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Abstract

Autoregressive models with switching regime form a popular and very flexible class of
non-linear time-series models, which have been widely applied in finance, econometrics,
engineering and other fields. In a first step, a basic yet hard problem is to test whether
a regime switch is actually present in the time series, and there still appears to be a
need for methods which are sufficiently straightforward to use, and still have good power
properties. In this paper we propose penalized quasi-likelihood based tests, which have a
simple, nuisance-parameter free limit distribution. Simulations show that the asymptotic
approximation is reasonably accurate already for moderate sample sizes, and that the
power properties compare favorably to those of ordinary quasi-likelihood ratio tests. We
apply our methods to the series of seasonally adjusted quarterly U.S. GNP data.
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1 Introduction

Autoregressive models with switching regime form a very flexible class of non-linear time-
series models, that behave locally linear but globally feature structural changes. Often, the
regime is taken as a finite-state Markov chain. Hence, a basic methodological issue is to
determine the number of states of the underlying regime, or in a first place to test for the
existence of at least two states. The asymptotic distribution of likelihood-ratio type tests is
quite involved, however, and depends both on the underlying parametric model as well as
on the true parameter values. Therefore, in this paper we introduce likelihood-based tests
with tractable, nuisance-parameter free asymptotic distributions and good power properties,
following the approaches by Chen, Chen and Kalbfleisch (2001) and Chen and Li (2009) for
i.i.d. mixtures.

Let us now give a formal definition of the model. An autoregressive process with Markov
regime, or Markov-switching autoregression, is a bivariate process (Sk, Xk)k, where (Sk)k is
an unobserved Markov chain on a finite state spaceM, and where (Xk)k is the observed time
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series, which are related as follows. Given (Sk)k, (Xk)k is an inhomogeneous p-order Markov
chain on a measurable space X , and for each t ≥ 0 the conditional distribution of Xt only
depends on St and the lagged X’s. We shall assume that (Sk)k is stationary and ergodic so
that its stationary distribution is uniquely defined. The hidden process (Sk)k is referred to
as regime.

Testing for regime switching corresponds to testing the null hypothesis M = {1} of a single
state (so that the model reduces to a mere autoregressive process) against the alternative
hypothesis M = {1, 2} of (at least) two states. Deriving the asymptotic distribution of
the LRT and related test statistics is a difficult task for a variety of reasons. First, under
the null hypothesis, parameters of the full model are not identified, and the asymptotic
distribution of the corresponding LRT will be highly non-standard. This problem already
arises in the closely related problem of testing for homogeneity in two-component mixtures,
which has been intensively studied in recent years, see Chen et al. (2001), Dacunha-Castelle
and Gassiat (1999) and Liu and Shao (2003). Second, additional difficulties arise if the
Markov dependence structure of the regime is incorporated in the test statistic. Indeed, even
for compact parameter spaces, Gassiat and Kerebin (2000) show that the LRT for regime
switching may not converge in distribution at all.

Therefore, Cho and White (2007) and Dannemann and Holzmann (2008) suggest quasi LRTs
which neglect the dependence structure of the regime in the construction of the test statistic.
Cho and White (2007) consider an ordinary (quasi) likelihood ratio test and obtain results
when testing for regime switching which are analogous to those in Chen et al. (2001) for the
LRT and in Chen and Chen (2003) for testing for homogeneity in finite mixtures. Dannemann
and Holzmann (2008) extend the test by Chen et al. (2004) for two against more states to
a Markov-dependent regime. In this paper we propose several modifications of ordinary
quasi LRTs in order to obtain a tractable asymptotic distribution, and maintain good power
properties.

In economics, regime switching models are used for business cycle analysis (Hamilton 1989)
and for further macroeconomic time series (e.g. Porter 1983 for investigating cartel behavior;
Davig 2004 for the U.S. debt-output ratio) and also to study financial time series (Hamilton
and Susmel 1994 for stock returns or Cai 1994 for treasury bills). In this paper we apply
our methods to the series of seasonally adjusted quarterly U.S. GNP data from 1947(1) to
2002(3). It turns out that there is a regime switch in the variance of the series, which is
however, exclusively due to the great moderation starting in 1984. When dividing into two
subseries, for the series from 1984(2)-2002(3) the AIC is in favor of a switching model, while
the BIC selects a simple AR(2)-model. Using the EM-test, we cannot reject the hypothesis
of no regime switch with bootstrap p-value of ≈ 0.1. Thus, there is no clear evidence of an
additional regime switch in the series, apart from that due to the great moderation.

The outline of the paper is as follows. In Section 2 we specify the model, give some examples,
and discuss consistency properties of penalized quasi maximum likelihood estimators. Section
3.1 has the asymptotic distributions of a penalized (or modified) quasi LRT. In Section 3.2 we
consider tests based on fixed proportions under the alternative as well as a variant called the
EM-test, introduced by Chen and Li (2009) for i.i.d. normal mixtures, and cover all relevant
models with single switching parameter including the switching intercept linear autoregressive
model with normal innovations. In Section 4 we report the results of a simulation study, and
in Section 5 we apply the methods to the series of U.S. quarterly GNP. The main steps of the
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proofs are given in Appendix A, further details are deferred to the supplementary material in
Appendix B (attached for reviewer information only, not intended for publication).

2 Model specification and estimation

2.1 Markov switching autoregressive models

We specify the model for a two-state chain, which can be written as

Xt = Fω(St, X
p
t−1; εt), (1)

where (εk)k≥0 is an independent and identically distributed sequence of random variables with
E(ε1) = 0 and E(ε21) = 1 that we shall call the innovation process, Xp

k = (Xk, . . . , Xk−p+1)
and (Fω)ω is a family of functions indexed by some finite-dimensional parameter ω. We
assume that ω consists of the entries a21, a12 of the transition matrix P = (aij)i,j=1,2, the
switching parameters ϑ1, ϑ2 ∈ Θ ⊂ Rr as well as the structural parameters η ∈H ⊂ Rd which
are the same for all states. The parameter sets Θ and H are assumed to be compact and
convex. Further, we shall restrict our attention to the case of a single switching parameter,
i.e. r = 1, so that

ωT =
(
a21, a12, ϑ1, ϑ2,η

T
)
.

Example 1 (Linear switching autoregression). 1. The linear switching autoregressive model
with switching intercept is given by

Xt = ζSt +

p∑
j=1

φjXt−j + σεt (2)

where σ is a scale parameter for the innovation distribution, the φj ’s are the (non-switching)
autoregressive parameters, and the intercept ζ switches according to St. Krolzig (1997) and
Hamilton (2008) give further motivation and discussion of the properties. For the innovations,
the normal distribution is a standard choice; another useful distribution is the t-distribution,
which allows for heavier tails which are often observed empirically. In the above notation, we
have ϑi = ζi, i = 1, 2. If σ is fixed, we have d = p and η = (φ1, . . . , φp)

T , otherwise, d = p+ 1
and η = (φ1, . . . , φp, σ)T .

2. The linear switching autoregressive model with one switching autoregressive parameter is
given by

Xt = ζ +

j0−1∑
j=1

φjXt−j + φj0,StXt−j0 +

p∑
j0+1

φjXt−j + σεt. (3)

where ζ is the non-switching intercept, φj , j = 1, . . . , j0 − 1, j0 + 1, . . . , p, are the (non-
switching) autoregressive parameters, σ is the scale parameter of the innovation process and
φj0,St switches according to St. In the above notation, we have d = p + 1, ϑi = φj0,i,
i = 1, 2 and η = (ζ, φ1, . . . , φj0−1, φj0+1, . . . , φp, σ)T . Model (3) includes a single switching
autoregressive coefficient Xt = φStXt−1 + σεt.

3. The linear switching autoregressive model with switching variance is given by

Xt = ζ +

p∑
j=1

φjXt−j + σStεt, (4)
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where σ is a scale parameter for the innovation distribution which switches according to St,
the intercept ζ and the φj ’s are the non-switching parameters. This is a very popular model
for time series of asset prices (see e.g. Piger 2009). In the above notation, we have d = p+ 1,
ϑi = σi, i = 1, 2, and η = (ζ, φ1, . . . , φp)

T .

Example 2 (Switching ARCH). Regime switching ARCH-models were introduced by Hamil-
ton and Susmel (1994) and by Cai (1994). The model specification by Cai (1994) when
neglecting leverage effects is

Xt = σtεt, σ2t = ϑSt +

p∑
j=1

φjX
2
t−j (5)

with parameters ϑi ≥ 0, i = 1, 2, and φj ≥ 0, j = 1, . . . , p. In the above notation, we
have d = p and η = (φ1, . . . , φp)

T . Again, we consider both normal as well as t-distributed
innovations.

2.2 Penalized maximum likelihood estimation

Likelihood-based methods play a prominent role for parameter estimation in switching au-
toregressive models. Suppose that conditional on Xp

k−1 = xpk−1 and Sk = i, Xk has density
g(xk|xpk−1;ϑi,η) w.r.t. some σ-finite measure µ on X . Then the conditional likelihood given
the initial observations Xp

0 = (X0, . . . , X−p+1) (we start indexing from −p + 1,−p + 2, . . .)
and the initial unobserved state S0 = i0 is given by

l̃n(ω) = log
( 2∑
i1=1

· · ·
2∑

in=1

n∏
k=1

aik−1,ik

n∏
k=1

g(Xk|Xp
k−1;ϑik ,η)

)
(6)

The maximizer ω̂ of l̃n(ω) is called the (conditional) maximum likelihood estimate. Its asymp-
totic properties, especially consistency as well as asymptotic normality are well-established
by now (cf. Douc et al. 2004).

As indicated in the introduction, instead of using the full-model log likelihood function l̃n(ω)
we shall base inference on a quasi likelihood which neglects the dependence structure in the
regime. Let ψT = (α, ϑ1, ϑ2,η

T ),

gmix(xt|xpt−1;ψ) = (1− α)g(xt|xpt−1;ϑ1,η) + αg(xt|xpt−1;ϑ2,η) (7)

and consider the quasi log-likelihood function given by

ln(ψ) =

n∑
t=1

log gmix(Xt|Xp
t−1;ψ). (8)

Note that (8) only is the true likelihood function if the regime is independent. Such models
are sometimes called mixture autoregressive models (cf. Wong and Li 2000). For the time
series model itself, an independent regime may not appear particularly attractive, but it can
nevertheless be used for constructing a feasible test for regime switching. For a Markov-
dependent regime, the parameter α in (7) corresponds to the stationary distribution of the
underlying transition matrix.
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Following Chen et al. (2001, 2004) and Chen and Li (2009), in order to obtain a feasible
asymptotic distribution we consider a penalized version of ln, called modified or penalized
quasi likelihood function, which is defined by

pln(α, ϑ1, ϑ2,η) = ln(α, ϑ1, ϑ2,η) + p(α), (9)

where p(α) is a penalty function fulfilling the following properties:

(i) p(α) attains its maximum at α = 0.5, (ii) p(α) is continuous on (0, 1), (iii) p(α) = p(1−α)
and (iv) p(α)→ −∞ for α→ 0.

