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Abstract

We construct uniform confidence bands for the regression function in inverse, ho-
moscedastic regression models with convolution-type operators. Here, the convolution is
between two non-periodic functions on the whole real line rather than between two pe-
riodic functions on a compact interval, since the former situation arguably arises more
often in applications. First, following Bickel and Rosenblatt [Ann. Statist. 1, 1071–1095]
we construct asymptotic confidence bands which are based on strong approximations and
on a limit theorem for the supremum of a stationary Gaussian process. Further, we pro-
pose bootstrap confidence bands based on the residual bootstrap and prove consistency of
the bootstrap procedure. A simulation study shows that the bootstrap confidence bands
perform reasonably well for moderate sample sizes. Finally, we apply our method to
data from a gel electrophoresis experiment with genetically engineered neuronal receptor
subunits incubated with rat brain extract.

Keywords: Confidence bands, Inverse problems, Deconvolution, Rates of convergences, Non-
parametric Regression, Bootstrap

1 Introduction

When dealing with inverse problems with stochastic noise, statistical methods have become
a standard tool. There are two main approaches, either by Bayesian methods (Bertero et al.,
2009; Kaipio and Somersalo, 2005) or by using methods from nonparametric curve estimation
(Mair and Ruymgaart, 1996; Cavalier, 2008; Bissantz et al., 2007). For the latter method, the
main research focus has been on constructing estimators which achieve the minimax risk of
estimation. Further inferential methods, in particular the construction of confidence intervals
and confidence bands, are much less developed. The purpose of this paper is therefore to
construct asymptotic and bootstrap uniform confidence bands in a deconvolution regression
model on the real line, and to apply the methods to data from a gel-electrophoresis experiment.
Suppose that at our disposal are observations (zk, Yk), k = −n, . . . , n, from the model

Yk = (Aθ)(zk) + εk, (1)

where zk = k/(nan), an → 0 for n→ ∞ are fixed design points, the εk’s are i.i.d. errors with
Eεk = 0, Eε2k = σ2, Eε4k < ∞, and A is a linear, one-to-one convolution operator with some
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known function Ψ,

(Aθ)(z) =

∫
R

Ψ(z − t) θ(t) dt.

for the unknown regression function θ in model (1).
Note that in nonparametric deconvolution regression models, it is typically assumed (e.g. Cav-
alier and Tsybakov, 2002) that the function θ is periodic (say on [0, 1]), and that A is thus
a convolution operator on [0, 1] with periodic Ψ. In general, for reconstruction problems of
astronomical and biological images from telescopic and microscopic imaging devices which
involves deconvolution, the assumption of periodicity of both θ and Ψ is often unrealistic,
since the object of interest (for example a galaxy, say, or one single tissue cell) is not periodic.
Neither is Ψ in such cases - rather it is a function (called the ”point-spread-function”) which is
quite well localized around 0 in many cases. Hence (1) provides a more appropriate model in
this context. Model (1) is closely related to density deconvolution (e.g. Fan, 1991a; Bissantz
and Holzmann, 2008) and also to nonparametric errors-in-variables regression, in particular
with Berkson errors (cf. Delaigle, Hall and Qiu 2006). For further discussion of our model
and relations to the errors in variables model, see Section 2.
A specific application where the data can be modelled (approximately) by a one-dimensional
convolution operator is polyacrylamide gel electrophoresis. Here, the task is to separate a
mixture of molecules (nuclein acids or proteins) according to their different molecular masses.
However, random effects such as diffusion in the gel result in a widening of these bands, which
complicates separation of bands of proteins with very similar masses. We will use bootstrap
confidence bands for deconvolution in order to conclude that a specific adaptor protein binds
to the wildtype of a neuronal receptor subunit but not to a mutant version.
In a pioneering work, Bickel and Rosenblatt (1973) constructed confidence bands for a density
function of i.i.d. observations, based on the asymptotic distribution of the supremum of a
centered kernel density estimator. Since then, their method has been further developed both
in the density estimation and also in a regression framework. For density estimation, Neumann
(1998) constructs bootstrap confidence bands, and Giné and Nickl (2010) construct adaptive
asymptotic bands over generic sets. In a regression context, asymptotic confidence bands
were constructed by Eubank and Speckman (1993) for the Nadaraya-Watson estimator and
by Xia (1998) for local polynomial estimators. Bootstrap confidence bands for nonparametric
regression were proposed by Hall (1993), Neumann and Polzehl (1998) and by Claeskens and
van Keilegom (2003). For the statistical inverse problem of deconvolution density estimation,
Bissantz et al. (2007) constructed asymptotic and bootstrap confidence bands, while Lounici
and Nickl (2010) obtain nonasymptotic conservative bands by using concentration inequalities.
It is of major interest to obtain confidence bands for further inverse problems, and in this
paper we make a first step in this direction for model (1). Note that while the operator in
(1) is the same as in density deconvolution, the references above show that the construction
of confidence bands in regression models is quite different.
When constructing confidence bands or even confidence intervals for θ(x), one has to deal with
the bias. In a few of the above papers, notably in Eubank and Speckman (1993) and in Xia
(1998), the bias is explicitly estimated and substracted, so that the rate-optimal bandwidth
can still be used. However, estimating the bias involves estimating higher order derivatives,
and the practical benefit of explicit bias correction is often quite small. Therefore, most of
the above approaches rely on undersmoothing, where the bandwidth is chosen smaller than
the rate optimal bandwidth, and the standard deviation then dominates the bias. Some
theoretical justification why undersmooting is to be preferred when constructing confidence
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intervals is given in Hall (1992). In this paper, we also restrict ourselves to undersmoothing.

