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1. INTRODUCTION

Autoregressive models with switching regime are a frequently used class of non-linear time se-
ries models, which are popular in finance, engineering, and other fields.
Often, only a single parameter is allowed to switch, all other parameters are taken as structural
parameters, which are supposed to be the same for all states, see e.g. Hamilton (1989, 2008), or
Piger (2009), who apply regime switching models for the identification of business cycle turning
points. Compared to a model in which all parameters are allowed to switch, a single switch-
ing parameter has two major advantages: First, the states have easier and better interpretations,
since they only affect a single parameter like variance or drift. Second, allowing all parameters
to switch often leads to too many parameters, and the estimation results become pretty unstable.
However, in particular in financial applications to series of stock returns, one might expect peri-
ods of high volatility to be accompanied by slightly lower means, whereas periods of low volatil-
ity have slightly higher means. Thus, in this context, two parameters should be allowed to switch
simultaneously, while other model parameters can be modeled as structural parameters. There-
fore, in this paper we suppose that the observed stationary time series (Xt)t∈Z follows the model

Xt = ζSt +

p∑
j=1

φjXt−j + σStεt, (1)

where εt
iid∼ N(0, 1), and where (St)t∈Z is a stationary (unobserved) Markov chain on a finite

state space M = {1, . . . ,m}. In case of two states m = 2, the parameters of interest are the
entries a21, a12 of the transition matrixP = (aij)i,j=1,2 of the Markov chain, the state-dependent
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parameters (ζ1, σ1), (ζ2, σ2) ∈ Z × Σ ⊂ R2 as well as the structural autoregressive parameters
φ ∈ Φ ⊂ Rp which are the same for all states.

Our main purpose in this paper is to propose a test for the hypothesisM = {1} of no regime
switch against the alternative of two statesM = {1, 2} in model (1). The asymptotic behaviour
of likelihood-based methods is however difficult due to the following reasons:
1. Testing for homogeneity in simple finite mixture models results in loss of identifiability under
the null-hypothesis, see e.g. Dacunha-Castelle & Gassiat (1999),
2. For the normal model, additional technical difficulties arise due to loss of “strong identifiabil-
ity”, see Chen & Chen (2003),
3. For normal models, if the variance is allowed to switch as well and is not constrained, the like-
lihood function becomes unbounded and the Fisher information is infinite for certain parameter
combinations (e.g. Chen & Li 2009),
4. Finally, additional difficulties arise if the Markov dependence structure of the regime is incor-
porated in the test statistic: Even for compact parameter spaces, Gassiat & Keribin (2000) show
that the LRT for regime switching may not converge in distribution at all.

Despite these difficulties we can construct tests with a tractable asymptotic distribution by
using a quasi likelihood which neglects the dependence structure in the regime under the alterna-
tive, and by using the EM-test technique as in Chen & Li (2009) and Li, Chen & Marriot (2009)
for i.i.d. mixtures and in Holzmann & Ketterer (2011) for switching autoregressions with single
switching parameter.

Switching regime models are used as an alternative to GARCH-type models to capture the
conditional heteroscedasticity in financial time series, with subsequent applications of volatility
estimation and estimation of risk measures such as the value at risk. Indeed, a Markov-switching
of the standard deviation of the residuals (as in our model (1)) already results in conditional
heteroscedasticity. Simple hidden Markov models with state-dependent normal distributions for
daily log-returns of stocks or stock indices are used by Rydén, Teräsvirta, & Asbrink (1998) and
Velucchi (2009). While Rydén, Teräsvirta, & Asbrink (1998) fix the mean at zero, Velucci (2009)
allows both mean and standard deviations to switch, and concludes that there are two regimes:
one with low returns and high volatility and a second with high returns and low volatility. A
slightly different version of model (1) is used in Bhar & Hamori (2004) for modeling monthly
returns of stock indices from the G7 countries. They suggest their Markov-switching stock return
model as follows,

Xt − µSt
= φ(Xt−1 − µSt−1

) + σSt
εt, εt

iid∼ N(0, 1). (2)

Similarly to Velucchi (2009) they conclude that there are two states, one with high σ and small
µ, the other with smaller σ and high µ. When comparing models, in model (1) a level shift in
the mean occurs immediately when changing the state of the underlying Markov chain while the
mean level in model (2) approaches the new value gradually over several periods. Without regime
switch both models reduce to simple linear autoregressions. Using our test methodology, we in-
vestigate whether a similar phenomenon of joint regime switch in mean and variance can also be
observed in model (1) when applied to a series of monthly IBM stock returns from January 1926
to December 1999. Finally, we mention that some authors consider regime-switching ARCH and
GARCH models, in which the parameters of a GARCH-type model are allowed to switch (see
Lange & Rahbeck 2009). However, these models are quite involved, and the actual effect of a
regime switch in the conditional heteroscedasticity structure is not particularly transparent.

This paper is organized as follows. In Section 2 we propose our tests for regime switch in
model (1). Section 3 contains a simulation section in which we investigate the finite sample
properties of the proposed tests. In Section 4, we apply the methodology to the series of IBM
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stock returns. Sketches of proofs are given in an appendix, complete arguments can be found in
the supplementary material Ketterer and Holzmann (2012).

2. TESTING FOR SWITCHING INTERCEPT AND VARIANCE

In this section, we develop methods for testing for homogeneity in model (1) using (penalized)
likelihood based tests. In our theoretical derivations, we shall assume for the standard deviations
that Σ = [δ,∞) for some δ > 0, which guarantees that the likelihood functions are bounded.
Other possibilities proposed in the literature include bounding the ratio of the variances from
below (Hathaway 1985), or penalizing deviations of σ from homogeneity, in particular smaller
values of σ (Chen, Tan & Zhang 2008, Chen & Li 2009). We shall explore the latter possibility
in the simulation study. To ensure identifiability of the parameters and for the uniqueness of the
order p, we suppose that under the null model, i.e. no regime switch, (Xt)t∈Z is a causal AR(p)
process.

2.1. Quasi Likelihood
Let ϕ(·) be the density of a standard normal variate and denote by ϕ(·;µ, σ) = (1/σ)ϕ

(
(· −

µ)/σ
)

the corresponding location scale family and Xp
k = (Xk, . . . , Xk−p+1). Conditional on

Xp
k−1 = xpk−1 and Sk = i, Xk has density

ϕ
(
xk;µ(ζi,φ;xpk−1), σi

)
,

where

µ(ζi,φ;xpk−1) = E[Xk|Xp
k−1 = xpk−1, Sk = i] = ζi +

p∑
j=1

φjxk−j .