We shall use
p(α) = log(1− |1− 2α|), (10)

for an extensive discussion for reasons for this choice and modifications see Li (2007).
Let (α̂, ϑ̂1, ϑ̂2, η̂) (resp. (α̂∗, ϑ̂∗1, ϑ̂

∗
2, η̂
∗)) be the maximizers of ln(α, ϑ1, ϑ2,η) (resp.

pln(α, ϑ1, ϑ2,η)) over the parameter space [0, 1] × Θ2 × H, and let (ϑ̂0, η̂0) be the maxi-
mizers of ln(1/2, ϑ, ϑ,η) or equivalently of pln(1/2, ϑ, ϑ,η) over the parameter space Θ×H.
We denote the true parameter under the null hypothesis of no regime switch by (ϑ0,η0). If
not otherwise specified, we compute the probabilities and expectations with respect to this
distribution.
We shall need the following assumptions, which are satisfied in the above models under
appropriate assumptions on the distribution of the innovations εt and the coefficients. See
the discussion below Theorem 2 for details.

Assumption 1. The process (Zk)k≥0 = (Sk, Xk, . . . , Xk−p+1)k≥0 is a Markov chain on
M × X p. Under the null hypothesis, the observable process (Xk)k is strictly stationary
and geometrically ergodic.

Assumption 2. (Identifiability) If for parametersψT = (α, ϑ1, ϑ2,η
T ) andψ′T = (α′, ϑ′1, ϑ

′
2,η
′T ),

α /∈ {0, 1}, one has that

gmix(x| yp;ψ) = gmix(x| yp;ψ′) for all x ∈ X , yp ∈ X p,

then η = η′ and after possibly permuting the states of the Markov chain (Sk)k we further
have that α = α′ and ϑi = ϑ′i, i = 1, 2.

Assumption 3. For all fixed x ∈ X , yp ∈ X p, g(x|yp; ·, ·) ∈ C(3)(Θ,H). Further, there exists
a nonnegative measurable function K : X p+1 → [0,∞) such that

EK(Xp+1
1 ) <∞ and | log(g(x1|xp0;ϑ,η))| ≤ K(xp+1

1 )

for all xp+1
1 ∈ X p+1 and all (ϑ,η) ∈ Θ×H.

Assumptions 2 and 3 are Wald-type conditions, needed for consistency. The next assumption
concerns the expressions in the score. For η = (η1, . . . , ηd)

T ∈H and ϑ ∈ Θ we set

Yi(ϑ,η) =
∂
∂ϑg(Xi|Xp

i−1;ϑ,η)

g(Xi|Xp
i−1;ϑ0,η0)

, Zi(ϑ) =
∂

∂ϑ
Yi(ϑ), Vi,j(ϑ,η) =

∂

∂ηj
Yi(ϑ,η)

Ui,j(η) =

∂
∂ηj

g(Xi|Xp
i−1;ϑ0,η)

g(Xi|Xp
i−1;ϑ0,η0)

, Wi,j,k(η) =
∂

∂ηk
Ui,j(η), j, k = 1, . . . , d.

(11)
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We require that these derivatives are uniformly bounded by an integrable function. This
assumption implies tightness of relevant processes related to the score, which is required in
the asymptotic analysis. For ease of notation, we set

Yi = Yi(ϑ0,η0), Zi = Zi(ϑ0), Ui,j = Ui,j(η0), j = 1, . . . , d. (12)

Assumption 4. There exists a nonnegative function K̃ : X p+1 → [0,∞) such that EK̃(Xp+1
1 ) <

∞ and such that for all η ∈H, ϑ ∈ Θ,

|Y1(ϑ,η)|3 ≤ K̃(Xp+1
1 ), |Z1(ϑ)|3 ≤ K̃(Xp+1

1 ), |U1,j(η)|3 ≤ K̃(Xp+1
1 ),

|Vi,j(ϑ,η)|2 ≤ K̃(Xp+1
1 ), |Wi,j,k(η)|2 ≤ K̃(Xp+1

1 ), |∂/∂ϑZi(ϑ)|2 ≤ K̃(Xp+1
1 ).

for j, k = 1, . . . , d.

Theorem 1. Suppose that Assumptions 1 – 4 are satisfied. In case of a single state (i.e. no
regime switch), we have that

(i) ϑ̂0 − ϑ0 = oP (1), η̂0 − η0 = oP (1) and

(ii) ϑ̂∗1 − ϑ0 = oP (1), ϑ̂∗2 − ϑ0 = oP (1), η̂∗ − η0 = oP (1).

Thus, under the hypothesis of no regime switch, both estimators ϑ̂∗i are consistent for ϑ0.
This is due to the penalty term p(α) in (9): The estimator α̂∗ is forced away from 0 and 1,
so that both ϑ̂∗i need to be consistent. This is not true for the quasi MLEs ϑ̂i.

3 Feasible quasi-likelihood based tests for regime switching

3.1 The modified quasi-likelihood ratio test

If (1 − α, α) denotes the stationary distribution of (Sk)k, then the hypothesis of no regime
switch is equivalent to

H0 : α(1− α)(ϑ1 − ϑ2) = 0.

We propose to test H0 via the modified quasi likelihood ratio test (MQLRT) statistic

Mn = 2{pln(α̂∗, ϑ̂∗1, ϑ̂
∗
2, η̂
∗)− pln(1/2, ϑ̂0, ϑ̂0, η̂0)}. (13)

For the asymptotic distribution of Mn, we shall additionally require

Assumption 5. The covariance matrix of (U1,1, . . . , U1,d, Y1, Z1) (see (12) for the definition)
is positive definite.

Assumption 5 does not hold true in model (2) when the innovations are normal, see the
discussion of Examples 1 and 2 below. We shall derive the asymptotic distribution of a
closely related test statistic in this model in Theorem 4.

Theorem 2. Under the null hypothesis H0 of no regime switching, if Assumptions 1 – 5 are
satisfied we have that

Mn
d→ 1

2
χ2
0 +

1

2
χ2
1,

where χ2
p denotes the χ2-distribution with p > 0 degrees of freedom, χ2

0 is the point mass at

0, and
d→ denotes convergence in distribution.
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As desired, the asymptotic distribution of Mn is easy to handle and does not depend on the
underlying parametric model, the actual true parameter values or the choice of the compact
set Θ (as long as it contains the true value). This is in contrast to the asymptotic distribution
of a quasi likelihood ratio test (QLRT, without penalization) of H0 based on (8).

Examples 1 and 2 (continued). First consider the identifiability Assumptions 2 and 5.
Suppose that the innovations εt are real-valued with continuous density f > 0 w.r.t. Lebesgue
measure, and let f(x;µ, σ) = f

(
(x− µ)/σ

)
/σ denote the corresponding location-scale family.

First consider models (4) and (5).

Lemma 1. a. If the parameter (α, µ, σ1, σ2) in a two-component scale mixture (1−α)f(x;µ, σ1)+
αf(x;µ, σ2) is identified (except for label switching), then Assumption 2 is satisfied for the
models (4) and (5).
b. Suppose that for any (µ, σ) and a1, a2, a3 ∈ R,

a1
∂f(x;µ, σ)

∂µ
+ a2

∂f(x;µ, σ)

∂σ
+ a3

∂2f(x;µ, σ)

∂2σ
= 0 for Lebesgue-a.e. x (14)

implies that a1 = a2 = a3 = 0. Then Assumption 5 is satisfied for the models (4) and (5).

See Appendix A for the proof. Since general finite mixtures of normal and t-distributions
(even with variable degrees of freedom) are identifiable (cf. Holzmann et al. 2006), Lemma 1
a. implies that Assumption 2 will be satisfied in these cases. As for b., we give the proof for
the normal distribution in Appendix A, for the t-distribution see Appendix B.
For models (2) and (3), we have the general result

Lemma 2. a. If the parameter (α, µ1, µ2, σ) in a two-component location mixture (1 −
α)f(x;µ1, σ) + αf(x;µ2, σ) is identified (except for label switching), then Assumption 2 is
satisfied for the models (2) and (3).
b. Suppose that for any (µ, σ) and a1, a2, a3 ∈ R,

a1
∂f(x;µ, σ)

∂µ
+ a2

∂2f(x;µ, σ)

∂2µ
+ a3

∂f(x;µ, σ)

∂σ
= 0 for Lebesgue-a.e. x (15)

implies that a1 = a2 = a3 = 0. Then Assumption 5 is satisfied for the models (2) and (3).

The proof is similar to that of the above lemma and omitted. In Appendix B we show that
(15) is indeed satisfied for the t-distribution.

However, for the normal distribution, since σ ∂
2f(x;µ,σ)
∂2µ

= ∂f(x;µ,σ)
∂σ holds condition (15) is

not fulfilled. Indeed, for model (2) with normal innovations the MQLRT for testing for
homogeneity does not admit the simple asymptotic distribution given in Theorem 2 in case
of a variable scale parameter (it does for fixed scale parameter). We shall propose a test and
derive its asymptotic distribution in Section 3.2.
For model (3) in case of normal innovations a direct argument shows that Assumption 5 is
still fulfilled, see Lemma 5 in Appendix A.

3.2 Fixed proportions and the EM-test

Instead of penalizing small values of α, a simple possibility is to consider a finite set of fixed
values J = {α1, . . . , αJ} for α under the alternative. If the set J is sufficiently large, this
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need not lead to a great loss of power. Specifically, let (ϑ̂1,αj , ϑ̂2,αj , η̂αj
) be the maximizer of

ln(α, ϑ1, ϑ2,η) subject to α = αj , and set

Rn(αj) = 2{ln(αj , ϑ̂1,αj , ϑ̂2,αj , η̂αj
)− ln(1/2, ϑ̂0, ϑ̂0, η̂0)}, αj ∈ J ,

Rn(J ) = max
αj∈J

Rn(αj).

Note that no penalty is required when testing against fixed proportions. In order to in-
crease the power, Chen and Li (2009) proposed to perform, starting from each α ∈ J , a
fixed finite number K of EM-steps, for which they require the penalized likelihood function

pln(α, ϑ1, ϑ2,η). This leads to the EM-test statistic EM
(K)
n = EM

(K)
n

(
J
)
. We give the

details for its computation in Appendix A. Let us point out that EM
(0)
n (J ) is simply the

penalized version of Rn(J )

Theorem 3. Under the assumptions of Theorem 2, if J ⊂ (0, 1) is a finite subset with
1/2 ∈ J , then

Rn(J )
d→ 1

2
χ2
0 +

1

2
χ2
1, EM (K)

n (J )
d→ 1

2
χ2
0 +

1

2
χ2
1. (16)

For the proof see Appendix A. Finally, we consider model (2) with normal innovations, i.e.

Xt = ζSt +

p∑
j=1

φjXt−j + σεt, εt
iid∼ N(0, 1). (17)

In case of independent mixtures, testing for homogeneity in such a model has been studied
in Chen and Chen (2003), Qin and Smith (2004) and Chen and Li (2009). For the MLRT,
Chen and Chen (2003) derive an asymptotic upper bound which is strengthened by Qin and
Smith (2004) to the 1

2χ
2
1 + 1

2χ
2
2 distribution. Qin and Smith (2004) even claim that this is the

asymptotic distribution of the MLRT, however, their argument that this bound is attained
seems to be incorrect, and the exact asymptotic distribution for the MLRT remains somewhat
unclear. We conjecture that it is the same as for Rn(J ) as specified below. An outline of
the proof of the following theorem, which is similar to the proof of theorem 2 in Chen and Li
(2009) is given in Appendix A.