The outline of the paper is as follows. In Section 2, we discuss the relation of our model to the
Berkson errors in variables model and propose a kernel deconvolution estimator. In Section
3 we introduce the basic assumptions and present our asymptotic results for constructing
confidence bands. Since it is well-known that convergence in the resulting limit theorems is
rather slow (Hall 1993), we propose a bootstrap method based on the residual bootstrap in
Section 3.2 and prove its consistency. The performance of the bootstrap confidence bands
is investigated in a simulation study in Section 4. In Section 5 we use bootstrap confidence
bands to analyze the results from a gel electrophoresis experiment with genetically engineered
neuronal receptor subunits. Some proofs are given in the appendix, complete proofs can be
found in Birke et al. (2010).

2 Methodology

Model (1) is related to the errors in variables model with Berkson errors, where (Zk, Yk) are
observed which satisfy

Yk = θ(Xk) + εk, Xk = Zk + δk, (2)

and Zk, δk, εk are independent random variables with Eεk = 0 (cf. Delaigle et al. 2006). In
(2) the aim is to estimate θ. Thus, θ(x) = E

(
Yk|Xk = x

)
is related to the observed regression

function g(z) = E
(
Yk|Zk = z

)
via g(z) = (θ ∗ ψ)(z), where ψ is the density of −δk.

Hence model (1) is similar to a fixed-design Berkson errors-in-variables model, where the
effect of the additional noise δk on θ is observed on average as the quantity (ψ ∗ θ)(z).
Methodologically, our model is closer to the classical nonparametric regression model with
deconvolution as in Cavalier and Tsybakov (2002), where the blurring of θ does not necessarily
arise through uncertainty about the design points.
In the following we propose a kernel-type estimator in model (1). To fix the notation, denote
the Fourier transform of a function f by Φf (t) =

∫
R
f(x) exp(itx) dx. Suppose that θ is

p-times continuously differentiable for some p ≥ 0. Under the assumption that ΦΨ(ω) �= 0
for all ω ∈ R and that Φk, the Fourier transform of the kernel k (which integrates to 1) has
compact support, the kernel deconvolution estimator for the jth derivative of θ, given by,

θ̂(j)n (x) = θ̂
(j)
n,h(x) =

1

2π

∫
R

(−iω)je−iωxΦk(hω)
Φ̂g(ω)

ΦΨ(ω)
dω, 0 ≤ j ≤ p, (3)

is well-defined. Here h > 0 is a smoothing parameter called the bandwidth, and Φ̂g is the
empirical Fourier transform of g defined by

Φ̂g(ω) =
1

nan

n∑
r=−n

Yre
iωzr .

From deconvolution density estimation, it is well-known that the optimal rate at which θ can
be estimated depends on the smoothness of θ as well as on the smoothness of the convolution
function Ψ, or equivalently on the tail properties of its Fourier transform. Roughly speaking,
Ψ is ordinary smooth and hence the inverse problem is mildly ill-posed if the Fourier transform
|ΦΨ(t)| decays at a polynomial rate as t→ ∞, in which case the optimal rate for estimating θ
is also of polynomial order. In contrast, if |ΦΨ(t)| decays at an exponential rate as t→ ∞, Ψ
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is supersmooth, the problem is called severely ill-posed and the optimal convergence rate for
θ is typically only of logarithmic order. For details in the density estimation context see Fan
(1991a) and Pensky and Vidakovic (1999), among others. In the following we shall restrict
ourselves to ordinary smooth Ψ, which yields a mildly ill-posed problem in model (1).

More specifically, we shall assume that

ΦΨ(ω)ω
β → Cε, ω → ∞, (4)

for some β ≥ 0 and Cε ∈ C \ {0}. Note that this implies that ΦΨ(ω)|ω|β → C̄ε, ω → −∞.
For example, if Ψ is the density of a Laplace distribution, we have ΦΨ(ω) = 1/(1 + ω2), and
assumption (4) holds with β = 2 and Cε = 1

The estimator θ̂
(j)
n can be written in kernel form as follows:

θ̂(j)n (x) =
1

nhj+1an

n∑
r=−n

YrK
(j)

(
x− zr
h

;h

)
,

where the deconvolution kernel K(j)(z;h) is given by

K(j)(z;h) =
1

2π

∫
R

(−iω)je−iωz Φk(ω)

ΦΨ(ω/h)
dω, 0 ≤ j ≤ p. (5)

Now, if (4) holds, the deconvolution kernel K(j)(z;h) given in (5) has a simple asymptotic
form. In fact, from the dominated convergence theorem,

hβK(j)(z;h) → K(j)(z), h→ 0,

where

K(j)(z) =
1

2πCε

∫ ∞

0
(−iω)j exp(−iωz)ωβΦk(ω) dω

+
1

2πCε

∫ 0

−∞
(−iω)j exp(−iωz)|ω|βΦk(ω) dω, (6)

c.f. Fan (1991b). Note that the second term in (6) is the complex conjugate of the first, so
that K(j)(z) is in fact real-valued. This shall allow us e.g. to obtain an explicit asymptotic
formula for the pointwise variance of the estimator (3), which turns out to be proportional
to σ2/(nh2β+2j+1an).

3 Confidence bands for inverse regression

When constructing confidence bands, we shall concentrate on the case when Ψ and θ have
non-compact support, in which we let an → 0. Results for compactly supported functions,
where an = a can be chosen as an appropriate constant, can be derived analoguously.