The conditional log-likelihood given the initial observations Xp
0 = (X0, . . . , X−p+1) (we start

indexing from −p+ 1,−p+ 2, . . .) and the initial unobserved state S0 = i0 is given by

l̃n(ω) = log
( 2∑
i1=1

· · ·
2∑

in=1

n∏
k=1

aik−1,ik ϕ(Xk;µ(ζik ,φ;Xp
k−1), σik)

)
(3)

whereω = (a12, a21, (ζ1, σ1), (ζ2, σ2),φT )T .We shall use the full model likelihood in Equation
(3) for computing the model selection criteria AIC and BIC in our application in Section 4.
However, for the reasons discussed in the introduction, we shall base our test not on the full
model likelihood in Equation (3), but rather on a quasi likelihood which neglects the dependence
of the regime, and which is defined as follows

ln(α, ζ1, ζ2, σ1, σ2,φ)

=

n∑
k=1

log
(
(1− α)ϕ(Xk;µ(ζ1,φ;Xp

k−1), σ1) + αϕ(Xk;µ(ζ2,φ;Xp
k−1), σ2)

)
,

(4)

where ψ = (α, (ζ1, σ1), (ζ2, σ2),φT )T and (1− α, α)T corresponds to the stationary distribu-
tion of the hidden Markov chain (St)t∈Z. In terms of the parameters of the quasi likelihood, the
hypothesis of no regime switch is formulated as

H : (ζ1, σ1) = (ζ2, σ2) or α(1− α) = 0.
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A methodologically simple approach would be to test H via a likelihood ratio statistic based on
the quasi likelihood,

QLRn = 2
(

max
α,ζ1,ζ2,σ1,σ2,φ

ln(α, ζ1, ζ2, σ1, σ2,φ)− ln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)
)
, (5)

where ζ̂0, σ̂0 and φ̂0 are the maximizers of ln under the null. Cho & White (2007) use this
approach in the simpler case of a single switching parameter. However, in case of simultaneously
switching intercept and scale, the asymptotic distribution of the QLR test is unknown and seems
to be very difficult to derive. The tests which will be introduced are designed for alternatives
(ζ1, σ1) 6= (ζ2, σ2) and (due to essentially fixing the weights and penalizing small weights) not
against small deviations of the mixture weight from 0 or 1.

2.2. Tests for homogeneity
A simple possibility is to consider a finite set of fixed values J = {α1, . . . , αJ} for α. Define

Rn(αj) = 2
(
ln(αj , ζ̂1,αj

, ζ̂2,αj
, σ̂1,αj

, σ̂2,αj
, φ̂αj

)− ln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)
)
, αj ∈ J ,

where (ζ̂1,αj
, ζ̂2,αj

, σ̂1,αj
, σ̂2,αj

, φ̂αj
) is the maximizer of ln(α, ζ1, ζ2, σ1, σ2,φ) subject to α =

αj , and set

Rn(J ) = max
αj∈J

Rn(αj).

Theorem 1. Under the null model, we have for finite J ⊂ (0, 1), whenever 1/2 ∈ J ,

Rn(J )
d→ χ2

2, n→∞,

where χ2
ν denotes the χ2-distribution with ν > 0 degrees of freedom and d→ denotes convergence

in distribution.

We provide an outline of the proof of the theorem in the appendix, full details are provided in
Ketterer & Holzmann (2012). While the simulations in Section 3 show that the test Rn(1/2)
keeps the nominal level quite well (already for small sample sizes), additional simulations (not
displayed) indicate that if the set J contains further elements, as e.g. J = {0.1, 0.3, 0.5}, the test
is highly anticonservative even for moderately large sample sizes, and therefore the asymptotic
approximation should not be used.

As in Chen & Li (2009) and Holzmann & Ketterer (2011), one can also construct a so-called
EM-test. This is based on a penalized quasi likelihood function of the form

pln(α, ζ1, ζ2, σ1, σ2,φ) = ln(α, ζ1, ζ2, σ1, σ2,φ) + p(α), p(α) = C log(1− |1− 2α|), (6)

for some fixed C > 0. For each αj ∈ J , we compute

M (0)
n (αj) = Rn(αj) + 2{p(αj)− p(0.5)}.

Then for each αj we perform a fixed finite number K of EM-steps using pln to obtain updated
EM-estimates (α

(k)
j , ζ

(k)
1j , ζ

(k)
2j , σ

(k)
1j , σ

(k)
2j ,φ

(k)
j ), k = 1, . . . ,K, and test statistics

M (k)
n (αj) = 2

{
pln(α

(k)
j , ζ

(k)
1j , ζ

(k)
2j , σ

(k)
1j , σ

(k)
2j ,φ

(k)
j )− pln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)

}
.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2012 5

The EM-statistic EM (K)
n (J ) is then set to the maximal value

EM (K)
n (J ) = max

{
M (K)
n (αj), j = 1, . . . , J

}
.

The precise formulation of the test statistic EM (K)
n (J ) is given in the appendix. On the one

hand, by performing the EM-iteration, one hopes to improve the power properties of the test, on
the other hand, by penalizing values αj ∈ J with αj 6= 1/2, the test is less anticonservative than
the corresponding version of Rn(J ). The asymptotic distribution of EM (K)

n (J ) under the null
is the same as that of Rn(J ),

EM (K)
n (J )

d→ χ2
2, n→∞. (7)

Here, it is necessary to include 1/2 ∈ J in order to obtain the supposed asymptotic distribution.
If not so, the asymptotic distribution of EM (K)

n (J ) would be a location shifted χ2
2-distribution

where the shift maxαj∈J 2{p(αj)− p(0.5)} is due to the penalty on α. A proof of (7) can be
found in Ketterer (2011).