Theorem 4. Suppose that (Xk)k follows a stationary AR(p) model with normal innovations.
When testing for regime switching as specified by (17), if for the finite set J ⊂ (0, 1) we
have a. 1/2 ∈ J and b. J contains a further element 6= 1/2, then for the test against fixed
proportions that for x ∈ R as n→∞,

P (Rn(J ) ≤ x)→ F (x)
(
1x>0 + F (x)

)
/2,

where F is the cdf of a χ2
1-variate, and for the EM-test that

P (EM (K)
n ≤ x) −→ F (x−∆)

(
1x>0 + F (x)

)
/2,

where
∆ = 2 max

αj 6=1/2
{p(αj)− p(1/2)}.
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4 Simulations

Here we present some of the results of an extensive simulation study of the tests proposed in
the two previous sections. We conducted the simulations with J = {0.1, 0.3, 0.5} for both Rn

and M
(K)
n . We only present results for normally distributed innovations, for the t-distribution

see Ketterer (2011).

4.1 Simulated levels

In this section we simulate the size of the MQLRT, the EM-test and the test for fixed pro-
portions in several settings.

a. Switching Autoregression with switching intercept.

Data-generating process (DGP): Xt = 0.5Xt−1 + εt, where εt
iid∼ N(0, 1).

Model : Xt = ζSt + φXt−1 + σεt with εt
iid∼ N(0, 1)

Note that Theorem 4 applies. The results for various sample sizes can be found in Table 1.
The tests are somewhat anticonservative for small sample sizes. Figure 1 shows the ecdf of

the EM-test statistic EM
(2)
n for sample sizes n = 200 as well as n = 1000.

b. Switching Autoregression with normally distributed innovations with switching scale.

DGP: Xt = 0.2Xt−1 + εt, where εt
iid∼ N(0, 1).

Model: Xt = ζ + φXt−1 + σStεt with εt
iid∼ N(0, 1).

The results for various sample sizes are contained in Table 2. The tests have almost identical
levels.

c. Switching Autoregression with normally distributed innovations with switching autoregres-
sive parameter.

DGP: Xt = 0.5Xt−1 + εt, where εt
iid∼ N(0, 1).

Model: Xt = ζ + φStXt−1 + σεt with εt
iid∼ N(0, 1).

The results for various sample sizes are contained in Table 3. The tests are somewhat con-
servative.

d. Switching ARCH

DGP: Xt = σtεt; σ
2
t = 1 + 0.5X2

t−1 + 0.3X2
t−2, where εt

iid∼ N(0, 1),

Model: Xt = σtεt; σ
2
t = ϑSt + φ1X

2
t−1 + φ2X

2
t−2 with εt

iid∼ N(0, 1).

The results are in Table 4, the tests are slightly conservative.

4.2 Power comparison of several tests

We present the results of a power comparison of the various tests. We shall restrict ourselves
to the linear autoregressive model with switching intercept and normal innovations, with
variable scale. Thus, as a model we maintain

Xt = ζSt + φXt−1 + σεt with εt
iid∼ N(0, 1). (18)

For proper estimation of the power we shall use simulated critical values. Precisely, for given
alternative, we simulate the critical value of the tests from the distribution (without regime
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switch) which is fitted to a large sample from the alternative by maximum likelihood, it is
(approximately) the closest approximation to the alternative in Kullback-Leibler distance.
Note the analogy to a corresponding bootstrap procedure.

As data generating process we maintain Xt = (−1)St + φXt−1 + εt, where εt
iid∼ N(0, 1), with

various values of φ, a12 and a21.

Effect of mixture proportion

First, we investigate the effect of the mixture proportion α on the various tests. We fix
φ = 0.5, and for distinct α choose a12 and a21 to generate an independent regime. Table
5 contains the results. As could be expected, for small α the QLRT and the test for fixed
proportions have higher power than the EM-test, which penalizes small α’s. For α close to
0.5, the EM-test has highest power.

Effect of dependent regime and autoregression

Next, we investigate the effect of a dependent regime. We consider various combinations of
a12, a21 which lead to α = 0.5. In Table 6 the results are displayed for underlying parameter
φ = 0, similar results were obtained for φ = 0.5. The tests have the highest power when the
Markov chain reduces to an i.i.d. sample, i.e. a12 = a21 = 0.5, for strongly dependent regime,
the power is much smaller. In contrast, if we drop the autoregressive parameter φ from the
model, i.e. when testing for homogeneity in a hidden Markov-model with state dependent
distributions P (Xt ≤ x|St = i) = Φ

(
(x− ζi)/σ

)
, i = 1, 2, Table 7 shows that there is no loss

of power for a dependent regime.

5 Application

In this section, we apply our methods to the series of quarterly, saisonally adjusted U.S.
GNP from 1947(1) to 2002(3). The data are Real U.S. Gross National Product in bil-
lions of chained 1996 dollars and can be obtained by the Federal Reserve Bank of St. Louis
(http://research.stlouisfed.org/). Instead of considering the data, say Yt, we consider the
growth rate Xt = ∇ log(Yt) = log(Yt)− log(Yt−1) (in %) which is plotted in Figure 2 (left).

As indicated by the acf and pacf (see Figure 2, (right)), the series shows autocorrelation.
Therefore, we model the data by various switching autoregressive models of orders p = 1, . . . , 4
with normal innovations. Here, M1 is the ordinary AR(p)-model, M2 allows all parameters
to switch, M3 has a switching scale parameter (model (4)) and M4 a switching intercept
(model (2)).
Using formal model selection criteria, see Table 8, one chooses modelM3 and p = 1 according
to BIC and M3 with p = 3 according to AIC. Here, we note, that the AIC and BIC are
computed by

AIC = −2l̃n(ω̂) + 2 · k(ω̂) and BIC = −2l̃n(ω̂) + log(n) · k(ω̂),

where l̃n(ω) is the log likelihood conditional on the first 4 observations and on state 1 and
k(ω̂) denotes the length of the vector ω̂.
Testing for homogeneity in model M3 via the MQLRT as in Theorem 3, we reject the hy-
pothesis of no regime switch for all orders p = 1, . . . , 4 with p-value < 0.01. However, the
resulting ML estimates in model M3 (see Table 9) for the hidden Markov chain are highly
persistent. Computing the most likely sequence of hidden states using the Viterbi algorithm
(see Viterbi, 1967) given the fitted model M3 (p = 1), we see that there is only one regime
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switch in the variance between 1984(1) and 1984(2). This result corresponds to the ’Great
Moderation’ of the U.S. GNP growth rate, i.e. the permanent decline in the (variability of
the) growth rate of U.S. GNP.
Therefore, we divide our series in two subseries: the first from 1947(1)–1984(1) and the second
1984(2)–2002(3), and fit the models M1, . . . ,M4 for lags p = 1, . . . , 4, to the two subseries.
For the series from 1947(1)–1984(1), the BIC (455.78) as well as the AIC (446.87) favor a sim-
ple AR(1)-model. Testing for switching intercept or switching scale, neither hypothesis can
be rejected by the corresponding EM or MQLR tests. For the subseries from 1984(2)–2002(3),
the BIC (119.8) selects a purely linear autoregressive model of order p = 2 whereas the AIC
selects a switching model of order p = 2 (model M2 has AIC=109.32, M4 AIC=109.66).
Therefore, we test for a switching intercept using the EM-test, for order p = 2. The asymp-

totic p-value of EM
(2)
n is 0.04, however, the simulation in Table 1 showed that the test based

on the asymptotic distribution is rather anticonservative. Thus, we use a parametric boot-
strap based on the fitted AR(2)-model to estimate the p-value, which yields 0.095. Thus,
there is no clear evidence in favor of regime switching.

Summarizing, apart from the change point at the beginning of the great moderation, which
results in a single switch to a less volatile state, there appears to be no clear evidence of
regime switching in the series or the subseries corresponding to the time before and after the
great moderation.
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7 Tables and Figures

Table 1: DGP: Xt = 0.5Xt−1 + εt, where εt
iid∼ N(0, 1), Model: Xt = ζSt + φXt−1 + σεt with

εt
iid∼ N(0, 1); number of replications: 20,000.

Sample Size Nominal Levels (%) EM
(0)
n EM

(1)
n EM

(2)
n Rn(J )

n = 200 10% 12.3 12.8 13.1 15.7
5% 6.7 7.1 7.3 8.4
1% 1.5 1.7 1.8 1.9

n = 500 10% 11.9 12.0 12.2 14.9
5% 6.1 6.2 6.4 8.0
1% 1.2 1.3 1.3 1.8

n = 1000 10% 10.8 10.9 11.0 13.8
5% 5.6 5.7 5.7 7.4
1% 1.2 1.2 1.3 1.6

Table 2: DGP: Xt = 0.2Xt−1 + εt, where εt
iid∼ N(0, 1), Model: Xt = ζ + φXt−1 + σStεt with

εt
iid∼ N(0, 1); number of replications: 20,000.

Sample Size Nominal Levels (%) EM
(0)
n EM

(1)
n EM

(2)
n MQLRT

n = 200 10% 11.0 11.1 11.1 11.4
5% 6.3 6.4 6.4 6.7
1% 1.9 1.9 2.0 2.1

n = 500 10% 9.6 9.7 9.7 9.8
5% 5.1 5.1 5.1 5.3
1% 1.1 1.1 1.1 1.2
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Table 3: DGP: Xt = 0.5Xt−1 + εt, where εt
iid∼ N(0, 1), Model: Xt = ζ + φStXt−1 + σεt with

εt
iid∼ N(0, 1); number of replications: 20,000.

Sample Size Nominal Levels (%) EM
(0)
n EM

(1)
n EM

(2)
n MQLRT

n = 200 10% 7.9 8.0 8.0 8.6
5% 4.2 4.2 4.2 4.8
1% 1.0 1.0 1.0 1.2

n = 500 10% 8.9 8.9 8.9 9.3
5% 4.8 4.8 4.8 5.3
1% 1.0 1.0 1.0 1.3

Table 4: DGP: Xt = σtεt; σ
2
t = 1 + 0.5X2

t−1 + 0.3X2
t−2, where εt

iid∼ N(0, 1), Model: Xt =

σtεt; σ
2
t = ϑSt + φ1X

2
t−1 + φ2X

2
t−2 with εt

iid∼ N(0, 1); number of replications: 20,000.