3.1 Asymptotic confidence bands

In the following we list our exact assumptions which are required subsequently.

Assumption 1. The Fourier transform Φk of k is symmetric, three times differentiable and
supported on [−1, 1], Φk(ω) = 1 for ω ∈ [−c, c], c > 0, and |Φk(ω)| ≤ 1.
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Assumption 2. A.
∫
R
|K(j+1)(z;h)||z|3/2(log log+ |z|)1/2 dz = O(h−β), where log log+ |z| =

0 if |z| < e, and log log+ |z| = log log |z|, otherwise.
B. For some δ > 0,∫

R

|hβK(j+1)(z;h) −K(j+1)(z)||z|1/2(log log+ |z|)1/2 dz = O(h1/2+δ),

where K(j+1) is given in (6).

C. Uniformly in z,
|hβK(j+1)(z;h) −K(j+1)(z)| = O(h1/2+δ).

D. The limit kernel K(j)(z) in (6) has exponentially decreasing tails.

Assumption 3. A. The Fourier transform Φθ of θ satisfies∫
R

|Φθ(ω)||ω|s−1 dω <∞ for some s > p+ 1.

B. The function g = Aθ satisfies∫
R

|g(z)||z|r dz <∞ for some r > 0.

Remark 1 (Discussion of the Assumptions). Assumptions 1, 2 A. and B. and 3 A. also occur
in Bissantz et al. (2007), for a detailed discussion see Remark 1 in that paper. In particular,
Assumption 2 B. is a technical refinement of (4), indeed, the limit kernel K(j) is required
to formulate it in the first place. Assumption 2 C. can also be checked by using (14) from
Bissantz et al. (2007). As for Assumption 2 D., this amounts to exponentially decreasing
tails of the second derivative of the kernel k if β = 2 and Cε = 1 (e.g. Laplace noise), and
j = 0.
Finally, Assumption 3 B. is satisfied if r > 1 and∫

R

|θ(z)||z|r dz <∞,

∫
R

|Ψ(z)||z|r dz <∞,

since using |u+ t|r ≤ 2r(|u|r + |t|r),∫
R

|g(z)||z|r dz ≤
∫
R

|θ(u)|
∫
R

|u+ t|rΨ(t) dt du

≤ 2r
∫
R

|θ(u)||u|rdu+ 2r
∫
R

|θ(u)| du
∫
R

|t|rΨ(t) dt

We now construct asymptotic confidence bands for θ on compact intervals for ordinary smooth
Ψ and, as a byproduct, determine rates of uniform convergence of the estimator (3). To
facilitate a concise presentation we formulate the results for the interval [0, 1], however the
generalization to [a, b] ⊂ R is straightforward (by affine transformation). Similarly as in Bickel
and Rosenblatt (1973) we shall investigate the distribution of the supremum of the process

Z(j)
n (x) =

n1/2hβ+j+1/2a
1/2
n

σ

(
θ̂(j)n (x)− E[θ̂(j)n (x)]

)
, x ∈ [0, 1].

Let ‖ · ‖I denote the sup-norm on an interval I ⊂ R. Next we state our main limit theorem.
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Theorem 1. Let Assumption 1-3 hold, an → 0, h2δ log(n)/an → 0, h3a3nn/ log(n)
2 → ∞.

Then, for 0 ≤ j ≤ p,

P
(
(2 log(1/h))1/2(‖Z(j)

n ‖[0,1]/C1/2
K,1 − dn) ≤ κ

)
→ exp(−2 exp(−κ)),

where

dn =
(
2 log(1/h)

)1/2
+

log
(

1
2πC

1/2
K,2

)(
2 log(1/h)

)1/2 ,
and

CK,1 =
1

2π|Cε|2
∫
R

ω2(β+j)Φ2
k(ω) dω, CK,2 =

∫
R
ω2(β+j+1)Φ2

k(ω) dω∫
R
ω2(β+j)Φ2

k(ω) dω
. (7)

In order to construct confidence bands for θ(j) we have to deal with the bias of θ̂
(j)
n . In the

appendix we show that

max
x∈[0,1]

|Eθ̂(j)n (x)− θ(j)n (x)| = O
(
hs−j−1 + h−(β+j+1)arn

)
(8)

Note that in contrast to deconvolution density estimation, where the bias does not depend
on the error density, the order in (8) does depend on the index β of ΦΨ. As a consequence,
the additional bias term decays to zero the slower (if it converges at all), the larger β is.
However, by requiring that r in Assumption 3 is sufficiently large, we have that h−(β+j+1)arn =
o
(
hs−j−1

)
. This holds e.g. for convolution with a Laplace density and if θ is a function of

compact support or exponential decay of its tails. This condition appears to be rather natural
for practical applications, where the signal θ to be reconstructed is of limited extend in space
or time, e.g. in microscopic or telescopic imaging, to mention only a few examples.
Next we give uniform confidence bands for the problem under consideration. To this end,
assume that σ̂2 is an estimator of the variance σ2 with rate oP ((log(1/h))

−1) (cf. e.g. Munk et
al., 2005), where h is the bandwidth used to estimate θ. For correcting the bias, as discussed
in the introduction we shall rely on undersmoothing.

Corollary 2. Let σ̂2 be an estimator of σ2 with convergence rate oP ((log(1/h))
−1). Under

the assumptions of Theorem 1, if nh2(β+j)+1an/ log(1/h) → ∞ and log(1/h) · (nh2(β+s)−1an+
nh−1a1+2r

n ) → 0, we have

P
(
θ̂(j)n (x)− bn(x, κ) ≤ θ(j)(x) ≤ θ̂(j)n (x) + bn(x, κ) for all t ∈ [0, 1]

)
→ exp(−2 exp(−κ)),

where

bn(x, κ) =

(
σ̂2CK,1

nh2(β+j)+1an

)1/2 (
κ

(2 log(1/h))1/2
+ dn

)
.

