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In the statistics literature, recovering a signal which is observed under the Radon trans-
form is considered as a very mildly ill-posed inverse problem. In this paper, we argue
that several statistical models which involve the Radon transform lead to an observational
design which strongly influences its degree of ill-posedness, and that the Radon transform
may actually become severely ill-posed. The main ingredient here is a weight function λ

on the angle. Extending results for the limited angle situation, we compute the singular
value decomposition of the Radon transform as an operator between suitably weighted
L2-spaces, and show how the singular values relate to the eigenvalues of the sequence of
Toeplitz matrices of λ . Further, in the associated white noise sequence model, we give
upper and lower bounds on the rate of convergence, and in several special situations even
obtain optimal rates with precise minimax constants. For the severely ill-posed limited
angle problem, a simple projection estimator is adaptive in the exact minimax sense.
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1. Introduction

Recovering images (functions) observed under the Radon transform is one of the most im-
portant and common inverse problems, with fundamental applications in tomography and
other fields, see e.g. Natterer (1986) for an overview. In the statistics literature, which has
devoted a significant amount of effort to the issue (see below for a review of the literature),
this inverse problem is considered to be only very mildly ill-posed. In this paper, however,
we show that the ill-posedness of the Radon transform strongly depends on the observational
design, and that observational designs which lead to significantly more severe ill-posedness
arise naturally in statistical models involving the Radon transform. We shall restrict attention
to the two-dimensional case, in which the Radon transform is said to be only mildly ill-posed
of degree 1/2.
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Let B1(0) = {x ∈ R2 : ‖x‖ ≤ 1} be the unit disc in R2 and let f : B1(0)→ R be integrable.
Then its Radon transform is defined (for almost all (ϕ,s)) as

R f (ϕ,s) =
∫
|t|≤
√

1−s2
f (s cosϕ− t sinϕ,s sinϕ + t cosϕ)dt,

(ϕ,s) ∈ [−π/2,π/2]× [−1,1].

We shall follow Johnstone and Silverman (1990) and call the domain [−π/2,π/2]× [−1,1]
of R f the detector space, and B1(0) brain space. The aim is to estimate f from noisy data on
its Radon transform.

We shall argue that due to the observational design, the Radon transform needs to be studied
as an operator between weighted L2-spaces

R : L2(B1(0); µ2)−→ L2([−π/2,π/2]× [−1,1]; µ1),

dµ2(x,y) = w2(x,y)dxdy, dµ1(ϕ,s) = λ (ϕ)w1(s)dϕ ds.
(1)

Here, the most striking feature is the weight function λ : [−π/2,π/2]→ [0,∞) on the angle in
detector space. The case when λ has support [−η ,η ] for some η < π/2 is called the limited
angle Radon transform (cf. Davison, 1983). However, it turns out that even if λ only has two
zeros at the boundary points±π/2, the degree of ill-posedness of R will depend on λ . For the
weight functions w1 and w2, we consider the following parametric families in γ >−1/2,

w1(s) =
√

πΓ(γ +1/2)
γΓ(γ)

(1− s2)1/2−γ , −1≤ s≤ 1,

w2(x,y) =
π

γ
(1− x2− y2)1−γ , (x,y) ∈ B1(0).

(2)

The weight function w1 in detector space also corresponds to the measurement design, the
most important cases being γ = 1 (fan beam design) as well as γ = 1/2 (parallel beam design).
The weight w2 with corresponding γ is then required for technical reasons, in order to make
the singular value decomposition (SVD) of R analytically tractable. In particular, in the
parallel beam design γ = 1/2, the estimation error in brain space is measured with a weighted
L2-norm.

Statistical models

We discuss statistical models which involve the weight function λ , and also indicate the
appropriate values of the parameter γ in w1 and w2.