Sample Size Nominal Levels (%) EM
(0)
n EM

(1)
n EM

(2)
n MQLRT

n = 100 10% 8.0 8.0 8.1 8.4
5% 4.4 4.4 4.5 4.7
1% 0.9 0.9 0.9 1.1

n = 500 10% 8.8 8.8 8.8 9.1
5% 4.6 4.6 4.6 4.9
1% 1.1 1.1 1.1 1.1

Table 5: Nominal level: 5%; DGP: Xt = ζSt + φXt−1 + σεt, where εt
iid∼ N(0, 1), sample size:

500, number of replications: 5,000, Model: Xt = ζSt + φXt−1 + σεt, with εt
iid∼ N(0, 1).

a12 a21 α ζ1 ζ2 φ σ EM
(0)
n EM

(1)
n EM

(2)
n QLRT Rn(J )

0.1 0.9 0.1 −1 1 0.5 1 77.4 77.5 77.5 84.1 86.1
0.3 0.7 0.3 −1 1 0.5 1 92.8 93.0 93.1 91.3 92.9
0.4 0.6 0.4 −1 1 0.5 1 88.9 89.1 89.2 85.9 85.6
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Table 6: Nominal level: 5%; DGP: Xt = (−1)Stζ + εt, where εt
iid∼ N(0, 1), sample size:

500, number of replications: 5,000, Model: Xt = ζSt + φXt−1 + σεt, with εt
iid∼ N(0, 1). Let

α = a12/(a12 +a21) and (1−α, α) be the stationary distribution of the hidden Markov Chain
(Sk)k.

a12 a21 α ζ EM
(0)
n EM

(1)
n EM

(2)
n QLRT Rn(J )

0.1 0.1 0.5 1.0 12.9 12.9 12.9 10.0 10.7
0.2 0.2 0.5 1.0 34.3 34.4 34.4 26.0 28.1
0.3 0.3 0.5 1.0 65.4 65.5 65.3 54.4 56.8
0.5 0.5 0.5 1.0 88.1 88.3 88.4 81.9 82.8
0.7 0.7 0.5 1.0 63.9 63.8 64.0 52.7 54.7
0.8 0.8 0.5 1.0 30.2 30.2 30.4 21.3 24.2
0.9 0.9 0.5 1.0 9.3 9.3 9.4 6.4 7.2

Table 7: Nominal level: 5%; DGP: Xt = (−1)Stζ + εt, where εt
iid∼ N(0, 1), sample size:

500, number of replications: 5,000, Model: Xt = ζSt + σεt, with εt
iid∼ N(0, 1). Let α =

a12/(a12 + a21) and (1 − α, α) be the stationary distribution of the hidden Markov Chain
(Sk)k.

a12 a21 α ζ EM
(0)
n EM

(1)
n EM

(2)
n

0.1 0.1 0.5 1.0 87.6 87.6 87.6
0.2 0.2 0.5 1.0 88.0 88.0 88.0
0.3 0.3 0.5 1.0 89.3 89.3 89.3
0.5 0.5 0.5 1.0 89.5 89.5 89.5
0.7 0.7 0.5 1.0 88.6 88.6 88.6
0.8 0.8 0.5 1.0 89.5 89.5 89.5
0.9 0.9 0.5 1.0 89.0 89.0 89.0

Table 8: BIC (left) and AIC (right) for the corresponding models for series 1947(1)–2002(3).
BIC M1 M2 M3 M4

p = 1 615.05 602.91 592.56 622.51
p = 2 618.86 607.16 593.71 626.57
p = 3 621.54 615.63 597.01 628.85
p = 4 623.91 623.73 600.71 632.39

AIC M1 M2 M3 M4

p = 1 604.90 575.83 572.25 602.21
p = 2 605.32 573.32 570.02 602.88
p = 3 604.62 575.01 569.94 601.77
p = 4 603.60 576.35 570.25 601.93

Table 9: Fits for modelM3 (only the variance is allowed to switch, using maximum likelihood
estimation) 1947(1)–2002(3).

â12 â21 ζ̂ φ̂1 φ̂2 φ̂3 φ̂4 σ̂1 σ̂2
p = 1 0.007 0.005 0.51 0.35 0.51 1.12
p = 2 0.007 0.005 0.44 0.30 0.14 0.50 1.12
p = 3 0.007 0.005 0.48 0.31 0.17 -0.10 0.50 1.12
p = 4 0.007 0.005 0.53 0.31 0.19 -0.07 -0.09 0.50 1.11
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Figure 1: Ecdf of EM
(2)
n for testing for homogeneity in model (17) (solid line) for DGP
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iid∼ N(0, 1), together with the limit distribution (dashed line) for n = 200
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Figure 2: U.S. GNP quarterly growth rate in % with sequence of associated states in the
a-posteriori analysis (left) and acf and pacf of the sequence (right).

A Proofs

A.1 Proofs of Sections 2.2 and 3.1

All probabilities and expected values are taken under the hypothesis of no regime switch. Recall that
(ϑ0,η0) denote the true parameters. To prove Theorem 1, we need the following lemma.

Lemma 3. Under Assumption 2, if δ > 0 and α ∈ [δ, 1− δ] we have that

E log

(
gmix(X1|Xp

0 ;ψ)

g(X1|Xp
0 ;ϑ0,η0)

)
≤ 0

with equality if and only if g(x1|xp0;ϑi,η) = g(x1|xp0;ϑ0,η0) Leb. – a.s., i = 1, 2.
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Proof. Using Jensen’s inequality and Assumption 2 we get

E log

(
gmix(X1|Xp

0 ;ψ)

g(X1|Xp
0 ;ϑ0,η0)

)
≤ logE

(
gmix(X1|Xp

0 ;ψ)

g(X1|Xp
0 ;ϑ0,η0)

)
≤ 0

with equality if and only if g(x1|xp0;ϑi,η) = g(x1|xp0;ϑ0,η0) Leb. – a.s., i = 1, 2.

Proof of Theorem 1. (i) Since (Xt)t is stationary and ergodic, (g(Xt|Xp
t−1;ϑ,φ))t is stationary and

ergodic (cf. Krengel 1985, Prop. 1.4.3). By Assumption 3 and the ergodic theorem,

1

n
{ln(0.5, ϑ, ϑ,η)} → E log(g(X1|Xp

0 ;ϑ,η)) (19)

holds almost surely for every fixed (ϑ,η) ∈ Θ ×H. As in Ferguson (1996), one can show that (19)
holds almost surely and uniformly over (ϑ,η) ∈ Θ×H. The claim follows by theorem 1 in Frydman
(1980) using Lemma 3.
(ii) Let

Q(α, ϑ1, ϑ2,η) = E log

(
gmix(X1|Xp

0 ;ψ)

g(X1|Xp
0 ;ϑ0,η0)

)
.

From Cho and White (2007) we have

Rn = 2{ln(α̂, ϑ̂1, ϑ̂2, η̂)− ln(1/2, ϑ̂0, ϑ̂0, η̂0)} = OP (1).

Using 0 ≤ Mn ≤ Rn and the properties of the penalty function p(α) we get 0 ≤ Mn − 2{p(α̂∗) −
p(0.5)} ≤ Rn and therefore p(α̂∗) = OP (1). Therefore there exists an δ > 0 for which P (δ ≤ α̂∗ ≤
1 − δ) → 1, n → ∞, holds and we can suppose that α ∈ [δ, 1 − δ]. By the ergodic theorem and
Assumption 4 we get under the null distribution

1

n
{pln(α, ϑ1, ϑ2,η)− pln(0.5, ϑ0, ϑ0,η0)} → Q(α, ϑ1, ϑ2,η) (20)

almost surely and uniformly over (α, ϑ1, ϑ2,η) ∈ [δ, 1− δ]×Θ2 ×H. Let ω be a point in the sample
space for which (20) is true and note that the set of all such points has probability 1.
Suppose for a ω the claim of the theorem is not true and, for example (the procedure for the other

parameters is the same), ϑ̂∗1 does not converge to ϑ0. There must exist a subsequence (n′) such that

ϑ̂∗1n′ → ϑ′ 6= ϑ0. Consider

Ω′ = {(α, ϑ1, ϑ2,η) : |ϑ1 − ϑ0| ≥ ε, α ∈ [δ, 1− δ]},

where ε = |ϑ′ − ϑ0|/2. Then for all large n′, (α̂∗, ϑ̂∗1, ϑ̂
∗
2, η̂
∗) at the sample point ω, belongs to the

subset. By Assumption 2 and Lemma 3 Q(α, ϑ1, ϑ2,η) < 0 for all (α, ϑ1, ϑ2,η) ∈ Ω′. It then follows
that

pln′(α̂∗, ϑ̂∗1, ϑ̂
∗
2, η̂
∗)− pln′(0.5, ϑ̂0, ϑ̂0, η̂0) < 0

for all large enough n′. But this is a contradiction to (α̂∗, ϑ̂∗1, ϑ̂
∗
2, η̂
∗) being modified maximum likeli-

hood estimator and so ϑ̂∗1n′ → ϑ0 on ω. Thus ϑ̂∗1n′ → ϑ0 almost surely.

Proof of Theorem 2. We have

Mn = 2
(
pln(α̂∗, ϑ̂∗1, ϑ̂

∗
2, η̂
∗)− pln(1/2, ϑ0, ϑ0,η0)

)
+ 2
(
pln(1/2, ϑ0, ϑ0,η0)− pln(1/2, ϑ̂0, ϑ̂0, η̂0)

)
= r1n + r2n.

First examine r1n : Write

r1n(α, ϑ1, ϑ2,η) = 2

n∑
i=1

log(1 + δi) + 2p(α)− 2p(1/2),

δi = (1− α)

{
g(Xi|Xp

i−1;ϑ1,η)

g(Xi|Xp
i−1;ϑ0,η0)

− 1

}
+ α

{
g(Xi|Xp

i−1;ϑ2,η)

g(Xi|Xp
i−1;ϑ0,η0)

− 1

}
.
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Then using Assumptions 1 and 3 - 5, we obtain the quadratic expansion (see Appendix B)

r1n(α, ϑ1, ϑ2,η) ≤2

n∑
i=1

δi −
n∑
i=1

δ2i +
2

3

n∑
i=1

δ3i

≤2

n∑
i=1

(
(η1 − η1,0)Ui,1 + . . .+ (ηd − ηd,0)Ui,d +m1Yi +m2Zi

)
−

n∑
i=1

(
(η1 − η1,0)Ui,1 + . . .+ (ηd − ηd,0)Ui,d +m1Yi +m2Zi

)2
(1 + oP (1))

+ oP (1),

(21)

where

m1 = (1− α)(ϑ1 − ϑ0) + α(ϑ2 − ϑ0), m2 = (1− α)(ϑ1 − ϑ0)2 + α(ϑ2 − ϑ0)2.

Note that m2 ≥ 0. Using Assumption 5 we may orthogonalize

Ũi,1 = Ui,1, Ũi,2 = Ui,2 −
EŨ1,1U1,2

EŨ2
1,1

Ũi,1, . . . (22)

Ỹi = Yi −
d∑
j=1

EŨ1,jY1

EŨ2
1,j

Ũi,j , Z̃i = Zi −
EZ1Ỹ1

EỸ 2
1

Ỹi −
d∑
j=1

EŨ1,jZ1

EŨ2
1,j

Ũi,j .