Remark 2. The width of the bands is (log(1/h)/nh2(β+j)+1an)
1/2. Hence the first condition

in Corollary 2 ensures that this width converges to zero.
Undersmoothing in order to correct for the bias requires that, as n → ∞ and an, h → 0 we
need to have (log(1/h))−1 ·(nh2(β+s)−1an+nh

−1a1+2r
n ) → 0. These two conditions can be met

simultaneously since s > p + 1 and j ≤ p. As discussed previously, this can e.g. be achieved
if the signal θ has compact support, or exponentially decaying tails, or if the interfering
convolution function Ψ has exponential tails, such as the density of a Laplace distribution.
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Further we obtain that under the assumptions of Theorem 1, if additionally nh2β+2s−1an
log h−1 =

O(1) and nh−1a2r+1
n

log h−1 = O(1), then the estimator θ̂(j) has uniform convergence rate

sup
x∈[0,1]

|θ̂(j)(x)− θ(j)(x)| = OP

( log h−1

nh2β+2j+1an

)1/2
, (9)

for the proof of (9)see the appendix.

3.2 Bootstrap confidence bands

It is well known, both from simulations as well as from theoretical investigations (Hall 1993),
that the rate of convergence in Theorem 1 is rather slow and hence that the resulting con-
fidence bands perform rather poorly in terms of coverage probability. Therefore, bootstrap-
ping is a popular alternative to construct confidence bands. For direct density estimation,
Hall (1993) investigated the rate of convergence for the simple nonparametric bootstrap (i.e.
drawing n out of the n observations with repetitions) via the Edgeworth expansion. Neu-
mann (1998) constructed direct strong approximations for the bootstrap process. For indirect
density estimation, Bissantz et al. (2007) used a simple argument via strong approximation
of the empirical process to show consistency of the bootstrap procedure. In the context of
regression, Neumann and Pohlzehl (1998) used the wild bootstrap in a heteroscedastic regres-
sion model allowing both fixed and random design, and Claeskens and van Keilegom (2003)
used the smooth bootstrap (for the actual observations, not the residuals) for homoscedastic
likelihood regression models with random design. Both prove consistency of the resulting
bootstrap procedures, with arguments relying on the strong approximation of the bootstrap
processes.
For regression models with fixed design, these design points should be fixed during the boot-
strapping procedure as well. Hence, the simple nonparametric bootstrap (drawing with re-
placement from the pairs (zk, Yk)) is inappropriate. Instead, one aims at bootstrapping from
the distribution of the errors εi. If these are homoscedastic (as is the case in our model), one
bootstraps from the residuals, which is called the residual bootstrap (Hall 1992). Although
this approach is problematic in heteroscedastic models (cf. e.g. Neumann and Polzehl 1998),
it is the method of choice in homoscedastic models. Therefore, in the following we propose a
bootstrap procedure based on the residual bootstrap.

Since the bootstrapping procedure requires the residuals, we shall, in addition to the target
function θ(j), have to estimate the function g (or equivalently θ). Consider the residuals

ε̃i = Yi − ĝn(zi),

where

ĝn(x) =
(
Aθ̂n

)
(x) =

1

n an h̃

n∑
r=−n

Yrk
(x− zr

h̃

)
,

and h̃ has to be chosen for estimation of θ (and not its derivatives). Due to boundary bias
of the estimator ĝn(x), one has to exclude those residuals which are to close to the boundary
of the observational interval (see e.g. Hall, 1992 or Härdle and Bowman, 1988). For our
situation, one has to observe that first, due to Assumption 1 the kernel k has compactly
supported Fourier transform and hence cannot itself have compact support. Nevertheless,
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typically k will be rapidly decreasing in the tails. Thus, instead of excluding points at a rate
of h̃, we shall exclude points at a rate η such that h̃ = o(η). Second, we shall only exclude
o(n) observations. Since in a fixed interval there are only nan = o(n) of these, we could keep
the η at a fixed distance from the boundary of the observational interval. Summarizing, for
η with

η = O(1), h̃ = o(η), (10)

we use only those ε̃i for which −a−1
n + η ≤ zi ≤ a−1

n − η, or those i with −(n − ηann) ≤ i ≤
(n− ηann) and set

ε̂i = ε̃i − 1

2�n(1− ηan)�
∑
i

ε̃i, (11)

where the sum is taken over −(n − ηann) ≤ i ≤ (n − ηann). Now draw with replacement
from the ε̂i a bootstrap sample of residuals ε∗−n, . . . , ε

∗
n. A bootstrap approximation to the

processes Z
(j)
n (x) or Z

(j)
n,6(x) (in the appendix) is given by

Z(j)∗
n (x) =

n1/2hβ+j+1/2a
1/2
n

σ̂∗

n∑
r=−n

ε∗r K
(j)

(
x− zr
h

;h

)
,

where σ̂∗ is computed as σ̂ but from the bootstrap observations Y ∗
i = ĝn(zi) + ε∗i . Let q∗1−α

denote the α-quantile of supx∈[0,1] |Z(j),∗
n (x)|, conditional on the original observations. The

bootstrap confidence band for Eθ̂(j) (and for θ̂(j) in case of undersmoothing) is given by[
θ̂(j)(x)− σ̂ q∗1−α

n1/2hβ+j+1/2a
1/2
n

, θ̂(j)(x) +
σ̂ q∗1−α

n1/2hβ+j+1/2a
1/2
n

]
, x ∈ [0, 1].