1. Gaussian white noise. This is an idealized statistical model, in which we shall conduct
our convergence analysis below. We observe

dY (ϕ,s) =
(
R f
)
(ϕ,s)dµ1(ϕ,s)+ ε dW (ϕ,s), (3)
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Figure 1: Parametrization of the measurement design in computerized tomography: Measurements are
performed uniformly distributed on (a) [−π/2,π/2]× [−1,1] in parallel beam design and (b)
[−π/2,π/2]2 in fan beam design.

which means that for any h(ϕ,s) ∈ L2([−π/2,π/2]× [−1,1]; µ1), we may observe

Y (h) =
∫

π/2

−π/2

∫ 1

−1
R f (ϕ,s)h(ϕ,s)λ (ϕ)w1(s)dϕ ds+ ε

∫
π/2

−π/2

∫ 1

−1
h(ϕ,s)dW (ϕ,s),

= 〈(R f ),h〉µ1 + ε W (h),
(4)

where W (h) is a Gaussian field with mean zero and covariance

E
(
W (h1)W (h2)

)
= 〈h1,h2〉µ1 , h1,h2 ∈ L2([−π/2,π/2]× [−1,1]; µ1).

For direct observations, regression as well as density estimation problems are asymptotically
equivalent to white noise models under fairly general conditions, see Brown and Low (1996),
Nussbaum (1996) and Reiß (2008). While no corresponding results are available yet for the
indirect models below, the analysis in the technically less complicated white noise model still
gives a valuable insight into the difficulty of the estimation problem.

2. Regression. Suppose that we observe random variables (Y,Θ,S) from the model

Y = (R f )(Θ,S)+ ε, E(ε|Θ,S) = 0.

If (Θ,S) is distributed according to µ1, then given h(ϕ,s),

E
(
Y h(Θ,S)

)
= 〈(R f ),h〉µ1 ,

which may be estimated unbiasedly from a sample of observations; compare to (4) in the
white noise model for analogy.
This model is the statistical framework for computerized tomography (Natterer, 1986), and
the measure µ1 is determined by the measurement design. The case γ = 1 corresponds to the
fan beam design, the case γ = 1/2 to the parallel beam design, see Figure 1.

For the fan beam design, most statistical literature uses SVD or derived methods (such as
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needlets), see Cavalier and Tsybakov (2002) or Klemelä and Mammen (2010). In case of par-
allel beam, Cavalier (1998) uses estimates based on the filtered back-projection algorithm.

No paper in the statistics literature seems to take into account a weight function λ on the
angle, which arises most naturally in the parallel beam design in form of a limited angle,
e.g. in digital breast tomosynthesis, dental tomography or electron microscopy, where the
measurement device may only be rotated over a limited range. See Frikel (2013) for further
references and also for a discussion of the bias of the filtered back-projection algorithm in
case of limited angle.

3. Density estimation. Johnstone and Silverman (1990) propose a model of Positron emis-
sion tomography in which the emission density f (x1,x2) on B1(0) needs to be estimated from
data (Θ,S) distributed according to R f . Here E

(
g(Θ,S)

)
= 〈(R f ),g〉µ1 without weight func-

tions (γ = 1/2 and λ = 1). In order to take advantage of the simpler form of the singular value
decomposition in case γ = 1, they insert the weight w1 with γ = 1 into E

(
g(Θ,S)w1(Θ)

)
. As

a consequence, the variance term in the risk is difficult to handle, and therefore they resort to
a surrogate mean integrated squared error in order to measure the precision of their estima-
tors.

4. Nonparametric random coefficient regression models. Nonparametric estimation in ran-
dom coefficient regression models was first studied in Beran, Feuerverger and Hall (1996).
These models have recently become quite popular in econometrics, see Hoderlein, Klemelä
and Mammen (2010). Suppose that we observe (Y,X) from the model Y = XT β . Here
X ,β ∈ R2 are independent random vectors, and the unobserved β has a Lebesgue den-
sity fβ supported in B1(0). The aim is to estimate fβ . If we standardize Z = Y/‖X‖,
X/‖X‖= (cos(Φ),sin(Φ)), then

fZ|Φ=ϕ(z) = (R fβ )(ϕ,z).