By Assumption 5, given η1, . . . , ηd,m1,m2 there exist unique constants t1, . . . , td+2 for which

(η1 − η1,0)Ui,1 + . . . (ηd − ηd,0)Ui,d +m1Yi +m2Zi

=t1Ũi,1 + t2Ũi,2 + . . . tdŨi,d + td+1Ỹi + td+2Z̃i
(23)

where we have in particular that td+2 = m2 ≥ 0. Since Ũi,j , j = 1, . . . , d, Ỹi and Z̃i are mutually
orthogonal, we have for the mixed terms that

n∑
i=1

Ũi,j Ũi,k = oP
( n∑
i=1

Ũ2
i,j

)
, j 6= k,

and similarly for the other mixed terms. Thus, setting

q(t1, . . . , td+2) =2

n∑
i=1

(
t1Ũi,1 + . . . tdŨi,d + td+1Ỹi + td+2Z̃i

)
−

n∑
i=1

(
t21Ũ

2
i,1 + . . . t2dŨ

2
i,d + t2d+1Ỹ

2
i + t2d+2Z̃

2
i

)
we can conclude from (21) that

r1n(α, ϑ1, ϑ2,η) ≤ q(t1, . . . , td+2)
(
1 + oP (1)

)
+ oP (1),

where t1, . . . td+2 are determined as in (23). Maximizing q(t1, . . . , td+2) under the sign constraint
td+2 ≥ 0 we get

(t̃1, . . . , t̃d+2) = arg max
t1,...,td+2

q(t1, . . . , td+2)

=

( ∑
Ũi,1∑

(Ũi,1)
2 , . . . ,

∑
Ũi,d∑

(Ũi,d)
2 ,

∑
Ỹi∑
Ỹ 2
i

,
(
∑
Z̃i)

+∑
Z̃2
i

)
(24)
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and therefore an upper bound for r1n is given by

r1n(α̂∗, ϑ̂∗1, ϑ̂
∗
2, η̂
∗) ≤ (

∑
Ũi,1)2∑

(Ũi,1)
2 + . . .+

(
∑
Ũi,d)

2∑
(Ũi,d)

2 +
(
∑
Ỹi)

2∑
Ỹ 2
i

+
((
∑
Z̃i)

+)2∑
Z̃2
i

+ oP (1). (25)

For α = 1/2 and the values ϑ̃∗1, ϑ̃
∗
2 and η̃∗ determined by the maximizers t̃1, . . . , t̃d+2 by (24), we see

that this upper bound is attained.
Expanding r2n in a similar way as r1n, we obtain

−r2n =
(
∑
Ũi,1)2∑

(Ũi,1)
2 + . . .+

(
∑
Ũi,d)

2∑
(Ũi,d)

2 +
(
∑
Ỹi)

2∑
Ỹ 2
i

+ oP (1).

Therefore,

Mn =

(
(
∑
Z̃i)

+
)2∑

Z̃2
i

+ oP (1).

Since (Z̃i)i≥1 form a square integrable stationary martingale difference sequences, the result follows
from the ergodic theorem (applied to the denominator) and the central limit theorem for stationary
ergodic martingale difference sequences (applied to the numerator).

Proof of Lemma 1. b. First, we consider model (4). Let µ(ζ, φ1, . . . , φp;x
p
0) = ζ+φ1x0 + . . .+φpx1−p.

Then

Uζ1 =

∂
∂µf(X1;µ(ζ, φ1, . . . , φp;X

p
0 ), σ)

f(X1;µ(ζ, φ1, . . . , φp;X
p
0 ), σ)

Uφτ1 =

∂
∂µf(X1;µ(ζ, φ1, . . . , φp;X

p
0 ), σ)X1−τ

f(X1;µ(ζ, φ1, . . . , φp;X
p
0 ), σ)

= Uζ1X1−τ , τ = 1, . . . , p,

Y1 =
∂
∂σf(X1;µ(ζ, φ1, . . . , φp;X

p
0 ), σ)

f(X1;µ(ζ, φ1, . . . , φp;X
p
0 ), σ)

,

Z1 =
∂2

∂2σf(X1;µ(ζ, φ1, . . . , φp;X
p
0 ), σ)

f(X1;µ(ζ, φ1, . . . , φp;X
p
0 ), σ)

,

where we denote the U1,j by Uζ1 and Uφτ1 . The covariance matrix of (Uζ1 , U
φ1

1 , . . . , U
φp
1 , Y1, Z1) is non-

degenerate if and only if these random variables are linearly independent (in L2). Therefore, suppose
that for some constants bj ,

b1Z1 + b2Y1 + b3U
ζ
1 +

p∑
τ=1

b3+τU
φτ
1 = 0 a.s. (26)

holds. Since the distribution of X1, . . . , X1−p is equivalent to Lebesgue measure on Rp+1, (26) is
equivalent to

b1
∂

∂2σ
f + b2

∂

∂σ
f + b3

∂

∂µ
f +

p∑
τ=1

b3+τ
∂

∂µ
fx1−τ = 0 Leb. – a.s. (27)

with f = f(x1;µ(ζ, φ1, . . . , φp;x
p
0), σ). From (14) it follows that b1 = b2 = 0 and

b3 +

p∑
τ=1

b3+τx1−τ = 0 Leb. – a.s.,
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so that b3 = . . . = b3+p = 0.

For model (5), let σ(ϑ, φ1, . . . , φp;x
p
0) =

(
ϑ+φ1x

2
0+. . .+φdx

2
1−p
)(1/2)

. Then setting σ = σ(ϑ, φ1, . . . , φp;X
p
0 ),

U
φj
1 =

∂
∂σf

(
X1;σ

)
X2

1−j

f
(
X1;σ

)
2σ

, j = 1, . . . , p,

Y1 =
∂
∂σf

(
X1;σ

)
/(2σ)

f
(
X1;σ

) , Z1 =
∂2

∂2σf
(
X1;σ

)
/(4σ2)− ∂

∂σf
(
X1;σ

)
/(4σ3)

f
(
X1;σ

) .

Again, the covariance is non-degenerate if and only if these random variables are linearly independent
in L2. Therefore, suppose that for constants bj ,

b1Z1 + b2Y1 +

p∑
j=1

bj+2U
φj
1 = 0 a.s. (28)

Again, (28) is equivalent to

b1

( ∂2

∂2σ
f/(2σ)− ∂

∂σ
f/(2σ)

)
+ b2

∂

∂σ
f +

p∑
j=1

bj+2
∂

∂σ
fx21−j = 0 Leb.− a.s.

where f = f
(
x1;σ(ϑ, φ1, . . . , φp;x

p
0)
)
. From (14), b1 = 0 (as coefficient of ∂2

∂2σf) and

b2 +

p∑
j=1

bj+2x
2
1−j = 0 Leb.− a.s.,

so that b2 = b3 = . . . = bp+2 = 0.

Lemma 4. Let f(x;µ, σ) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
be the pdf of a normally distributed random variable

with expectation µ and standard deviation σ > 0. If

a1
∂f(x;µ, σ)

∂µ
+ a2

∂f(x;µ, σ)

∂σ
+ a3

∂2f(x;µ, σ)

∂2σ
= 0 for Lebesgue-a.e. x (29)

for any (µ, σ) and a1, a2, a3 ∈ R, then a1 = a2 = a3 = 0.

Proof of Lemma 4. Let

ϕ(t;µ, σ) = exp
(
itµ− σ2t2

2

)
.

Taking the Fourier transform in (29) and interchanging integral and derivative gives

a1
∂ϕ(t;µ, σ)

∂µ
+ a2

∂ϕ(t;µ, σ)

∂σ
+ a3

∂2ϕ(t;µ, σ)

∂2σ
= 0 for all t ∈ R. (30)

Since

∂ϕ(t;µ, σ)

∂σ
= −σt2ϕ(t;µ, σ),

∂2ϕ(t;µ, σ)

∂2σ
= (σ2t4 − t2)ϕ(t;µ, σ),

∂ϕ(t;µ, σ)

∂µ
= itϕ(t;µ, σ).

we get from (30) after dividing by ϕ(t;µ, σ) that

a1it− a2σt2 + a3(σ2t4 − t2) = 0 for all t ∈ R,

which is equivalent to

a1it+ (−a2σ − a3)t2 + a3σ
2t4 = 0 for all t ∈ R,

from which we easily conclude a1 = a2 = a3 = 0.

20



Lemma 5. For the normal distribution, Assumption 5 is satisfied for the model (3).

Proof of Lemma 5. Arguing as in the proof of Lemma 1, we arrive at

b1
∂

∂µ
f + b2

∂

∂σ
f +

b3
σ

∂

∂σ
fx21−j0 +

p∑
τ=1

bτ+3
∂

∂µ
fx1−τ = 0 Leb. – a.s., (31)

since σ ∂2

∂2µf = ∂
∂σf holds for the normal distribution. From Lemma 4 it follows that

b2 +
b3
σ
x21−j0 = 0, b1 +

p∑
τ=1

bτ+3x1−τ = 0, Leb. – a.s.,

so that b2 = b3 = 0 and b1 = b4 = . . . = bp+3 = 0.

A.2 EM-test and proofs of Section 3.2

We now describe the EM-test, which is most conveniently accomplished in form of the following
algorithm.

Step 0. Choose the initial values 0 < α1 < α2 < . . . < αJ = 0.5. Compute

(ϑ̃0, η̃0) = arg max
ϑ,η

pln(0.5, ϑ, ϑ,η).

Put j = 1 and k = 0.

Step 1. Put α
(k)
j = αj .

Step 2. Compute

(ϑ
(k)
1j , ϑ

(k)
2j ,η

(k)
j ) = arg max

ϑ1,ϑ2,η
pln(α

(k)
j , ϑ1, ϑ2,η)

and
M (k)
n (αj) = 2

(
pln(α

(k)
j , ϑ

(k)
1j , ϑ

(k)
2j ,η

(k)
j )− pln(0.5, ϑ̃0, ϑ̃0, η̃0)

)
Step 3. Compute for i = 1, . . . , n the weights

w
(k)
ij =

α
(k)
j g(Xi|Xp

i−1;ϑ
(k)
2j ,η

(k)
j )

(1− α(k)
j ) g(Xi|Xp

i−1;ϑ
(k)
1j ,η

(k)
j ) + α

(k)
j g(Xi|Xp

i−1;ϑ
(k)
2j ,η

(k)
j )

.

Compute the estimators

α
(k+1)
j = arg max

α

((
n−

n∑
i=1

w
(k)
ij

)
log(1− α) +

n∑
i=1

w
(k)
ij log(α) + p(α)

)

ϑ
(k+1)
1j = arg max

ϑ1

(
n∑
i=1

(1− w(k)
ij ) log g(Xi|Xp

i−1;ϑ1,η
(k)
j )

)

ϑ
(k+1)
2j = arg max

ϑ2

(
n∑
i=1

w
(k)
ij log g(Xi|Xp

i−1;ϑ2,η
(k)
j )

)

η
(k+1)
j = arg max

φ

(
n∑
i=1

(1− w(k)
ij ) log g(Xi|Xp

i−1;ϑ
(k+1)
1j ,η)

+

n∑
i=1

w
(k)
ij log g(Xi|Xp

i−1;ϑ
(k+1)
2j ,η)

)
.
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Compute

M (k+1)
n (αj) = 2

{
pln(α

(k+1)
j , ϑ

(k+1)
1j , ϑ

(k+1)
2j ,η

(k+1)
j )− pln(0.5, ϑ̃0, ϑ̃0, η̃0)

}
,

put k = k + 1 and repeat Step 3 for a fixed number of iterations K.

Step 4. Put j = j + 1, k = 0 and go to Step 1, until j = J .

Step 5. Compute the test statistic

EM (K)
n (J ) = max

j=1,...,J
M (K)
n (αj).

In the above construction of the EM-test, we actually use an ECM algorithm (Meng and Rubin, 1993)

since the EM algorithm would require joint maximization to obtain the update (ϑ
(k+1)
1j , ϑ

(k+1)
2j ,η

(k+1)
j ).

If η is highdimensional, this could be further refined by maximizing successively over the components
of η.

Proof of Theorem 3. It is clear that

EM (K)
n (J ) ≤Mn ≤

(
(
∑
Z̃i)

+
)2∑

Z̃2
i

+ oP (1).