We now state the weak consistency of the residual bootstrap in this situation. To this end
from Neumann and Polzehl (1998) we adopt the notation

Un = Õ(Vn, γn) if P(|Un| > CVn) ≤ Cγn

for n ≥ 1 and some constant C <∞ . In Theorem 3 we derive a rate of convergence in the Õ

sense of the difference of {(θ̂(j)(x)− θ(j)(x))/σ̂}x∈[0,1] and {Z(j)∗
n (x)/nh2β+2j+1an)

1/2}x∈[0,1].
Theorem 3. Under the assumptions of Theorem 1, if the {ε∗i }ni=−n are defined as above for
η chosen as in (10), there exists a version of {εi} and conditionally on Y = {Y−n, . . . , Yn} a
version of {ε∗i } on a rich enough probability space such that

sup
x∈[0,1]

∣∣∣∣ 1σ̂ (θ̂(j)(x)− θ(j)(x))− 1

(nh2β+2j+1an)1/2
Z(j)∗
n (x)

∣∣∣∣ = Õ

(
nδ log(h−1)

nhβ+j+1an
+ hs−j−1, n−λ

)
for some arbitrary small δ > 0 and some λ <∞.

The proof is similar to that of Theorem 2.1 in Neumann and Polzehl (1998) and is defered
to the Appendix. Theorem 3 together with Corollary 2 yield the consistency of the residual
bootstrap for constructing confidence bands. Note, that the method is not restricted to the
homoscestic case or to the residual bootstrap. Therefore, a similar result will hold if we use
wild bootstrap.
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4 Simulations

We simulate from model (1), where the εk are independent N(0, σ2)-distributed. For the
unknown regression function we consider

θ1(x) = e−
(x−1.1)2

2·0.64 and θ2(x) = e−
(x−0.2)2

2·0.09 + 1.2 · e− (x−0.85)2

2·0.04 .

These two functions essentially deviate from 0 in the interval [−4, 4], and we will hence use
an = 0.25 in the subsequent simulations. In the main part of our simulations the convolution
function is ψ(x) = λ e−λ|x|/2, with λ = 3. Thus, its scale is of similar magnitude as those of
the regression functions θ1 and θ2.
In all simulations we determined the actual coverage probability and confidence band area
from 200 randomly generated data sets according to model (1). For each of these random
datasets, uniform confidence bands for the function θ(x) on the interval of interest [0, 1] were
determined from a residual bootstrap with 400 replications. Here, the sampling distribution
for the residuals was estimated from the re-centered residuals computed for observations with
|zk| ≤ 1

an
− 2.01h (cf. (11)).

4.1 Bandwidth selection

We now discuss the selection of the bandwidth h for estimator (3). Fig. 1 shows the simulated
coverage probabilities and band areas for 90% nominal coverage probability for the two test
functions θ1 (left) and θ2 (right). In both cases the sample size is 2n+ 1 = 201 and σ = 0.1.
The effective coverage probability of the confidence band is significantly below the nominal
coverage probability for bandwidths larger than approximate L∞-optimal bandwidth, which
can be determined from the figure as the location of the minimum of the mean sup-distance
between estimates and the true functions θ1 and θ2, respectively. This effect is due to the
increase in the bias with increasing bandwidth, which results in a decrease in coverage propa-
bility. On the other hand, the mean area of the bootstrap confidence bands increases strongly
with decreasing bandwidth due to the increasing variance. Hence, a suitable choice of band-
width is the largest bandwidth, for which the effective coverage probability still matches its
nominal value, at least approximately. Fig. 1 indicates that a suitable bandwidth is slightly
smaller than the L∞-optimal bandwidth, which is consistent with the idea of undersmoothing.

Estimation of the L∞-optimal bandwidth (or some slightly smaller value) is not straightfor-
ward, as the true function θ(x) used to produce the dotted curves in Fig. 1 is obviously not
known in practice. However, a suitable choice for the bandwidth is possible with the L∞-
based bandwidth selector introduced by Bissantz et al. (2007) for the density deconvolution
case. In short, its idea is to replace the problem of determining the bandwidth with smallest
mean sup-distance between estimates and true (and in practice unknown) function θ by the
problem of determining the largest bandwidth, for which the sup-distance between estimates
for two subsequent bandwidth values is above a certain threshold value, where we used τ = 5
in our simulations, which results in somewhat undersmoothing bandwidth choices. In our
simulations it turned out that considering 12 different bandwidths (indicated by the small
circles in Fig. 1), covering an order of magnitude in value, is sufficient to allow for satisfying
confidence band properties, as discussed below.
As an illustration, Fig. 2 shows 90% nominal coverage probability confidence bands for the
estimates θ̂(x) on [0, 1] of θ1 and θ2, respectively, from 2n + 1 = 201 observations based on
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Figure 1: Average width and coverage probability of confidence bands with a nominal coverage
probability of 90% for the Gaussian function θ1 (left) and the bimodal function θ2 (right).
Solid lines represent simulated coverage probabilities from 200 simulations, dashed lines 1.5×
the mean area of these bootstrap confidence bands on the interval of interest [0, 1], and dotted
lines the mean sup-distance between estimates and the true functions θ1 and θ2, respectively.
In the case of θ1 the sup-distance has been multiplied by 10. Finally, circles indicate the
bandwidth values considered to select the bandwidth for the subsequent simulations.

data with σ = 0.1 and an = 0.25 and the bandwidth selected by the L∞-optimal bandwidth
selector.