3. SIMULATIONS

Here we present some of the results of an extensive simulation study of the proposed tests. For
the EM-test and Rn(J ), we always choose J = {0.1, 0.3, 0.5}, and further consider Rn(1/2).
For the lower bound δ on the σi’s one may choose a fixed fraction (e.g. 1/5) of the value σ̂0
estimated under the homogeneous model. Alternatively, following Chen, Tan, & Zhang (2008)
and Chen & Li (2009) we add the additional penalty

p̃n(σ1) + p̃n(σ2), where p̃n(σ) = −0.5 ·
(
σ̂2
0/σ

2 + log(σ2/σ̂2
0)
)

to the penalized quasi likelihood function (6). For the penalty on α in Equation (6), we choose
C = 3 in general and C = 1 if the penalty on σ given above is added. Indeed, if C =∞, the
EM-test reduces to the test against the fixed proportion of 1/2, and if C = 0 to the simple quasi
likelihood ratio test. In a further paper, Chen & Li (2011) give recommendations (in a slightly
different setting of the EM-test) how to determine suitable values of C by simulations, mainly
to keep the level under the hypothesis. A more simple approach would be to first estimate the
parameters under the hypothesis, and then to try different values for C in simulations when
generating data from the estimated model, and then choose C minimal such that the test still
keeps its nominal level. We simply investigated several fixed values (between 0.5 and 3) for
some models and parameter values, and found that 1 (in case of penality on σ) and 3 (without
further penalty) worked reasonably well in the scenarios under investigation in terms of both
level and power.

3.1. Simulated sizes
First, we simulate the sizes of the two tests for the following data generating processes (DGP).
DGP 1: Xt = 0.5Xt−1 + εt where εt

iid∼ N(0, 1),
Model 1: Xt = ζSt + φXt−1 + σStεt with εt

iid∼ N(0, 1).
The results for various sample sizes are displayed in Table 4.2 (without penalty on σ) and Table
4.2 (with penalty on σ).
DGP 2: Xt = 0.6Xt−1 − 0.3Xt−2 + εt where εt

iid∼ N(0, 1),
Model 2: Xt = ζSt + φ1Xt−1 + φ2Xt−2 + σStεt with εt

iid∼ N(0, 1).

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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The results for various sample sizes can be found in Table 4.2 (without penalty on σ) and Table
4.2 (with penalty on σ).

Without penalty on σ, the tests are slightly anticonservative for the small sample size n = 200
in both scenarios, but keep the level reasonably well for larger sample sizes. Adding the penalty
on σ improves the behaviour of the EM-test, but makes Rn(1/2) somewhat conservative.

3.2. Power comparison of several tests
Next we conduct a power comparison between several tests. For proper estimation of the power
we shall use simulated critical values. Precisely, for given alternative, we generate a single large
sample (n = 10000) from this alternative and fit a corresponding null model to this sample by
maximum likelihood. Note that this will approximate the null model with minimal Kullback-
Leibler distance to the given alternative. From this null model, we generate 10000 samples of
size 200, and in each case compute the test statistics and then compute the finite sample critical
values for the test statistics as empirical quantiles. Although the asymptotic properties of the
quasi likelihood ratio test (abbreviated QLRT) given in Equation (5) are unknown, we use it,
with simlulated critical values as described above, as a benchmark test.

Furthermore, we evaluate the power of the EM-test designed for linear switching autoregres-
sive models with a single switching parameter, namely a switching intercept, see Holzmann and

Ketterer (2011). We denote the corresponding test statistic by ẼM
(K)

n (J ), here.
DGP 1: Xt = (−1)St · 0.1 + 0.5Xt−1 + (1{St=1} + 2 · 1{St=2})εt with εt

iid∼ N(0, 1) and var-
ious combinations a12 and a21 leading to different values of α.
Model 1(a): Xt = ζSt

+ φXt−1 + σSt
εt, where εt

iid∼ N(0, 1), for EM (K)
n (J ), QLRn and

Rn(1/2)

Model 1(b): Xt = ζSt + φXt−1 + σεt, where εt
iid∼ N(0, 1), for ẼM

(K)

n (J ).
The results (without penalty on σ) are presented in Table 4.2 (there, the transition probabilities
of the hidden Markov chain are in bold print if and only if the regime reduces to an i.i.d. sample,
i.e. a12 = 1− a21 holds). The power of the compared tests mainly depends on the stationary
distribution of (St)t∈Z. The particular transition probabilities of the hidden Markov chain do
not significantly influence the power of the corresponding tests. In all scenarios, the test based
on fixed α = 1/2 under the alternative slightly outperforms the EM-test: Due to the large value
C = 3 in Equation (6), the EM-test takes its maximum for the starting value αj = 1/2. The EM-
test designed for linear switching autoregressive models with possibly switching intercept under
the alternative shows the lowest power of the tests under consideration. Therefore, we should
only use this test if there is a priori knowledge that the scale parameter in both regimes is almost
identical. We also included the penalty on σ in all test statistics. The simulated critical values
for the QLRT, Rn(J ) and the EM-test are much smaller in this case, which also leads to higher
power of these tests (see Table 4.2). For small values of α under the alternative, Rn(J ), the
QLRT and also the EM - test have higher power than Rn(1/2), as could be expected.
DGP 2:Xt = (−1)St + 0.3Xt−1 + (1{St=1} + 1.1 · 1{St=2})εt with εt

iid∼ N(0, 1) and various
combinations a12 and a21 leading to different values of α.
Model 2(a): Xt = ζSt

+ φXt−1 + σSt
εt, where εt

iid∼ N(0, 1), for EM (K)
n (J ), QLRn and

Rn(1/2)

Model 2(b): Xt = ζSt + φXt−1 + σεt, where εt
iid∼ N(0, 1), for ẼM

(K)

n (J ).
The results (without penalty on σ) are presented in Table 4.2. Here, the power of our tests highly
depends on the stationary distribution as well as on the transition probabilities of the hidden
Markov chain. Since the scale parameter of the innovation process is quite close in both regimes,
the EM-test designed for linear switching autoregressive models with possibly switching inter-
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cept under the alternative outperforms the tests which allow for a switch in both intercept and
scale. We also included the penalty on σ in all test statistics, the effect of which is similar as in
the above scenario, see Table 4.2).
Finally, we compare the power of the tests under consideration with the power of the MQLRT
designed for linear switching autoregressive models with possibly switching scale parameter of
the innovations as introduced in Holzmann and Ketterer (2011), denoted by Mn.
DGP 3: Xt = (−1)St · 0.7 + 0.5Xt−1 + (1.8 · 1{St=1} + ·1{St=2})εt with εt

iid∼ N(0, 1) and
various combinations a12 and a21 leading to different values of α.
Model 3(a): Xt = ζSt