Since one of the starting values in the EM-test is assumed to be αJ = 0.5, and since the ECM algorithm
only increases the value of the likelihood (even though applied to a penalized quasi likelihood, see
Appendix B ), using the same argument as in the end of the proof of Theorem 2, we have

EM (K)
n (J ) ≥ EM (K)

n ({1/2}) ≥
(
(
∑
Z̃i)

+
)2∑

Z̃2
i

+ oP (1).

Proof of Theorem 4

We give an outline of the proof which is quite similar to that of theorem 2 in Chen and Li (2009), only
the additional linear autoregression must be taken care of. For full details see Ketterer (2011). Since
we assume that the innovations (εk)k are independent N(0, σ2)-distributed, the conditional density
(w.r.t. Lebesgue measure on R) of Xt given Xp

t−1 = xpt−1 and St = i is given by

g(xt|xpt−1; ζi,φ, σ) =
1√

2πσ2
exp

(
−

(xt − ζi −
∑p
j=1 φjxt−j)

2

2σ2

)
.

In the following, let (α, ζ1, ζ2,φ, σ) be estimators of an EM-step. Then we write that a statement

holds for example for α if and only if it holds for every α
(k)
j , j = 1, . . . , J and k = 1, . . . ,K.

Lemma 6. For each given α ∈ (0, 0.5] we have under the null model

σ − σ0 = oP (1), φ− φ0 = oP (1),

ζ1 − ζ0 = oP (1), ζ2 − ζ0 = oP (1).

Proof. Since we assume (Xk)k to be a causal AR(p) process under the null model we know that the
order of the autoregressive process is uniquely defined and that the parameters are identifiable (cf.
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Kreiss and Neuhaus, 2006). Assuming σ0 ∈ [δ,∞), δ > 0, we have

E
∣∣log

(
g(X1|Xp

0 ; ζ0,φ0, σ0)
)∣∣

≤ E

[
1

2

(X1 − ζ0 −
∑p
j=1 φj,0X1−j)

2

σ2
0

]
+

∣∣∣∣12 log(2πσ2
0)

∣∣∣∣
=

1

2σ2
0

Eε21 +

∣∣∣∣12 log(2πσ2
0)

∣∣∣∣ <∞.
Therefore, the ergodic theorem applies to (log g(Xt|Xp

t−1; ζ0,φ0, σ0))t. Further, we have

ln(α, ζ1, ζ2,φ, σ)− ln(0.5, ζ0, ζ0,φ0, σ0) ≥ min
j=1,...,J

{p(αj)− p(0.5)} > −∞ (32)

since 0.5 = arg maxα p(α) and

ln(α
(k)
j , ζ

(k)
1j , ζ

(k)
2j ,φ

(k)
j , σ

(k)
j ) + p(α

(k)
j ) = pln(α

(k)
j , ζ

(k)
1j , ζ

(k)
2j ,φ

(k)
j , σ

(k)
j )

≥ pln(α
(0)
j , ζ

(0)
1j , ζ

(0)
2j ,φ

(0)
j , σ

(0)
j )

≥ pln(αj , ζ0, ζ0,φ0, σ0)

= ln(αj , ζ0, ζ0,φ0, σ0) + p(αj)

for every j = 1, . . . , J and k = 1, . . . ,K by the EM-property. Now the result follows using the argument
as in theorem 2 for the i.i.d. case in Wald (1949).

From now on we assume without loss of generality ζ0 = 0 and σ0 = 1, and, to ensure readibility, we
restrict attention to the case p = 1. Let

Yt :=

∂
∂ζ g(Xt|Xt−1; ζ,φ0, 1)

g(Xt|Xt−1; 0,φ0, 1)

∣∣∣∣∣
ζ=0

= εt,

Zt :=
1

2

∂2

∂2ζ g(Xt|Xt−1; ζ,φ0, 1)

g(Xt|Xt−1; 0,φ0, 1)

∣∣∣∣∣
ζ=0

= (ε2t − 1)/2,

Ut :=
1

6

∂3

∂3ζ g(Xt|Xt−1; ζ,φ0, 1)

g(Xt|Xt−1; 0,φ0, 1)

∣∣∣∣∣
ζ=0

= (ε3t − 3εt)/6,

Vt :=
1

24

∂4

∂4ζ g(Xt|Xt−1; ζ,φ0, 1)

g(Xt|Xt−1; 0,φ0, 1)

∣∣∣∣∣
ζ=0

= (ε4t − 6ε2t + 3)/24,

Wt :=
∂φg(Xt|Xt−1; 0,φ, 1)

g(Xt|Xp
t−1; 0,φ0, 1)

∣∣∣∣
φ=φ0

= Xt−1εt.

Note that by causality, Xt−1 and εt are independent, and thus a direct computation shows that Yt,
Zt, Ut, Vt and Wt are mutually orthogonal.

Lemma 7. For each αj ∈ (0, 0.5], under the null model we have whenever α− αj = oP (1) that

σ2 − 1 = OP (n−1/4), φ− φ0 = OP (n−1/2),

ζ1 = OP (n−1/8), ζ2 = OP (n−1/8).
(33)

Proof. First we intend to find an appropriate asymptotic upper bound for

2{pln(α, ζ1, ζ2, φ, σ)− pln(0.5, 0, 0, φ0, 1)}.
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To this end, write

2{pln(α, ζ1, ζ2, φ, σ)− pln(0.5, 0, 0, φ0, 1)} = 2

n∑
t=1

log(1 + δt) + 2{p(α)− p(0.5)},

δt = (1− α)
g(Xt|Xt−1; ζ1, φ, σ)

g(Xt|Xt−1; 0, φ0, 1)
+ α

g(Xt|Xt−1; ζ2, φ, σ)

g(Xt|Xt−1; 0, φ0, 1)
.

Using Taylor expansion we get

δt = s1Yt + s2Zt + s3Ut + s4Vt + s5Wt + εtn (34)

with an appropriate remainder εtn, where

s1 = m1, s2 = m2 + (σ2 − 1), s3 = m3,

s4 = m4 − 3m2
2, s5 = (φ− φ0),

mk = (1− α)ϑ
k

1 + αϑ
k

2 , k = 1, . . . , 6.

Using the orthogonality of Yt, Zt, Ut, Vt and Wt, one proves that (see Ketterer 2011)

2{pln(α, ζ1, ζ2, φ, σ)− pln(0.5, 0, 0, φ0, 1)}

≤ 2s1

n∑
t=1

Yt − s21
n∑
t=1

Y 2
t {1 + op(1)}+ 2s2

n∑
t=1

Zt − s22
n∑
t=1

Z2
t {1 + op(1)}

+2s3

n∑
t=1

Ut − s23
n∑
t=1

U2
t {1 + op(1)}+ 2s4

n∑
t=1

Vt − s24
n∑
t=1

V 2
t {1 + op(1)}

+2s5

n∑
t=1

W1t − s25
n∑
t=1

W 2
1t{1 + op(1)}+ 2{p(αj) + p(0.5)}+ oP (1).

(35)

From (35) we wish to conclude that

sj = OP (n−1/2), j = 1, . . . , 5. (36)

Consider s1: By maximizing the quadratic function,

2s1

n∑
t=1

Yt − s21
n∑
t=1

Y 2
t {1 + oP (1)} ≤

(
∑n
t=1 Yt)

2∑n
t=1 Y

2
t

{1 + oP (1)} = OP (1).

where the last equality follows from the CLT (applied to the numerator) and the SLLN (applied to
the denominator). Therefore,

0 ≤ 2{pln(α, ζ1, ζ2, φ, σ)− pln(0.5, 0, 0, φ0, 1)}

≤ 2s1

n∑
t=1

Yt − s21
n∑
t=1

Y 2
t {1 + oP (1)}+OP (1)

= OP (1)

where the first inequality is due to the EM-property. Hence

2s1

n∑
t=1

Yt − s21
n∑
t=1

Y 2
t {1 + oP (1)} = OP (1)

so that the two terms need to be balanced, which leads to s1 = OP (n−1/2). For sj , j = 2, . . . , 5, the
argument is similar. Analogously, we get

sj = OP (n−1/2), j = 2, 3, 4, 5. (37)
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By the definition of s5 it immediately follows that

φ− φ = OP (n−1/2)

It can be shown (see Ketterer 2011) that

ζ
4

1 = OP

( 5∑
j=1

|sj |
)
, ζ

4

2 = OP

( 5∑
j=1

|sj |
)

and (σ2 − 1)2 = OP

( 5∑
j=1

|sj |
)

which together with (37) implies (33).

Let (α, ζ1, ζ2, φ, σ) be some EM-estimator. We define

Hn(α) =

(
n−

n∑
t=1

wt

)
log(1− α) +

n∑
t=1

wt log(α) + p(α)

=: Rn(α) + p(α),

where

wt =
αg(Xt|Xt−1; ζ2, φ, σ)

(1− α)g(Xt|Xt−1; ζ1, φ, σ) + αg(Xt|Xt−1; ζ2, φ, σ)
.

Let α∗ = arg maxα∈[0,1]Hn(α). The following lemma shows that if α−αj = OP (n−1/4) holds true for
any estimator α then also for the estimator α∗ maximizing Hn(α).

Lemma 8. Let (α, ζ1, ζ2, φ, σ) be an EM-estimator. If α−αj = OP (n−1/4) for some αj ∈ (0, 1), then
under the null model, we have

α∗ − αj = OP (n−1/4).

For the proof see Ketterer (2011).

Lemma 9. Let (α, ζ1, ζ2, φ, σ) be an EM-estimator of (α, ζ1, ζ2, φ, σ). Under the null model the fol-
lowing holds:

(i) If α− 0.5 = OP (n−1/4), then

2{pln(α, ζ1, ζ2, φ, σ)− pln(0.5, 0, 0, φ0, 1)}

≤
(
∑n
t=1 Yt)

2∑n
t=1 Y

2
t

+
(
∑n
t=1 Zt)

2∑n
t=1 Z

2
t

+
{(
∑n
t=1 Vt)

−}2∑n
t=1 V

2
t

+
(
∑n
t=1W1t)

2∑n
t=1W

2
1t

+ oP (1).
(38)

where x− denotes the negative part of a real number x.

(ii) If α− αj = oP (1) for some αj ∈ (0, 0.5), then

2{pln(α, ζ1, ζ2, φ, σ)− pln(0.5, 0, 0, φ0, 1)}

≤
(
∑n
t=1 Yt)

2∑n
t=1 Y

2
t

+
(
∑n
t=1 Zt)

2∑n
t=1 Z

2
t

+
(
∑n
t=1 Ut)

2∑n
t=1 U

2
t

+
(
∑n
t=1W1t)

2∑n
t=1W

2
1t

+ 2{p(αj)− p(0.5)}+ oP (1).