4.2 Simulated coverage probabilities and confidence band areas for boot-
strap confidence bands

In this section we present the results on coverage probabilities and confidence band areas
for bootstrap confidence bands. For each combination of the parameters n, σ and regression
functions θ1, θ2 we first determined a suitable bandwidth h for estimator (3) from the L∞-
bandwidth estimator. Table 1 shows the results for simulations with the unimodal function

n σ 80% nominal cov. 90% nominal cov. 95% nominal cov.
Cov. prob. Width Cov. prob. Width Cov. prob. Width

100 0.5 79.0 0.216 87.5 0.258 95.0 0.293
100 0.1 78.0 0.085 88.5 0.100 94.0 0.113
1000 0.5 79.5 0.139 90.5 0.163 95.5 0.184
1000 0.1 76.5 0.041 86.5 0.048 92.5 0.054

Table 1: Simulated coverage probabilities and confidence band widths for the Gaussian func-
tion θ1.
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Figure 2: Estimate θ̂n(x) and associated 90% nominal coverage probability residual bootstrap
confidence bands (solid lines) for the Gaussian function θ1 (left) and the bimodal function θ2
(right). Dashed lines represent the true functions θ1 and θ2, respectively.

n σ 80% nominal cov. 90% nominal cov. 95% nominal cov.
Cov. prob. Width Cov. prob. Width Cov. prob. Width

100 0.1 63.0 0.231 76.5 0.268 82.0 0.299
100 0.02 56.0 0.081 75.5 0.093 83.5 0.104
1000 0.1 74.5 0.131 90.5 0.152 95.0 0.169
1000 0.02 79.5 0.054 91.5 0.062 96.5 0.069

Table 2: Simulated coverage probabilities and confidence band widths for the bimodal function
θ2.

θ1. The confidence bands perform rather well with respect to the coverage probabilities and
the confidence band widths, which are significantly smaller for sample size 2n + 1 = 2001
than for 2n+1 = 201. Moreover, the bands for an = 0.25 are narrower by a factor of nearly 2
than for an = 0.1 which is due to the fact that a smaller value of an implies a larger interval
covered by the design points. In consequence, the number of observations within the interval
of interest [0, 1] effectively decreases. On the other hand, determination of the empirical
Fourier transform of g = Aθ benefits from a larger interval covered by the design points,
which implies that some trade-off has to be made in order to fix an in practical applications.
Now turn to Table 2 which shows the results obtained from simulations with the bimodal
function θ2. The bands do not perform as well as for the unimodal function θ1, particularly
for sample size 2n + 1 = 201, since the shorter scale of variation of θ2 along the x−axis
implies a stronger impact of bias at given bandwidth. This also implies that some simulations
performed with an = 0.1 (not shown) produced unsatisfactory results. However, for a suitably
chosen value of an the confidence bands appear useful for the bimodal function θ2, even for
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Setting 80% nominal cov. 90% nominal cov. 95% nominal cov.
Cov.prob. Width Cov.prob. Width Cov.prob. Width

5% underestimated 76.0 0.071 84.5 0.084 90.0 0.094
5% overestimated 79.0 0.060 89.0 0.071 92.5 0.080

Lap., miss-specified as Gauss. 78.0 0.090 86.5 0.106 92.0 0.120
Gauss., miss-specified as Lap. 74.5 0.086 87.0 0.101 92.0 0.114

Table 3: Simulated coverage probabilities and confidence band widths for various settings of
miss-specifications for the convolution density ψ. In all cases, 2n + 1 = 201, σ = 0.1 and
an = 0.25.

the smaller of the sample sizes considered, as is also indicated by Fig. 2.

4.3 Robustness and misspecification of ψ

In practical applications, the convolution function ψ is often not fully known. Hence, in the
final part of the simulations we have considered some typical cases of miss-specification of the
function ψ:

• The width (or standard deviation if ψ is a density) of the convolution function ψ may
be miss-specified. Hence we performed simulations where the standard deviation of ψ
is over- or underestimated by 5%, respectively.

• The geometric shape of the function ψ may only be approximately known. We consid-
ered both the case that ψ is in fact Gaussian with variance 2/9, i.e. the errors of x are
normally distributed, but specified as Laplace with same variance in the data analysis,
and the reverse case, where ψ is the Laplace density but miss-specified as Gaussian with
same variance 2/9.

Table 3 shows the results of these simulations. Whereas in all of these miss-specifiation
scenarios our asymptotic theory for the confidence bands does not hold, the simulation results
are quite satisfactory with simulated coverage probabilities close to their nominal values and
confidence band width about 20 − 80% larger than for ψ correctly specified (cf. the results
in Table 1). Hence, the bootstrap confidence bands appear to be well-suited for practical
applications, as soon as the convolution function ψ is at least approximately known.

5 Gel electrophoresis of genetically engineered neuronal re-

ceptor subunits

5.1 Experimental setup

In this section we apply our methods to data from a gel electrophoresis experiment usually
carried out in molecular biology to separate dna, rna or protein molecules according to their
molecular weight, e. g. for the subsequent application of other techniques as for example
mass spectrometry or PCR. In our case, a sample containing proteins of interest was applied
to a plane gel of polyacrylamide and exposed to an electric field along the gel. According to
their weight migrating molecules are focused as a bands visible on the gel.
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Figure 3: Result from a gel electrophoresis experiment with genetically engineered neuronal
receptor subunits incubated with rat brain. Lanes (running in horizontal direction) are for
wildtype receptor, mutante receptor and a standard molecule (from left to right).