+ φXt−1 + σSt
εt, εt

iid∼ N(0, 1), for EM (K)
n (J ), QLRn and Rn(1/2),

Model 3(b): Xt = ζSt + φXt−1 + σεt, εt
iid∼ N(0, 1), for ẼM

(K)

n (J )

Model 3(c): Xt = ζ + φXt−1 + σSt
εt, εt

iid∼ N(0, 1), for Mn.
The results (without penalty on σ) can be found in Table 4.2. Here, the tests designed for switch-

ing intercept and variance under the alternative outperform ẼM
(K)

n (J ) as well as Mn. In all
scenarios, the test based on fixed α = 1/2 has slightly higher power than the corresponding EM-

test. Since Mn and ẼM
(K)

n (J ) have lower power than the tests designed for two switching
parameters, EM (K)

n (J ) or Rn(1/2) should be preferred if there is no a priori knowledge that
the scale parameter (resp. the intercept) in both regimes is almost identical. We also included the
penalty on σ in all test statistics, the effect of which is similar as in the above scenarios, see Table
4.2).
Summarizing, regarding level together with power we recommend the use of either Rn(1/2)

without penalties, or of EM (1)
n (J ) with the additional penalty on σ, using an appropriate value

for the tuning constant C > 0.

4. APPLICATION

In this section, we apply our methods to the series of monthly log returns
(Xt)t=−3,...,884 of IBM stock from January 1926 to December 1999. The re-
turns are in percentage and include dividends. The data can be obtained from
http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts/m-ibmspln.dat

4.1. Marginal distribution
A kernel density estimate (see Figure 1, right) indicates slight asymmetry and fat tails. The em-
pirical skewness coefficient and kurtosis are given by −0.2369 and 4.9278, respectively. To deal
with skewness and kurtosis in the unconditional distribution of stock returns finite normal mix-
tures have been applied quite often, see e.g. Kon (1984). In a first step, we test one against two
components in a normal mixture model using penalized likelihood based tests. The hypothesis of
a single component is rejected (with p-value < 0.001) by every test under consideration. Testing
against an alternative with possibly distinct means and variances using the EM-test introduced in
Chen and Li (2009), we see that the alternative two-component model has almost identical means
(µ1 = 1.37 and µ2 = 0.94), quite different standard deviations (σ1 = 4.80 and σ2 = 9.89) and
the relative size of component 2 is α = 0.30.
But modeling the series of log returns for IBM stock by finite mixtures would only be appro-
priate if the data did not exhibit autocorrelation. The empirical partial autocorrelation indicates
an AR(1) process, and the autocorrelation function of the squares gives evidence for conditional
heteroscedasticity. Therefore we use time series models for the analysis.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



8 KETTERER AND HOLZMANN Vol. xx, No. yy

4.2. Autoregressive model
To start, we fit an AR(1) model

Xt = ζ + φXt−1 + σεt, εt
iid∼ N(0, 1),

yielding the estimate (ζ̂, φ̂, σ̂) = (1.157, 0.077, 6.698), to capture autocorrelation in our time
series. Computing the residuals (ε̂t) of the fitted model and testing for normality using the
Anderson-Darling test (An = 2.95) we strongly reject H : εt

iid∼ N(0, σ2) by a p-value < 0.001
(for reasons why to use asymptotic critical values of the Anderson-Darling test for independent
and identically distributed observations, cf. Pierce 1985) and which indicates lack-of-fit of the
supposed AR(1) model. While Tsay (2002) fits an AR(1)-GARCH(1,1) to the monthly log re-
turns of IBM stock, Kim, Nelson, & Startz (1998) and Bhar & Hamori (2004) suggest modeling
monthly stock returns by Markov-switching autoregressive models, in general. We follow this
approach and fit several linear switching autoregressive models to the data.

Testing for homogeneity in the model

Xt = ζSt + φXt−1 + σStεt, εt
iid∼ N(0, 1), (8)

using the tests introduced in this paper, we clearly reject the hypothesis of no regime switch
using the test against fixed α = 1/2 under the alternative (Rn(1/2) = 47.64 without penalty
on sigma, and Rn(1/2) = 46.44 with penalty on sigma) and the EM-test (EM (2)

n (J ) = 52.05

without penalty on sigma andC = 3, andEM (2)
n (J ) = 53.03 with penalty on sigma andC = 1)

with a p-value < 0.001. The full model MLE for model (8) yields (â12, â21) = (0.015, 0.052),
(ζ̂1, σ̂1) = (1.266, 5.183), (ζ̂2, σ̂2) = (0.752, 10.383) and φ̂ = 0.081. Our analysis indicates that
there are two regimes: Regime 1 with higher mean level in the (log) returns and lower variance
and regime 2 with slightly lower mean level in the (log) returns and higher variance.

Our next analysis concerns testing if the intercept as well as the scale parameter of the in-
novations switch according to the hidden Markov-chain or if one of the parameters is equal in
both scenarios. Fitting model (8) with two states using maximum likelihood for the full model,
we have to find parameters ω = (a12, a21, (ζ1, σ1), (ζ2, σ2), φ)T with (ζ1, σ1) 6= (ζ2, σ2) and
(a12, a21) ∈ (0, 1]2 maximizing l̃n(ω).

Assuming that σ1 6= σ2, testingH : ζ1 = ζ2 in model (8) with two states is a regular problem
and therefore the likelihood ratio statistic

Tn = 2
(
max
ω

l̃n(ω)− max
ω:ζ1=ζ2

l̃n(ω)
)

asymptotically follows a χ2
1 distribution. In our case, we have Tn = 0.322 (p-value=0.57). There-

fore, we cannot reject the hypothesis H : ζ1 = ζ2.
Assuming that ζ1 6= ζ2, testing the hypothesis H : σ1 = σ2 in model (8) is also a regular

problem and therefore the likelihood ratio statistic

Tn = 2
(
max
ω

l̃n(ω)− max
ω:σ1=σ2

l̃n(ω)
)

asymptotically follows a χ2
1 distribution. In our case, we have Tn = 112.8643 (p-value< 0.001).