(39)

Proof. (i) One needs to show that s3 = oP (n−1/2), and further that s4 is non-positive in probability,
which is established by showing that

s4 = −2ζ
4

2 + oP (n−1/2) (40)

where ζ
4

2 = OP (n−1/2) by (33). Hence, we can strengthen the upper bound in (35) to (38). See
Ketterer (2011) for the details.
(ii) One needs to show that s4 = oP (n−1/2) so that the upper bound in (35) is strengthened to
(39).
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Proof of Theorem 4. We know that

2{pln(0.5, ζ̂0, ζ̂0, φ̂0, σ̂0)− pln(0.5, 0, 0, φ0, 1)}

=
(
∑n
t=1 Yt)

2∑n
t=1 Y

2
t

+
(
∑n
t=1 Zt)

2∑n
t=1 Z

2
t

+
(
∑n
t=1W1t)

2∑n
t=1W

2
1t

+ oP (1).
(41)

Using the results of Lemma 9 we get

M (K)
n (0.5) ≤

{(
∑n
t=1 Vt)

−}2∑n
t=1 V

2
t

+ oP (1)

and

M (K)
n (αj) ≤

(
∑n
t=1 Ut)

2∑n
t=1 U

2
t

+ 2{p(αj)− p(0.5)}+ oP (1)

for αj 6= 0.5. Note that this inequality still holds true if we replace 2{p(αj) − p(0.5)} by ∆ =
2 maxαj 6=0.5{p(αj)− p(0.5)} as defined in Theorem 4. Therefore,

EM (K)
n ≤ max

[
(
∑n
t=1 Ut)

2∑n
t=1 U

2
t

+ ∆,
{(
∑n
t=1 Vt)

−}2∑n
t=1 V

2
t

]
+ oP (1).

It may be shown (see Ketterer 2011) that the upper bound is indeed obtained. To conclude, by
the multivariate central limit theorem (1/

√
n)
∑n
t=1(Ut, Vt)

T is bivariate normal. Since Ut and Vt
are uncorrelated, see end of this section, (1/

√
n)
∑n
t=1 Ut and (1/

√
n)
∑n
t=1 Vt are asymptotically

independent. Therefore, the limiting distribution is given by F (x − ∆)
(
1x>0 + F (x)

)
/2, where F is

the cdf of a χ2
1 variate.

26



B Supplementary material: Technical details, not intended
for publication

B.1 Proof of (21) in the proof of Theorem 2

For η = (η1, . . . , ηd)
T ∈H and ϑ ∈ Θ, ϑ 6= ϑ0 we set

Ỹi(ϑ,η) =
g(Xi|Xp

i−1;ϑ,η)− g(Xi|Xp
i−1;ϑ0,η)(

ϑ− ϑ0
)
g(Xi|Xp

i−1;ϑ0,η0)
, Ỹi(ϑ) = Ỹi(ϑ,η0),

Z̃i(ϑ) =
Ỹi(ϑ,η0)− Ỹi(ϑ0,η0)

ϑ− ϑ0
,

where Ỹi(ϑ0,η) = Yi(ϑ0,η) and Z̃i(ϑ0) = Zi(ϑ0), and for j = 1, . . . , d, and

Ũi,j(η) =
g(Xi|Xp

i−1;ϑ0,η)− g(Xi|Xp
i−1;ϑ0, η1, . . . , ηj−1, ηj,0, ηj+1, . . . , ηd)(

ηj − ηj,0
)
g(Xi|Xp

i−1;ϑ0,η0)
if ηj 6= ηj,0,

while Ũi,j(η) = Ui,j(η) otherwise.

Lemma 10. The processes

1√
n

n∑
i=1

Ũi,j(η)− Ũi,j(η1, . . . , ηk−1, ηk,0, ηk+1, . . . , ηd)

ηk − ηk,0
, 1 ≤ j, k ≤ d,

1√
n

n∑
i=1

Ỹi(ϑ,η)− Ỹi(ϑ, η1, . . . , ηk−1, ηk,0, ηk+1, . . . , ηd)

ηk − ηk,0
, 1 ≤ k ≤ d,

1√
n

n∑
i=1

Z̃i(ϑ)− Z̃i
ϑ− ϑ0

are tight.

Proof. Consider

U∗n,j,k(η) =
1√
n

n∑
i=1

Ui,j(η)− Ui,j(η1, . . . , ηk−1, ηk,0, ηk+1, . . . , ηd)

ηk − ηk,0
.

Using Billingsley (1968, p.95), see also Klicnarova (2007, prop. 1), for an appropriate multivariate
extension, it suffices to show that

E
(
U∗n,j,k(η1)− U∗n,j,k(η2)

)2 ≤ C‖η1 − η2‖2
To this end, by the mean-value theorem, it suffices that the derivatives of summands

Ũi,j(η)− Ũi,j(η1, . . . , ηk−1, ηk,0, ηk+1, . . . , ηd)

ηk − ηk,0

are uniformly bounded in η by a square-integrable random variable depending only on Xp+1
i . This

follows from the mean-value theorem and Assumption 4, i.e. by the assumption on the Wi,j,k(η). The
argument for the other processes is the same.

Proof of (21). Write

r1n(α, ϑ1, ϑ2,η) = 2

n∑
i=1

log(1 + δi) + 2p(α)− 2p(1/2) (42)

27



with

δi = (1− α)

{
g(Xi|Xp

i−1;ϑ1,η)

g(Xi|Xp
i−1;ϑ0,η0)

− 1

}
+ α

{
g(Xi|Xp

i−1;ϑ2,η)

g(Xi|Xp
i−1;ϑ0,η0)

− 1

}
. (43)

Since 2 log(1 + x) ≤ 2x− x2 + (2/3)x3, using the properties of the penalty function we have

r1n(α, ϑ1, ϑ2,η) ≤ 2

n∑
i=1

δi −
n∑
i=1

δ2i +
2

3

n∑
i=1

δ3i . (44)

Expand δi as follows:

δi = (1− α)(ϑ1 − ϑ0)
g(Xi|Xp

i−1;ϑ1,η)− g(Xi|Xp
i−1;ϑ0,η)

(ϑ1 − ϑ0)g(Xi|Xp
i−1;ϑ0,η0)

+α(ϑ2 − ϑ0)
g(Xi|Xp

i−1;ϑ2,η)− g(Xi|Xp
i−1;ϑ0,η)

(ϑ2 − ϑ0)g(Xi|Xp
i−1;ϑ0,η0)

+(η1 − η1,0)
g(Xi|Xp

i−1;ϑ0,η)− g(Xi|Xp
i−1;ϑ0, η1,0, η2, . . . , ηd)

(η1 − η1,0)g(Xi|Xp
i−1;ϑ0,η0)

+(η2 − η2,0)
g(Xi|Xp

i−1;ϑ0, η1,0, η2, . . . , ηd)− g(Xi|Xp
i−1;ϑ0, η1,0, η2,0, η3, . . . , ηd)

(η2 − η2,0)g(Xi|Xp
i−1;ϑ0,η0)

...

+(ηd − ηd,0)
g(Xi|Xp

i−1;ϑ0, η1,0, . . . , ηd−1,0, ηd)− g(Xi|Xp
i−1;ϑ0,η0)

(ηd − ηd,0)g(Xi|Xp
i−1;ϑ0,η0)

= (1− α)(ϑ1 − ϑ0)Ỹi(ϑ1,η) + α(ϑ2 − ϑ0)Ỹi(ϑ2,η) +

+(η1 − η1,0)Ũi,1(η) + . . .+ (ηd − ηd,0)Ũi,d(η1,0, . . . , ηd−1,0, ηd), (45)

where Ũ
ηj
i (·) is defined in (11). Now, for j = 1, 2,

Ỹi(ϑj ,η) = Ỹi(ϑj ,η)− Ỹi(ϑj , η1, . . . , ηd−1, ηd,0)

+Ỹi(ϑj , η1, . . . , ηd−1, ηd,0)− Ỹi(ϑj , η1, . . . , ηd−2, ηd−1,0, ηd,0)

...

+Ỹi(ϑj , η1, η2,0, . . . , ηd−1,0, ηd,0)− Ỹi(ϑj ,η0)

+(ϑj − ϑ0)(Z̃i(ϑj)− Zi)
+(ϑj − ϑ0)Zi + Yi (46)
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and

Ũi,d(η1,0, . . . , ηd−1,0, ηd) = Ũi,d(η1,0, . . . , ηd−1,0, ηd)− Ui,d + Ui,d

Ũi,d−1(η1,0, . . . , ηd−2,0, ηd−1, ηd) = Ũi,d−1(η1,0, . . . , ηd−2,0, ηd−1, ηd)

−Ũi,d−1(η1,0, . . . , ηd−1,0, ηd)

+Ũi,d−1(η1,0, . . . , ηd−1,0, ηd)− Ui,d−1
+Ui,d−1

...

Ũi,1(η) = Ũi,1(η)− Ũi,1(η1, . . . , ηd−1, ηd,0)

+Ũi,1(η1, . . . , ηd−1, ηd,0)

−Ũi,1(η1, . . . , ηd−2, ηd−1,0, ηd,0)

...

+Ũi,1(η1, η2,0, . . . , ηd−1,0, ηd,0)− Ui,1
+Ui,1. (47)

Plugging (46) and (47) into (45), we can write

δi = (η1 − η1,0)Ui,1 + . . .+ (ηd − ηd,0)Ui,d +m1Yi +m2Zi + εin, (48)

where
m1 = (1− α)(ϑ1 − ϑ0) + α(ϑ2 − ϑ0), m2 = (1− α)(ϑ1 − ϑ0)2 + α(ϑ2 − ϑ0)2

and εin is a remainder term. Note at this stage that each of the sequences the variables (Ui,j)i≥1,
j = 1, . . . d, (Yi)i≥1 and (Zi)i≥1 form square intergable (Assumption 4) stationary martingale differ-
ence sequences w.r.t. the filtration generated by the observations (Xi).

Now plug (48) into (44). To obtain (21), it remains to estimate the remainder terms as well as the
cubic term.
Let us shows that the remainder terms in (48) are negligible as compared to the quadratic term in
(44). Let εn =

∑n
i=1 εin. By Lemma 10,

εn =
√
n(ηd − ηd,0)2OP (1)

+
√
n(ηd−1 − ηd−1,0)

( d∑
j=d−1

(ηj − ηj,0)
)
OP (1)

...

+
√
n(η1 − η1,0)

( d∑
j=1

(ηj − ηj,0)
)
OP (1)

+
√
n(1− α)(ϑ1 − ϑ0)

( d∑
j=1

(ηj − ηj,0)
)
OP (1)

+
√
nα(ϑ2 − ϑ0)

( d∑
j=1

(ηj − ηj,0)
)
OP (1)

+
√
n(1− α)(ϑ1 − ϑ0)3OP (1) +

√
nα(ϑ2 − ϑ0)3OP (1).

We may restrict our attention to a small neighborhood of (η1,0, . . . , ηd,0, ϑ0) as suggested by the
consistency results in Theorem 1(ii). Therefore we may regard η1− η1,0, . . . , ηd− ηd,0, ϑ1−ϑ0, ϑ2−ϑ0
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as oP (1) and we get

εn =
√
n(ηd − ηd,0)oP (1) +

√
n(ηd−1 − ηd−1,0)oP (1) + . . .+

√
n(η1 − η1,0)oP (1)

+
√
n(1− α)(ϑ1 − ϑ0)oP (1) +

√
nα(ϑ2 − ϑ0)oP (1)

+
√
n(1− α)(ϑ1 − ϑ0)2oP (1) +

√
nα(ϑ2 − ϑ0)2oP (1).

Since |x| ≤ 1 + x2, we obtain

|εn| ≤ n{(η1 − η1,0)2 + . . .+ (ηd − ηd,0)2 +m2
1 +m2

2}op(1) + oP (1).