Figure 3 shows the result of a gel electrophoresis of genetically engineered neuronal receptor
subunits incubated with rat brain extract to capture other proteins that specifically bind to
the wildtype (left lane) but not to the mutated receptor (middle lane). The right lane shows
a standard, mono-constituent sample of the adapter protein. Here, the smaller receptor tail
moves faster than the adaptor protein binding to it. Therefore, the receptor band can be
found near the bottom of the gel whereas the upper band is the binding adaptor protein.
Intensity of the bands is according to the amount of protein in it. The wildtype receptor
subunit binds a higher amount of adaptor protein than the mutant. Therefore, binding of
the adaptor protein is specific to the wildtype receptor but not to the mutant (left lane in
Fig. 3) in the middle lane. There is a weak band above the mutant receptor which appears
to be slightly offset the migration height of the adaptor protein, and may therefore be due
to some different molecule. In the sample containing the wildtype receptor this band may be
overlayed by the band of the adaptor protein binding to the receptor. However, all bands in
this experiment show a certain width. This is due to random effects such as diffusion, that
affects all molecules in the solution, and furthermore due to the unavoidable biodegradation
of proteins over time, which results in molecules of masses very close, but not identical, to
the original protein. In order to make a firm conclusion if the weak line in the mutante
probably is offset in position (and hence differs in molecular mass from the adaptor protein),
this broadening of the lines has to be removed.

5.2 Statistical model and analysis

In our subsequent analysis we model the data as follows. Since the large extension of the
protein bands perpendicular to the movement of the molecules is due to the width of the lane
where the solution was applied at the starting point of the gel, we integrate the signal for each
sample along this direction. The resulting profile (along the direction of movement) can then
be closely modeled by a one-dimensional convolution of the form (1), where the covariable x
is the distance from the starting point of a lane to the position under consideration, and the
response is the signal integrated orthogonal to the direction of the x-coordinate.
As mentioned above, the bottom lane shows the band produced by a standard molecule of
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Figure 4: Intensity profiles and associated 90% bootstrap confidence bands for wildtype and
mutante in the gel electrophoresis experiment discussed in the text. Solid lines show the
distribution for the wildtype, and dashed lines for the mutante.

fixed weight. For our subsequent analysis we model the line-spread function Ψ(x), which
models the way a protein band is broadened due to random effects as the density of a Laplace
distribution. This assumption appears safe given the simulation results shown in Section
4, which show that the bootstrap confidence bands are robust against a moderate miss-
specification of the convolution function Ψ(x). We estimate the parameter λ of Ψ(x) from
the profile of the standard molecule, which was to this end again integrated perpendicular to
the direction of movement.
Fig. 4 shows estimates of the profiles for the wildtype receptor and the mutated receptor,
together with 90%-bootstrap confidence bands from 100 bootstrap replications.
In order to compute the estimator we used a ν-method with ν = 1 and 40 iterations. Note
that this corresponds to a slightly different form of the estimator (3). Indeed, the
regularization of the inverse 1/ΦΨ is not achieved by multiplication with a function of compact
support leading to ΦK(hω)/ΦΨ(ω), but rather by using a general regularization approach
F (ΦΨ;α)(ω) which converges to 1/ΦΨ(ω) as α → 0 (for further details see Bissantz et al.
2007). The reason is that regularization by the ν method performs better for capturing the
steep peaks in the regression function as shown in Fig. 4. ¿From the deconvolved profiles it is
straightforward to conclude that the weak band above the mutated receptor is clearly offset
from the strong band visible above the wildtype receptor, whereas other bands in the profiles
are not offset which excludes an inhomogeneous electric force (and hence speed of molecular
motion) as explanation for this offset. Hence, we conclude that the weak band corresponds
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to a protein molecule different from the intense band of the adaptor protein binding to the
wildtype receptor. Very probably the molecule resulting in the weak band above the receptor
subunit mutant is also present as a weak band above the wildtype receptor, but this band is
overlayed by the more intense band of the adaptor protein. From these results we conclude
that the adaptor protein specifically binds to the wildtype receptor subunit but not to the
mutant subunit.

6 Conclusions

In order to assess the precision of statistical estimators, it is essential to construct accompany-
ing confidence intervals or even confidence bands. In this paper, we introduced a kernel-type
estimator for a noisy nonparametric regression problem, which requires an additional decon-
volution, and construct a uniform confidence band for such an estimator.
Generally speaking, such deconvolution techniques should find broad application in the re-
construction of images from fluorescence microscopy at the nanoscale. These experiments
invariably include the observation of inherently stochastic phenomena with substantial mea-
surement error. This measurement error is often ignored in practice leaving some experimental
conclusions in doubt.
Constructing confidence intervals and bands is a well-studied problem in direct nonparametric
regression and density estimation problems, but there are few examples for inverse estimation
problems. Therefore, extensions of our results to other models such as positron emission
tomography should be studied in the future. A further promising extension is to introduce
shape restrictions for the target functions as in Dümbgen (2003).
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7 Appendix: Proofs

Proof of Theorem 1: Following Bickel and Rosenblatt (1973) and Eubank and Speckman (1993), our

proof is based on an approximation of Z
(j)
n by a Gaussian process which does not depend on the true

regression function θ. We shall use the following strong approximation result for sums of i.i.d. random
variables.

