrix in high-dimensional, approximate factor
models when using a. the empirical covariance matrix, b. an estimate based on the
observed factors, c. an estimate based on estimated factors. Further, we provide some
simulations results and describe the simulation setting in detail.

The recent discussion paper by Fan, Liao and Mincheva (2013) (FLM in the following) on “
Large covariance estimation by thresholding principal orthogonal complements” in Series B
provides important results on estimating the factor structure in high-dimensional, approxi-
mate factor models, and its implications for estimating the underlying covariance matrix.
Here we consider implications for the time series structure of the observed series (yt), specifi-
cally its lagged covariance matrix, and convergence in the ‖·‖MAX-norm, defined by ‖A‖MAX =
maxi,j |ai,j |.

Let us briefly recall the notation and some assumptions from FLM. Consider a K-factor model

yt = Bf t + ut, (1)

where yt is a vector of p observations at time t ∈ {1, . . . , T}, B = (b1, . . . , bp)
T is a p ×K

matrix of factor loadings (bi ∈ RK , i ∈ {1, . . . , p}), f t is a K × 1 vector of common factors at
time t and ut is a p× 1 vector of error terms at time t. For simplicity, we assume the means
to be removed (E(yit) = E(fjt) = 0).
If f t and ut are uncorrelated, we have

Σ := cov(yt) = Bcov(f t)B
′ + cov(ut). (2)

The following assumptions are imposed in (see Fan et al., 2011a,b).

Assumption 1. {f t,ut}t≥1 is a strictly stationary process with E(fjt, uit) = 0 for all i =
1, . . . , p, j = 1, . . . ,K and t = 1, . . . , T .
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Assumption 2. For {ut}t≥1 we have E(uit) = 0 for all i = 1, . . . , p. There exists a
constant c1 > 0 such that for the minimum eigenvalue of the covariance matrix we have
c1 < λmin(cov(ut)).
In addition, there are constants r1, b1 > 0 such that for all s > 0

P (|uit| > s) ≤ exp
(
− (

s

b1
)r1
)
, i = 1, . . . , p.

Assumption 3. There exist r2, b2 > 0 such that for all s > 0

P (|fjt| > s) ≤ exp
(
− (

s

b2
)r2
)
, j = 1, . . . ,K.

We denote by α(T ) the mixing coefficient

α(T ) = sup
A∈F0

−∞, B∈F∞T
|P (A)P (B)− P (AB)|,

where F0
−∞ = σ{(f t,ut) : t ≤ 0} and F∞T = σ{(f t,ut) : t ≥ T}.

Assumption 4. There exist C, r3 > 0 with 3r−11 + 1.5r−12 + r−13 > 0 such that

α(T ) ≤ exp(−CT r3)

for all T ∈ Z+.

Assumption 5. As p→∞ we have

0 < λmin(p−1BTB) ≤ λmax(p−1BTB) <∞.

Assumption 6. We have max1≤i≤p ‖bi‖ = O(1). In addition, there is a constant M > 0
satisfying

E
(
p−

1
2 (u′sut − E(u′sut))

)4
< M and

E‖p−
1
2

p∑
i=1

biuit‖4 < M.

Assumption 7. The number of common factors K is fixed whereas p and T diverge to ∞
satisfying T = o(p2) and log(p) = o(T γ/6) where γ−1 = 3r−11 + 1.5r−12 + r−13 + 1.

Estimating the covariance matrix

First let us consider estimation of Σ in (2).
¿From Assumptions 1 - 4, FLM obtain the following results

max
1≤i,j≤K

| 1
T

T∑
t=1

fitfjt − E(fi1fj1)| = OP (T−
1
2 ) (3)

max
1≤i,j≤p

| 1
T

T∑
t=1

uitujt − E(ui1uj1)| = OP (
√

log p/T ) (4)

max
1≤i≤K,1≤j≤p

| 1
T

T∑
t=1

fitujt| = OP (
√

log p/T ). (5)
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Now, utilizing a known factor structure, Fan et al. (2011a, Theorem 3.2) obtain the rate
OP
(√

(log p)/T
)

for estimating Σ in ‖ · ‖MAX. Further, in case of an unobserved factor
structure, FLM obtain for an estimate of Σ based on estimated factors the rate OP

(
1/
√
p+√

(log p)/T
)
.