Therefore, we clearly reject the hypothesis H : σ1 = σ2.
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Tables and Figures

TABLE 1: DGP: Xt = 0.5Xt−1 + εt, where εt
iid∼ N(0, 1), Model: Xt = ζSt + φXt−1 + σStεt, with

εt
iid∼ N(0, 1); number of replications: 20000, no penalty on σ

Sample Size Levels (%) EM
(0)
n (J ) EM

(1)
n (J ) EM

(2)
n (J ) Rn(1/2)

n = 200 10% 11.8 12.0 12.0 11.1

5% 6.4 6.4 6.4 5.8

1% 1.4 1.4 1.4 1.2

n = 500 10% 10.9 10.9 10.9 10.7

5% 5.6 5.6 5.6 5.4

1% 1.4 1.4 1.4 1.3

n = 1000 10% 10.4 10.4 10.4 10.4

5% 5.3 5.3 5.3 5.2

1% 1.1 1.1 1.1 1.1

TABLE 2: DGP: Xt = 0.5Xt−1 + εt, where εt
iid∼ N(0, 1), Model: Xt = ζSt + φXt−1 + σStεt, with

εt
iid∼ N(0, 1); number of replications: 20000, penalty on σ included.

Sample Size Levels (%) EM
(1)
n (J ) EM

(2)
n (J ) Rn(J ) Rn(1/2)

n = 200 10% 9.4 9.4 13.7 8.7

5% 4.6 4.7 7.2 4.2

1% 1.0 1.0 1.4 0.8

n = 500 10% 9.7 9.7 12.8 9.3

5% 5.0 5.0 6.5 4.6

1% 0.9 0.9 1.4 0.8
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iid∼ N(0, 1), for EM (K)

n (J ), QLRn and Rn(1/2) and Model (b): Xt = ζSt + φXt−1 + σεt,

εt
iid∼ N(0, 1), for ẼM

(K)

n (J ). Let α = a12/(a12 + a21) be the stationary distribution of the hidden
Markov chain (St)t∈Z, no penalty on σ

a12 a21 α EM
(0)
n (J ) EM

(1)
n (J ) ẼM

(0)

n (J ) ẼM
(1)

n (J ) QLRn Rn(1/2)
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a12 a21 α EM
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0.5 0.5 63.3 61.3 64.3 64.0
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TABLE 7: Nominal level: 5% DGP: Xt = (−1)St + 0.3Xt−1 + (1{St=1} + 1.1 · 1{St=2})εt with

εt
iid∼ N(0, 1), sample size: 200, number of replications: 5, 000. Model (a): Xt = ζSt + φXt−1 + σStεt,

εt
iid∼ N(0, 1), for EM (K)

n (J ), QLRn and Rn(1/2) and Model (b): Xt = ζSt + φXt−1 + σεt,

εt
iid∼ N(0, 1), for ẼM

(K)

n (J ), α = a12/(a12 + a21), no penalty on σ.

a12 a21 α EM
(0)
n (J ) EM

(1)
n (J ) ẼM

(0)

n (J ) ẼM
(1)

n (J ) QLRn Rn(1/2)

0.1 0.1 0.5 8.4 8.3 9.1 9.1 6.0 8.7

0.3 0.3 26.8 26.7 38.6 38.2 17.9 27.8

0.5 0.5 37.7 37.6 53.5 53.0 22.0 38.7

0.7 0.7 24.9 25.0 38.8 38.3 15.6 25.0

0.9 0.9 8.6 8.5 12.1 12.4 6.2 8.8

0.4 0.6 0.4 49.2 49.3 54.7 55.4 29.5 50.0

0.2 0.3 27.4 27.3 35.5 35.5 17.6 28.3

0.1 0.15 14.0 14.0 13.1 13.4 6.2 14.0

0.2 0.8 0.2 65.1 65.0 62.1 62.5 47.7 66.0

0.1 0.4 46.7 46.3 45.7 45.5 29.6 47.4

0.1 0.9 0.1 50.0 49.6 44.7 44.2 36.4 50.3

0.05 0.45 36.9 36.8 32.8 32.5 26.4 37.4

TABLE 8: As in Table 4.2 but including the penalty on σ for all test statistics.

a12 a21 α EM
(1)
n (J ) QLRn Rn(J ) Rn(1/2)

0.1 0.1 0.5 9.0 8.4 8.6 8.8

0.5 0.5 38.8 34.9 35.8 38.2

0.4 0.6 0.4 50.2 46.9 48.8 50.5

0.2 0.8 0.2 66.6 66.1 67.3 67.9

0.1 0.9 0.1 51.6 54.1 54.3 52.6

0.05 0.45 40.4 41.4 42.5 40.3
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TABLE 9: Nominal level: 5% DGP: Xt = (−1)St · 0.7 + 0.5Xt−1 + (1.8 · 1{St=1} + ·1{St=2})εt with

εt
iid∼ N(0, 1), sample size: 200, number of replications: 5, 000. Model (a): Xt = ζSt + φXt−1 + σStεt,

εt
iid∼ N(0, 1), for EM (K)

n (J ), QLRn and Rn(1/2), Model (b): Xt = ζSt + φXt−1 + σεt,

εt
iid∼ N(0, 1), for ẼM

(K)

n (J ), and Model (c): Xt = ζ + φXt−1 + σStεt, εt
iid∼ N(0, 1), for Mn. Let

α = a12/(a12 + a21) be the stationary distribution of the hidden Markov chain (St)t∈Z.

a12 a21 α EM
(0)
n (J ) EM

(1)
n (J ) ẼM

(0)

n (J ) ẼM
(1)

n (J ) Mn QLRn Rn(1/2)

0.1 0.1 0.5 74.5 74.6 35.6 41.3 48.8 57.8 75.3

0.3 0.3 84.5 84.5 54.2 59.6 50.2 67.0 85.4

0.5 0.5 87.5 87.5 47.4 51.3 36.6 70.5 87.7

0.7 0.7 85.5 85.3 51.4 55.4 39.7 69.6 86.3

0.9 0.9 83.4 83.3 47.1 51.9 38.5 65.1 84.3

0.4 0.6 0.4 74.6 74.4 49.7 52.2 18.9 52.9 75.2

0.2 0.3 70.8 70.6 42.4 45.4 22.8 50.6 71.7

0.2 0.8 0.2 26.3 26.2 23.3 23.6 4.3 15.3 26.7

0.1 0.4 26.4 26.4 21.0 22.0 5.0 16.9 26.6

TABLE 10: As in Table 4.2 but including the penalty on σ for all test statistics.