Lemma 4. (Csörgo and Revesz, 1981) There exists a Wiener process W1 on [0,∞) such that

|Sn −W1(n)| = O (δn) a.s.,

where δn := (n log log(n))1/4(log(n))1/2, Sn =
∑n

j=1 εj and ε1, ε2, . . . i.i.d. with E[εj ] = 0, E[ε2j ] = 1

and E[ε4j ] <∞.

To keep the proof more transparent we split the approximation of the process Z
(j)
n (t) into several steps,

assume σ2 = 1, and consider only the observations r = 1, . . . , n. The desired results then immediately
follow from repeating the same steps for the observations r = −n, . . . , 0. Note that

Z(j)
n (x) = n1/2hβ+1/2a1/2n

n∑
r=1

1

nhan
εrK

(j)

(
x− zr
h

;h

)
and let

Z
(j)
n,1(x) =

n−3/2hβ−3/2

a
3/2
n

n∑
r=1

K(j+1)

(
x− zr
h

;h

)
W1(r) + n−1/2hβ−1/2a−1/2

n K(j)

(
x− zn
h

;h

)
W1(n).

Lemma 5. Under Assumptions 1 and 2.A

‖Z(j)
n − Z

(j)
n,1‖[0,1] = op

(
(log(n))−1/2

)
.

Proof. Setting S0 = 0, from a Taylor expansion we have with intermediate points ξr ∈ [(x−zr)/h, (x−
zr+1)/h] that

Z(j)
n (x) = n−1/2hβ−1/2a−1/2

n

n∑
r=1

K(j)

(
x− zr
h

;h

)
(Sr − Sr−1)

= n−1/2hβ−1/2a−1/2
n

{
n−1∑
r=1

(
zr+1 − zr

h

)
K(j+1)

(
x− zr
h

;h

)
Sr

− 1

2

n−1∑
j=1

(
zr+1 − zr

h

)2

K(j+2) (ξr;h)Sr

⎫⎬⎭+ n−1/2hβ−1/2a−1/2
n K(j)

(
x− zn
h

;h

)
Sn

= n−3/2hβ−3/2a−3/2
n

n−1∑
r=1

K(j+1)

(
x− zr
h

;h

)
Sr − 2−1 n−5/2hβ−5/2a−5/2

n

n−1∑
r=1

K(j+2) (ξr;h)Sr

+n−1/2hβ−1/2a−1/2
n K(j)

(
x− zn
h

;h

)
Sn

Taking the difference of Z
(j)
n (x) and Z

(j)
n,1(x) we estimate

|Z(j)
n (x)− Z

(j)
n,1(x)| =

∣∣∣n−3/2hβ−3/2a−3/2
n

n−1∑
r=1

K(j+1)

(
x− zr
h

;h

)
(Sr −W1(r))

∣∣∣
+

∣∣∣2−1 n−5/2hβ−5/2a−5/2
n

n−1∑
j=1

K(j+2) (ξr;h)Sr

∣∣∣
+

∣∣∣n−1/2hβ−1/2a−1/2
n K(j)

(
x− zn
h

;h

)
(Sn −W1(n))

∣∣∣.
= I + II + III.
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Then

I ≤ n−3/2hβ−3/2a−3/2
n max

1≤u≤n
|Su −W1(u)|

n−1∑
r=1

∣∣∣∣K(j+1)

(
x− zr
h

;h

)∣∣∣∣
= Op(δnn

−1/2hβ−3/2a−1/2
n )

( ∫ 1/an

0

∣∣∣∣K(j+1)

(
x− s

h
;h

)∣∣∣∣ ds+O
(
h−β (nan)

−1
) )

= Op

(
(log(log(n)))1/4 (log(n))1/2

(
n−1/4h−1/2a−1/2

n + n−5/4h−3/2a−3/2
n

))
,

since by Assumption 2,

∫ 1/an

0

∣∣∣∣K(j+1)

(
x− s

h
;h

)∣∣∣∣ ds = h

1/(han)∫
0

∣∣∣K(j+1)
(x
h
− s;h

)∣∣∣ ds = O(h1−β)

and for every j ≥ 0,∣∣∣hβK(j)(x)
∣∣∣ = ∣∣∣∣hβ2π

∫
R

(−iω)je−iωx Φk(ω)

ΦΨ(ω/h)
dω

∣∣∣∣ ≤ 1

πCε

∫
|ω|j+β |Φk(ω)|dω = C∗ <∞,

so that
|K(j)(x;h)| = O(h−β) uniformly in x. (12)

Further, we have
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−5/2
n

2
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K(j+2) (ξr)Sr = Op(n
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by using (12) and
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Finally,
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We further introduce the processes

Z
(j)
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dW (s),
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Lemma 6. Under Assumptions 1 and 2,

Zn,1(x)
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)
.
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Proof. We have

Z
(j)
n,1(x)

d
= n−1a−3/2
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For the first term on the right in (13), using the modulus of continuity of Brownian motion on [0, 1]
and (12), we get
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Further, for the integral in (14) we compute
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and recollecting the second term on the right in (13) and changing scale as well to W (1/an), we get
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which together with the remainder estimate in (14) yields the lemma.

Using Assumptions 2 B., C. and the law of the iterated logarithm, one shows that

Lemma 7. Under Assumptions 2 B., C.,

‖Z(j)
n,2 − Z

(j)
n,4‖[0,1] = oP ((log(n))

−1/2).

Proof of theorem 1: The theorem now follows from Lemmas 5-7 and an application of Theorem/Corollary

A.1 in Bickel and Rosenblatt (1993) to the process Z
(j)
n,4(x).

19