Consider now the empirical covariance matrix. Writing

1

T

T∑
t=1

yty
′
t − Σ = B

1

T

T∑
t=1

(
f tf

′
t − cov(f t)

)
B′ +

1

T

T∑
t=1

(
utu

′
t − cov(ut)

)
+ B

1

T

T∑
t=1

(
f tu

′
t

)
+

1

T

T∑
t=1

(
utf

′
t

)
B′

Use (3) - (5) and assumption 6 to obtain the rate OP
(√

(log p)/T
)
.

Thus, there is no theoretical gain in using the factor structure from these rates. For finite
sample results, see Figure 3 below.

Estimating the lagged covariance

Next, we investigate estimation of cov(yt,yt+h) = Eyty
′
t+h.

For distinction, assume that the errors (ut) are known to be serially uncorrelated:

cov(yt,yt+h) = 0, h 6= 0.

In extension of (3) - (5), we have that for 0 < α < 1, under the above assumptions

max
1≤h≤Tα

max
1≤i,j≤K

| 1
T

T−h∑
t=1

fit fj(t+h) − E(fi1fj(1+h))| = OP (T−
1
2 )

max
1≤h≤Tα

max
1≤i,j≤p

| 1
T

T−h∑
t=1

uit ujt − E(ui1uj1)| = OP (
√

log p/T )

max
1≤h≤Tα

max
1≤i≤K,1≤j≤p

| 1
T

T−h∑
t=1

fit uj(t+h)| = OP (
√

log p/T ).

max
1≤h≤Tα

max
1≤i≤K,1≤j≤p

| 1
T

T−h∑
t=1

fi(t+h) uj | = OP (
√

log p/T ).

Now, for the sample auto-covariance matrix, we have that

1

T

T−h∑
t=1

yty
′
t+h − cov(y1,y1+h) = B

1

T

T−h∑
t=1

(
f tf

′
t+h − cov(f t,f t+h)

)
B′ +

1

T

T−h∑
t=1

(
utu

′
t+h

)
+ B

1

T

T−h∑
t=1

(
f tu

′
t+h

)
+

1

T

T−h∑
t=1

(
utf

′
t+h

)
B′

− h

T
Bcov(f t,f t+h)B′.
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and therefore we obtain the rate OP
(√

(log p)/T + h
T

∥∥cov(f t,f t+h)
∥∥
MAX

)
.

With known factor structure, we have that

B̂
1

T

T−h∑
t=1

(
f tf

′
t+h

)
B̂
′ −Bcov(f1,f1+h)B′

=B̂
1

T

T−h∑
t=1

(
f tf

′
t+h − cov(f t,f t+h)

)
B̂
′
+
(
B̂ −B

)
cov(f t,f t+h)

)
B̂
′

+ B cov(f t,f t+h)
)(
B̂
′ −B′

)
− h

T
Bcov(f t,f t+h)B′,

where B̂ is a least-squares estimate of B. Now, Fan, Liao and Mincheva (2011) show that

max
1≤i≤K

‖b̂i − bi‖ = OP
(√

(log p)/T
)
,

and therefore in summary we again obtain the rate OP
(√

1/T + h
T

∥∥cov(f t,f t+h)
∥∥
MAX

)
.

Finally using a factor structure with unknown factors, we employ the estimate given at entry
1 ≤ i, j ≤ p by

1

T

T−h∑
t=1

(
b̂
′
if̂ tf̂

′
t+hb̂j

)
,

where b̂
′
if̂ t is as in FLM. Indeed, difference

1

T

T−h∑
t=1

(
b̂
′
if̂ tf̂

′
t+hb̂j

)
− b′icov(f1,f1+h)bj

=
1

T

T−h∑
t=1

(
b̂
′
if̂ tf̂

′
t+hb̂j − b′if tf

′
t+hbj

)
+

1

T
b′i

T−h∑
t=1

(
f tf

′
t+h − cov(f1,f1+h)

)
bj

+ h/T b′icov(f1,f1+h)bj .