a12 a21 α EM
(1)
n (J ) QLRn Rn(J ) Rn(1/2)

0.1 0.1 0.5 76.7 75.2 76.5 76.8

0.5 0.5 87.0 85.3 86.3 87.6

0.4 0.6 0.4 75.1 72.9 74.3 74.9

0.2 0.8 0.2 28.6 27.4 27.5 28.5

0.1 0.4 28.5 27.0 28.0 28.4

Appendix

The EM-test
In the following we describe the (quasi) EM-test for testing for homogeneity in model (1). Note that in the following
algorithm we proceed in some steps via the ECM algorithm instead of the EM algorithm. If we use the EM algorithm,
we have to derive the updated estimators (ζ(k+1)

1j , ζ
(k+1)
2j , σ

(k+1)
1j σ

(k+1)
2j ,φ

(k+1)
j ) in Step 3 by maximizing

n∑
t=1

(1− w(k)
tj ) logϕ(Xt;µ(ζ1,φ;Xp

t−1), σ1) +

n∑
t=1

w
(k)
tj logϕ(Xt;µ(ζ2,φ;Xp

t−1), σ2),

where w(k)
tj will be described presently, simultaneously over Z2 × [δ,∞)2 ×Φ.

Step 0. Choose 0 < α1 < α2 < . . . < αJ = 0.5. Compute

(ζ̂0, σ̂0, φ̂0) = arg max
ζ,σ,φ

pln(0.5, ζ, ζ, σ, σ,φ).

Put j = 1 and k = 0.
Step 1. Put α(k)

j = αj .

Step 2. Compute

(ζ
(k)
1j , ζ

(k)
2j , σ

(k)
1j , σ

(k)
2j ,φ

(k)
j ) = arg max

ζ1,ζ2,σ1,σ2,φ
pln(α

(k)
j , ζ1, ζ2, σ1, σ2,φ)
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TABLE 11: BIC and AIC for the corresponding models for monthly returns of IBM stock

BIC M1 M2 M3 M4 M5

p = 1 5891.56 5812.57 5799.38 5911.92 5805.84

p = 2 5898.25 5825.86 5805.96 5918.60 5812.42

p = 3 5904.65 5838.91 5812.71 5925.00 5819.17

p = 4 5911.08 5849.97 5817.83 5931.43 5824.29

AIC M1 M2 M3 M4 M5

p = 1 5877.21 5774.30 5770.67 5883.21 5772.35

p = 2 5879.11 5778.01 5772.47 5885.11 5774.15

p = 3 5880.73 5781.50 5774.43 5886.73 5776.11

p = 4 5882.37 5782.99 5774.77 5888.37 5776.45
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FIGURE 1: Monthly log returns (in % and including dividends) for IBM stock from January 1926 to
December 1999 (left). A kernel density estimate (solid line) of the monthly log returns for IBM stock
(right) together with the density of a fitted two-component normal mixture model (dashed line) and of a

single normal (dotted line).

and

M
(k)
n (αj) = 2

{
pln(α

(k)
j , ζ

(k)
1j , ζ

(k)
2j , σ

(k)
1j , σ

(k)
2j ,φ

(k)
j )− pln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)

}
.

Step 3. Compute for t = 1, . . . , n the weights

w
(k)
tj =

α
(k)
j ϕ(Xt;µ(ζ

(k)
2j ,φ

(k)
j ;Xp

t−1), σ
(k)
1j )

(1− α(k)
j )ϕ(Xt;µ(ζ

(k)
1j ,φ

(k)
j ;Xp

t−1), σ
(k)
1j ) + α

(k)
j ϕ(Xt;µ(ζ

(k)
2j ,φ

(k)
j ;Xp

t−1), σ
(k)
2j )

.
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Compute the estimators

α
(k+1)
j = argmax

α

(
(n−

n∑
t=1

w
(k)
tj ) log(1− α) +

n∑
t=1

w
(k)
tj log(α) + p(α)

)

ζ
(k+1)
1j =

∑n
t=1(1− w

(k)
tj )(Xt −

∑p
τ=1 φ

(k)
τj Xt−τ )∑n

t=1(1− w
(k)
tj )

ζ
(k+1)
2j =

∑n
t=1 w

(k)
tj (Xt −

∑p
τ=1 φ

(k)
τj Xt−τ )∑n

t=1 w
(k)
tj

φ
(k+1)
j = argmax

φ

(
n∑
t=1

(1− w(k)
tj ) logϕ(Xt;µ(ζ

(k+1)
1j ,φ;Xp

t−1), σ
(k)
1j )

+

n∑
t=1

w
(k)
tj logϕ(Xt;µ(ζ

(k+1)
2j ,φ;Xp

t−1), σ
(k)
2j )

)

σ
(k+1)
1j = argmax

σ1

n∑
t=1

(1− w(k)
tj ) logϕ(Xt;µ(ζ

(k+1)
1j ,φ

(k+1)
j ;Xp

t−1), σ1)

σ
(k+1)
2j = argmax

σ2

n∑
t=1

w
(k)
tj logϕ(Xt;µ(ζ

(k+1)
2j ,φ

(k+1)
j ;Xp

t−1), σ2).

Compute

M
(k+1)
n (αj) = 2

{
pln(α

(k+1)
j , ζ

(k+1)
1j , ζ

(k+1)
2j , σ

(k+1)
1j , σ

(k+1)
2j ,φ

(k+1)
j )

−pln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)
}
,

put k = k + 1 and repeat Step 3 for a fixed number of iterations K.
Step 4. Put j = j + 1, k = 0 and go to Step 1, until j = J .
Step 5. Compute the test statistic

EM
(K)
n (J ) = max

{
M

(K)
n (αj), j = 1, . . . , J

}
.