On the other hand, by Assumption 5 there is a λ > 0 such that for all (α1, . . . , αd+2) ∈ Rd+2 \ {0} we
have that

E{α1U1,1 + . . .+ αdU1,d + αd+1Y1 + αd+2Z1}2 ≥ λ(α2
1 + . . .+ α2

d+2). (49)

Therefore, the remainder term in (48) is negligible as compared to the quadratic term in (44).
For the cubic term, by the ergodic theorem, Assumption 4 and (49) imply∑n

i=1 |(η1 − η1,0)Ui,1 + . . . (ηd − ηd,0)Ui,d +m1Yi +m2Zi|3∑n
i=1((η1 − η1,0)Ui,1 + . . . (ηd − ηd,0)Ui,d +m1Yi +m2Zi)2

=
E|η1 − η1,0)U1,1 + . . . (ηd − ηd,0)U1,d +m1Y1 +m2Z1|3

E((η1 − η1,0)U1,1 + . . . (ηd − ηd,0)U1,d +m1Y1 +m2Z1)2
OP (1),

≤ |η1 − η1,0|3 + . . .+ |ηd − ηd,0|3 + |m1|3 + |m2|3

(η1 − η1,0)2 + . . .+ (ηd − ηd,0)2 +m2
1 +m2

2

OP (1)

≤ {|η1 − η1,0|+ . . .+ |ηd − ηd,0|+ |m1|+ |m2|}OP (1) = oP (1)

thus, it is also negligible as compared to the quadratic term. This concludes the proof of (21).

B.2 Proof of EM property in the proof of Theorem 3

For the argument, given the sample X1 = x1, . . . , Xn = xn, we work with a (hypothetic) independent
regime (Sk)k≥0. The parameter vector is then given by ψT = (α, ϑ1, ϑ2,φ

T ) ∈ Rd+3, where α is the
probability for state 2 for the independent regime. Denote

(i) S = (S1, . . . , Sn), X = (X1, . . . , Xn), x = (x1, . . . , xn) and s = (s1, . . . , sn),

(ii) q be the joint pdf of (X,S) given Xp
0 ,ψ (under this artificial model),

(iii) r be the pdf of S given X, Xp
0 ,ψ (also under this artificial model).

so that
p(x|xp0,ψ)r(s|x, xp0,ψ) = q(x, s|xp0,ψ). (50)

Explicitely,

p(x|xp0,ψ) =

n∏
k=1

{(1− α)g(xk|xpk−1;ϑ1,η) + αg(xk|xpk−1;ϑ2,η)}

r(s|x, xp0,ψ) =

n∏
k=1

(1− α)1{sk=1}α1{sk=2}g(xk|xpk−1;ϑsk ,η)

(1− α)g(xk|xpk−1;ϑ1,η) + αg(xk|xpk−1;ϑ2,η)

q(x, s|xp0,ψ) =

n∏
k=1

(1− α)1{sk=1}α1{sk=2}g(xk|xpk−1;ϑsk ,η)
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Denote by Eψ(k) expectation w.r.t. the (artificial) distribution including the independent regime under

the parameter ψ(k). From (50), we get

pln(ψ) = Q(ψ|ψ(k))−R(ψ|ψ(k)) + p(α),

where

Q̄(ψ|ψ(k)) = Eψ(k)

(
log(q(X,S|Xp

0 ,ψ))|X, Xp
0 ,ψ

(k)
)

+ p(α),

R(ψ|ψ(k)) = Eψ(k){log(r(S|X, Xp
0 ,ψ))|X, Xp

0 ,ψ
(k)}

and ψ(k) is the current value of ψ. Then

Q̄(ψ(k+1)|ψ(k)) ≥ Q̄(ψ(k)|ψ(k)) =⇒ pln(ψ(k+1)) ≥ pln(ψ(k)). (51)

Proof of (51). Using Jensen’s inequality we get:

R(ψ(k+1)|ψ(k))−R(ψ(k)|ψ(k)) = Eψ(k)

{
log

r(S|X, Xp
0 ,ψ

(k+1))

r(S|X, Xp
0 ,ψ

(k))

∣∣∣∣∣X, Xd
0 ,ψ

(k)

}

≤ logEψ(k)

{
r(S|X, Xp

0 ,ψ
(k+1))

r(S|X, Xp
0 ,ψ

(k))

∣∣∣∣∣X, Xp
0 ,ψ

(k)

}
= 0,

and therefore

pln(ψ(k)) = Q̄(ψ(k)|ψ(k))−R(ψ(k)|ψ(k))

≤ Q̄(ψ(k+1)|ψ(k))−R(ψ(k)|ψ(k))

≤ Q̄(ψ(k+1)|ψ(k))−R(ψ(k+1)|ψ(k))

= pln(ψ(k+1)).

Next we show that Q̄(ψ(k+1)|ψ(k)) ≥ Q̄(ψ(k)|ψ(k)) holds for the updates obtained by the ECM
algorithm (as proposed in Meng and Rubin, 1993). Relabel ψ = (ψ1, . . . , ψd+3) and 1 ≤ r ≤ d+ 3 let

π{t1,...,tr} : Rd+3 → Rr, π{t1,...,tr}(ψ1, . . . , ψd+3) = (ψt1 , . . . , ψtr ),

P1, . . . , Pq any partition of {1, . . . , d+ 3} and −Pj = {1, . . . , d+ 3} \ Pj .
The ECM algorithm proceeds as follows.

Step 1: Compute ψ(k+1/q) = arg maxψ Q̄(ψ|ψ(k)) subject to π−P1
(ψ) = π−P1

(ψ(k)).

Step 2: Compute ψ(k+2/q) = arg maxψ Q̄(ψ|ψ(k)) subject to π−P2(ψ) = π−P2(ψ(k+1/q)).
...
Step q: Compute ψ(k+q/q) = arg maxψ Q̄(ψ|ψ(k)) subject to π−Pq (ψ) = π−Pq (ψ

(k+(q−1)/q)).

The updated value is given by ψ(k+1) = ψ(k+q/q). Then, by construction, we have

Q̄(ψ(k+1)|ψ(k)) ≥ Q̄(ψ(k+(q−1)/(q))|ψ(k)) ≥ . . . ≥ Q̄(ψ(k+1/q)|ψ(k)) ≥ Q̄(ψ(k)|ψ(k)).

which implies (51).
Since

Q̄(ψ|ψ(k))

=

n∑
i=1

{log((1− α)g(Xi|Xp
i−1;ϑ1,η))(1− w(k)

i ) + log(αg(Xi|Xp
i−1;ϑ2,η))w

(k)
i }+ p(α)
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with

w
(k)
i =

α(k)g(Xi|Xp
i−1;ϑ

(k)
1 ,η(k))

(1− α(k))g(Xi|Xp
i−1;ϑ

(k)
1 ,η(k)) + α(k)g(Xi|Xp

i−1;ϑ
(k)
2 ,η(k))

,

the algorithm in the EM-test is actually the ECM algorithm with P1 = {α, ϑ1, ϑ2} and P2 = {η}.

B.3 Details concerning the assumptions

Lemma 11. For a fixed ν, let f(x) = Γ
(
ν+1
2

) (
Γ
(
ν
2

)√
πν
(

1 + x2

ν

)(ν+1)/2 )−1
be the density of the

t-distribution with ν degrees of freedom. Then for the associated location-scale family f(x;µ, σ), for
any (µ, σ) and a1, a2, a3, b1, b2, b3 ∈ R,

a.)

a1
∂f(x;µ, σ)

∂µ
+ a2

∂2f(x;µ, σ)

∂2µ
+ a3

∂f(x;µ, σ)

∂σ
= 0 for Leb.-a.e. x

implies that a1 = a2 = a3 = 0.

b.)

b1
∂f(x;µ, σ)

∂µ
+ b2

∂f(x;µ, σ)

∂σ
+ b3

∂2f(x;µ, σ)

∂2σ
= 0 for Leb.-a.e. x

implies that b1 = b2 = b3 = 0.

Proof of Lemma 11. The characteristic function of the t-distribution is given by (cf. Hurst 1995)

ϕ(t) =
K 1

2ν
(
√
ν|t|) (

√
ν|t|)

1
2ν

Γ
(
1
2ν
)

2
1
2ν−1

,

where Γ(·) is the Gamma function and Kp(·) is the modified Bessel function of the second kind and
order p (cf. Andrews 1986, chapter 6). Therefore, the characteristic function of the corresponding
location-scale family is

ϕ(t;µ, σ) = eiµt ϕ(σt) = eiµt
Km (

√
νσ|t|) (

√
νσ|t|)m

Γ (m) 2m−1
, (52)

where we put m = 1
2ν. The partial derivatives are given by

∂ϕ(t;µ, σ)

∂µ
= it eiµt

Km (
√
νσ|t|) (

√
νσ|t|)m

Γ (m) 2m−1
,

∂2ϕ(t;µ, σ)

∂2µ
= −t2 eiµt Km (

√
νσ|t|) (

√
νσ|t|)m

Γ (m) 2m−1

and

∂ϕ(t;µ, σ)

∂σ
= −|t| eiµtKm−1(

√
νσ|t|)

√
ν (
√
νσ|t|)m

Γ(m)2m−1
,

∂2ϕ(t;µ, σ)

∂2σ
=

|t|
√
νeiµt

Γ(m)2m−1
(√
ν|t|
)m

σm−1
(√

νσ|t|Km−2(
√
νσ|t|)−Km−1(

√
νσ|t|)

)
,

cf. Andrews (1986).
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(a). Taking the Fourier transform and interchanging integral and derivative gives

a1
∂ϕ(t;µ, σ)

∂µ
+ a2

∂2ϕ(t;µ, σ)

∂2µ
+ a3

∂ϕ(t;µ, σ)

∂σ
= 0 for all t ∈ R. (53)

Plugging the partial derivatives into (53) and dividing by teiµt(
√
ν|t|)m σm−1/

(
Γ(m)2m−1

)
gives with

x =
√
νσ|t|

a1 iσ Km(x)− a2σt Km(x)− a3
√
νσ sign(t)Km−1(x) = 0, t ∈ R. (54)

Choosing t = 1 and t = −1 and adding, we get a1 = 0. Next, dividing by tKm(x) and letting t→∞
(hence x→∞), since Km−1(x)/Km(x)→ 1 (Andrews 1986), we get a2 = 0, and finally a3 = 0.
(b). Taking the Fourier transform and interchanging integral and derivative gives

b1
∂ϕ(t;µ, σ)

∂µ
+ b2

∂ϕ(t;µ, σ)

∂σ
+ b3

∂2ϕ(t;µ, σ)

∂2σ
= 0 for all t ∈ R (55)

Plugging the partial derivatives into (55) and dividing by teiµt(
√
ν|t|)m σm−1/

(
Γ(m)2m−1

)
gives with

x =
√
νσ|t|

b1 iσ Km(x)− b2
√
νσ sign(t)Km−1(x) + b3

√
ν sign(t)

(
xKm−2(x)−Km−1(x)

)
= 0, t ∈ R. (56)

Choosing t = 1 and t = −1 and adding, we get b1 = 0. Therefore equation (56) reduces to

b2σKm−1(x)− b3
(
xKm−2(x)−Km−1(x)

)
= 0, t ∈ R. (57)

Dividing by xKm−2(x) and letting x → ∞, since Km−1(x)/Km−2(x) → 1 (Andrews 1986), we get
b3 = 0, and therefore b2 = 0.
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