For the first term,∣∣∣ 1

T

T−h∑
t=1

(
b̂
′
if̂ tf̂

′
t+hb̂j − b′if tf

′
t+hbj

)∣∣∣
≤ 1

T

T−h∑
t=1

∣∣b̂′if̂ t − b′if t
∣∣‖f̂ t+h‖‖b̂j‖+ ‖bi‖‖f t‖

∣∣f̂ ′t+hb̂j − f ′t+hbj
∣∣.

¿From Corollary 1 in FLM and

max
1≤j≤p

(
‖b̂j‖+ ‖bj‖

)
= OP (1), max

1≤t≤T

(
‖f̂ t‖+ ‖f t‖

)
= OP ((log T )1/r2)

we get the rate OP
(
(log T )2/r2

√
(log p)/T + (log T )1/r2T 1/4/

√
p
)

for this term, and totally a
rate of

OP
(
(log T )2/r2

√
(log p)/T + (log T )1/r2T 1/4/

√
p +

h

T

∥∥cov(f t,f t+h)
∥∥
MAX

)
.
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Summary
In terms of the rates of convergence given above, there is no particular gain in using the factor
structure. The simulations show that there is some finite-sample gain, in particular for larger
values of p.
Further issues that would be of some interest are evulation in distinct norms, estimation of
the cross-correlation matrix as well as the long-range autocovariance matrix.

Simulations.

Our simulations are similar to those in Fan et al. (2008, 2011a)). Specifically, we simulate an
approximate factor model with K = 3 and T = 500 fixed and dimension p growing from 20
to 600 with increment 20. For calibration we use the Fama-French three factor model (see
Fama and French, 1992). The data of 30 industry portfolios are available from http://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (15.11.2012) to fit
the three factor model for the observed factors and use the estimated factor loadings to
estimate mean µ̂b and covariance ˆcov(bi) as well as the standard deviation of the residuals σ̂i,
i = 1, . . . , p for simulating cov(ut).
We then simulate factor loadings from N (µ̂b, ˆcov(bi)), create a sparse positive definite matrix
cov(ut) using σ̂i and simulate error terms from N (0, cov(ut)).
In order to obtain more stringly dependent factors, we simulate from an AR(1) model f t =
Φf t−1 + εt with

Φ =

0.75 0.1 −0.03
0.05 0.8 −0.015
0.01 −0.05 0.6

 .

We then compose the observations yt by using the simulated components of the factor model
and obtain the lagged covariances Σ(h) := cov(yt,yt+h) = Bcov(f t,f t+h)B′. For estimation
of Σ(h) we use three different approaches:

(i) Σ̂sam(h): Using the simulated values of yt we calculate the sample autocovariance
according to

Σ̂sam(h) =
1

T

T−h∑
t=1

(yt − ȳ)(yt+h − ȳ)′,

ȳ =
1

T

T∑
t=1

yt.

(6)

(ii) Σ̂obs(h): We use the factor model with observed factors to estimate B by using the
least squares method and estimate ˆcov(f t,f t+h) by (6). Therefore we have Σ̂obs(h) =

B̂LS ˆcov(f t,f t+h)obsB̂
′
LS .

(iii) Σ̂(h): To apply the factor model with unobserved factors we use the POET package
(see Fan et al., 2011b) to estimate the factor loadings and the factors. We then apply

(6) to obtain Σ̂(h) = B̂ ˆcov(f t,f t+h)B̂
′
.

We repeat the simulation 500 times and plot the averages of the distance from Σ̂sam(h),
Σ̂obs(h) and Σ̂(h) to Σ(h) under the MAX-norm for h = 0, 1, 5, see Figures 1 - 3. There is
some finite-sample gain for higher-dimensional p when using the factor structure.
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Figure 1: Timelag h=1: 1(a) Averages of errors (max norm) over 500 simulations against p.
1(b) Averages of lagged covariance (max norm) over 500 simulations against p.
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Figure 2: Timelag h=5: 2(a) Averages of errors (max norm) over 500 simulations against p.
1(b) Averages of lagged covariance (max norm) over 500 simulations against p.
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Figure 3: Timelag h=0: 3(a) Averages of errors (max norm) over 500 simulations against p.
3(b) Averages of covariance (max norm) over 500 simulations against p.
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