Sketch of the proof of Theorem 1.
We now provide a sketch of the proof of Theorem 1., where we focus on those parts which particularly involve the
autoregressive parameters and require changes as compared to the arguments in Chen & Li (2009). For complete details
we refer to Ketterer & Holzmann (2012). We shall need some additional lemmas. For notational convenience we write
(ζ̂1, ζ̂2, σ̂1, σ̂2, φ̂) instead of (ζ̂1,αj , ζ̂2,αj , σ̂1,αj , σ̂2,αj , φ̂αj

) for the maximizer of ln(α, ζ1, ζ2, σ1, σ2,φ) subject
to α = αj , αj ∈ J .

Lemma 2. For each given αj ∈ (0, 0.5] we have under the null model

σ̂1 − σ0 = oP (1), σ̂2 − σ0 = oP (1), φ̂− φ0 = oP (1),

ζ̂1 − ζ0 = oP (1), ζ̂2 − ζ0 = oP (1).

From now on, we concentrate on linear switching autoregressive models of order 1, and write φ = φ1 for the corre-
sponding autoregressive coefficient. At the end of the proof we indicate the necessary changes for higher orders. Without
loss of generality we assume ζ0 = 0 and σ0 = 1. Note here that we can assume that (ζ̂1, ζ̂2, σ̂1, σ̂2, φ̂) are in a small
neighorhood of (0, 0, 1, 1, φ0) by Lemma 2.

In a first step give a stochastic upper bound for

2
(
ln(αj , ζ̂1, ζ̂2, σ̂1, σ̂2, φ̂)− ln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)

)
= r1n(αj) + r2n, (9)

where

r1n(αj) = r1n(αj , ζ̂1, ζ̂2, σ̂1, σ̂2, φ̂) = 2
(
ln(αj , ζ̂1, ζ̂2, σ̂1, σ̂2, φ̂)− ln(0.5, 0, 0, 1, 1, φ0)

)
,

r2n = 2
(
ln(0.5, 0, 0, 1, 1, φ0)− ln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)

)
.
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Let r1n(αj) = 2
∑n
t=1 log(1 + δ̂t) with

δ̂t = (1− αj)
{
ϕ(Xt;µ(ζ̂1, φ̂;Xt−1), σ̂1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)
− 1

}
+ αj

{
ϕ(Xt;µ(ζ̂2, φ̂;Xt−1), σ̂2)

ϕ(Xt;µ(0, φ0;Xt−1), 1)
− 1

}
.

Using the inequality log(1 + x) ≤ x− (1/2)x2 + (1/3)x3 leads to

r1n(αj) ≤ 2

n∑
t=1

δ̂t −
n∑
t=1

δ̂2t + (2/3)

n∑
t=1

δ̂3t . (10)

For 0 ≤ l, s, i ≤ 4 we define

m̂l,s,i = (1− αj)ζ̂l1(σ̂2
1 − 1)s(φ̂− φ0)i + αj ζ̂

l
2(σ̂

2
2 − 1)s(φ̂− φ0)i.

Denoting

∂lζ∂
s
σ2∂

i
φϕ(Xt; (µ(0, φ0;Xt−1), 1) =

∂l+s+iϕ(Xt;µ(ζ, φ;Xt−1), σ)

∂lζ∂s(σ2)∂iφ

∣∣∣∣
(ζ,σ,φ)=(0,1,φ0)

and expanding ϕ(Xt;µ(ζ̂h, φ̂;Xt−1), σ̂h), h = 1, 2, up to order 4, we get

δ̂t =

4∑
l+s+i=1

m̂l,s,i

l!s!i!

∂lζ∂
s
σ2∂

i
φϕ(Xt;µ(0, φ0;Xt−1), 1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)
+ ε̂

(1)
tn (11)

with remainder ε̂(1)tn for which

ε̂
(1)
n :=

n∑
t=1

ε̂
(1)
tn = OP (n

1/2)


2∑

h=1

∑
l+s+i=5
l,s,i≥0

|ζ̂h|l|σ̂2
h − 1|s|φ̂− φ0|i

 . (12)

This is due to the CLT for stationary and ergodic martingale differences. Following the assessment in Chen & Li (2009),
this can be simplified to

ε̂
(1)
n = OP (n

1/2)

2∑
h=1

{|ζ̂h|5 + |ζ̂h|3|σ̂2
h − 1|+ |σ̂2

h − 1|3 + (φ̂− φ0)2}

By Lemma 2. we can incorporate the terms m̂l,s,i with l + 2s+ 4i ≥ 5 into the remainder term, e.g.

OP (n
1/2)m̂i,j,2 = OP (n

1/2)|ζ̂h|i|σ̂2
h − 1|j(φ̂− φ0)2 = OP (n

1/2)(φ̂− φ0)2 (13)

for i, j ≥ 0. Altogether, we have

δ̂t =
4∑

l+2s+4i=1

m̂l,s,i

l!s!i!

∂lζ∂
s
σ2∂

i
φϕ(Xt;µ(0, φ0, Xt−1), 1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)
+ ε̂tn (14)

with remainder ε̂tn satisfying

ε̂n =

n∑
t=1

ε̂tn = OP (n
1/2)

2∑
h=1

{|ζ̂h|5 + |ζ̂h|(σ̂2
h − 1)2 + |σ̂2

h − 1|3 + (φ̂− φ0)2

+ |ζ̂h||φ̂− φ0|+ |σ̂2
h − 1||φ̂− φ0|}.

(15)
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We define

Yt :=

∂
∂ζ
ϕ(Xt;µ(ζ, φ0;Xt−1), 1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)

∣∣∣∣∣
ζ=0

= εt,

Zt :=
1

2

∂2

∂2ζ
ϕ(Xt;µ(ζ, φ0;Xt−1), 1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)

∣∣∣∣∣∣
ζ=0

= (ε2t − 1)/2,

Ut :=
1

6

∂3

∂3ζ
ϕ(Xt;µ(ζ, φ0;Xt−1), 1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)

∣∣∣∣∣∣
ζ=0

= (ε3t − 3εt)/6,

Vt :=
1

24

∂4

∂4ζ
ϕ(Xt;µ(ζ, φ0;Xt−1), 1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)

∣∣∣∣∣∣
ζ=0

= (ε4t − 6ε2t + 3)/24

and

Wt :=

∂
∂φ
ϕ(Xt;µ(0, φ;Xt−1), 1)

ϕ(Xt;µ(0, φ0;Xt−1), 1)

∣∣∣∣∣
φ=φ0

= Xt−1Yt = Xt−1εt.

Therefore,
δ̂t = t̂1Yt + t̂2Zt + t̂3Ut + t̂4Vt + t̂5Wt + ε̂tn (16)

with
∑n
t=1 ε̂tn satisfying (15) and

t̂1 = m̂1,0,0, t̂2 = m̂2,0,0 + m̂0,1,0, t̂3 = m̂3,0,0 + 3m̂1,1,0,

t̂4 = m̂4,0,0 + 6m̂2,1,0 + 3m̂0,2,0, t̂5 = m̂0,0,1 = φ̂− φ0.
(17)

Putting δ̂t into (10) and noting that the remainders from the square and cubic terms on the right side of the following
equation are of the same or higher order than the remainder ε̂n from the linear sum, we get

r1n(αj) ≤ 2{t̂1
n∑
t=1

Yt + t̂2

n∑
t=1

Zt + t̂3

n∑
t=1

Ut + t̂4

n∑
t=1

Vt + t̂5

n∑
t=1

Wt}

− {t̂1
n∑
t=1

Yt + t̂2

n∑
t=1

Zt + t̂3

n∑
t=1

Ut + t̂4

n∑
t=1

Vt + t̂5

n∑
t=1

Wt}2{1 + oP (1)}

+OP (ε̂n).

(18)

In order to further bound the remainder term ε̂n, we need

Lemma 3. Under the conditions of Lemma 2. and the null model we have for h = 1, 2,

ζ̂5h = oP

( 5∑
l=1

|t̂l|
)
, ζ̂h(σ̂

2
h − 1)2 = oP

( 5∑
l=1

|t̂l|
)

and (σ̂2
h − 1)3 = oP

( 5∑
l=1

|t̂l|
)
.

as well as

t̂3 = 3
1− αj
αj

{
ζ̂1β̂1 −

2(2αj − 1)

3αj
ζ̂31

}
+ oP (|t̂1|) + oP (|t̂2|), (19)

t̂4 = 3
1− αj
αj

{
β̂2
1 −

2(1− 3αj + 3α2
j )

3α2
j

ζ̂41

}
+ oP (|t̂1|) + oP (|t̂2|).

For the proof, see the proof of Lemma 2 in Ketterer & Holzmann (2012).

Now, Lemma 2. gives (φ̂− φ0)2 = oP (|φ̂− φ0|) = oP (|t̂1|) = oP

(∑5
l=1 |t̂l|

)
and by the same reasoning

|ζ̂h||φ̂− φ0| = oP

(∑5
l=1 |t̂l|

)
and |σ̂2

h − 1||φ̂− φ0| = oP

(∑5
l=1 |t̂l|

)
, h = 1, 2. Using the inequalities |x| ≤

1 + x2 and (a+ b)2 ≤ 2(a2 + b2), a, b ≥ 0 repeatedly, we get

ε̂
1/2
n oP (

5∑
l=1

|t̂l|) = oP (1) + oP (n)
{ 5∑
l=1

t̂2l

}
. (20)
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From the above, Equation (18) and the fact that Yt, Zt, Ut, Vt and Wt are mutually orthogonal, we obtain

r1n(αj) ≤ 2t̂1

n∑
t=1

Yt − t̂21
n∑
t=1

Y 2
t {1 + op(1)}

+ 2t̂2

n∑
t=1

Zt − t̂22
n∑
t=1

Z2
t {1 + op(1)}

+ 2t̂3

n∑
t=1

Ut − t̂23
n∑
t=1

U2
t {1 + op(1)}

+ 2t̂4

n∑
t=1

Vt − t̂24
n∑
t=1

V 2
t {1 + op(1)}

+ 2t̂5

n∑
t=1

Wt − t̂25
n∑
t=1

W 2
t {1 + op(1)}+ oP (1).

(21)

Using the properties of quadratic functions we have

r1n(αj) ≤
(
∑n
t=1 Yt)

2∑n
t=1 Y

2
t

+
(
∑n
t=1 Zt)

2∑n
t=1 Z

2
t

+
(
∑n
t=1 Ut)

2∑n
t=1 U

2
t

+
(
∑n
t=1 Vt)

2∑n
t=1 V

2
t

+
(
∑n
t=1Wt)2∑n
t=1W

2
t

+ oP (1). (22)

For linear switching autoregressive models of order higher than 1, the derivatives

∂
∂φj

ϕ(Xt;µ(0,φ;Xt−1), 1)

ϕ(Xt;µ(0,φ0;Xt−1), 1)

∣∣∣∣∣∣
φ=φ0

= Xt−jYt = Xt−jεt

are not mutually orthogonal but orthogonal to Yt, Zt, Ut and Vt. Therefore, we have to orthogonalize to obtain an
asymptotic upper bound for r1n(αj) of the form (21) in this case.

Proof of Theorem 1. Since

2{ln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)− ln(0.5, 0, 0, 1, 1, φ0)}

=
(
∑n
t=1 Yt)

2∑n
t=1 Y

2
t

+
(
∑n
t=1 Zt)

2∑n
t=1 Z

2
t

+
(
∑n
t=1Wt)2∑n
t=1W

2
t

+ oP (1),
(23)

we get for any given αj ∈ J

2{ln(αj , ζ̂1, ζ̂2, σ̂1, σ̂2, φ̂)− ln(0.5, ζ̂0, ζ̂0, σ̂0, σ̂0, φ̂0)}

≤
(
∑n
t=1 Ut)

2∑n
t=1 U

2
t

+
(
∑n
t=1 Vt)

2∑n
t=1 V

2
t

+ oP (1).
(24)

implying that the χ2
2 distribution serves as a stochastic upper bound for our test statisticRn(J ). Choosing ζ̃1, ζ̃2, σ̃1, σ̃2

and φ̃ which are implicitly given by

t̂1 =

∑n
t=1 Yt∑n
t=1 Y

2
t

, t̂2 =

∑n
t=1 Zt∑n
t=1 Z

2
t

, t̂3 =

∑n
t=1 Ut∑n
t=1 U

2
t

, t̂4 =

∑n
t=1 Vt∑n
t=1 V

2
t

, t̂5 =

∑n
t=1Wt∑n
t=1W

2
t

,

this upper bound is also attained for 1/2 ∈ J . A detailed proof of this result is given in the technical supplement Ketterer
& Holzmann (2012). �
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