Given h(ϕ,s), if Φ has a Lebesgue density fΦ we have

E
(
h(Φ,Z)

)
=
∫

π/2

−π/2

∫ 1

−1
h(ϕ,z) fZ|Φ=ϕ(z) fΦ(ϕ)dzdϕ

=
∫

π/2

−π/2

∫ 1

−1
(R fβ )(ϕ,z)h(ϕ,z)dµ(ϕ,z),

where dµ(ϕ,z) = fΦ(ϕ)dzdϕ = 2−1 dµ1(ϕ,z) with λ (ϕ) = fΦ(ϕ) and γ = 1/2. Thus,

E
(
h(Φ,Z)

)
= 2−1 〈(R fβ ),h〉µ1 ,

which in analogy to the white noise model (4) may be unbiasedly estimated from a sample in
this model.

If X = (1,X1) includes an intercept as well as an additional covariate, the support of X1 will
determine the support of Φ, and in case of full support of X1 with density fX1 , the tails of
X1 determine the rate of decay of fΦ at ±π/2 since fΦ(ϕ) = fX1(tanϕ)(1+(tanϕ)2). Thus,
only for quite heavy tails of X1 (Cauchy-type tails) is fΦ bounded away from 0, which is
the case studied in Hoderlein et al. (2010). See Figure 2 for an illustration. Our results will
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Figure 2: Parametrization in the random coefficient model. The bold line is the set of all β ∈ B1(0) for
which β ′X/‖X‖= Z.

show that for lighter tails, the Radon transform R on the weighted L2-spaces is in fact more
ill-posed.

Main results and structure of the paper

As a first main result, we determine the singular value decomposition of the Radon transform
R as an operator between the weighted L2-spaces in (1), and show how the singular values
relate to the eigenvalues of certain Toeplitz matrices associated with the function λ . If we
evaluate the white noise model (3) at the singular functions, we obtain a doubly-indexed
sequence model. As a next major result, for the limited angle situation, i.e. if λ = 1[−η ,η ] for
an η < π/2, we show that the optimal rate of estimation over ellipsoidal smoothness classes
is only logarithmic, and that a simple projection estimator achieves the optimal rate together
with the optimal constant. If the weight function has an isolated zero, we give polynomial
upper and lower bounds on the rate of convergence, the order of which depends on the degree
of the zero. Finally, for functions λ with finite Fourier expansion, we even obtain optimal
rates with precise minimax constants in case of the fan-beam design.

The paper is structured as follows. We start Section 2 by reviewing efficient estimation in
general white noise sequence models, and in Section 2.2 we introduce the doubly indexed se-
quence model for the Radon transform. We discuss ellipsoidal smoothness assumptions, and
how the Pinsker estimator applies in this model. In Section 2.3 we present the singular values,
while the full derivation of the SVD of the weighted angle Radon transform, together with
explicit expressions for the singular functions, is given in the supplementary Appendix B.1.
Section 3 turns to nonparametric estimation in the sequence model for the Radon transform.
We start in Section 3.1 with the severely ill-posed limited angle problem, in which a simple
projection estimator is even sharp minimax adaptive. In Section 3.2 we give upper and lower
bounds on the rate of convergence in case of polynomial decay of the singular values, and in
Section 3.3 we obtain precise rates with asymptotic minimax constants for the fan-beam de-
sign (γ = 1). Section 4 concludes, while proofs are deferred to the supplementary Appendix
A. The derivation of the SVD, discussion of the ellipsoidal smoothness assumptions, as well
as some further results can be found in the supplementary Appendix B.
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2. Gaussian white noise sequence models

2.1. Review of general infinite white noise sequence models

We start by briefly reviewing some general facts about minimax estimation in infinite white
noise sequence models from Cavalier and Tsybakov (2002). Consider observing

Yk = θk + εσ
−1
k ξk, k = 0,1,2, . . . , (5)

with (ξk)k an i.i.d. Gaussian white noise, ε > 0 the noise level, and (σk)k a known sequence
of strictly positive weights. The goal is to estimate the parameter θ = (θ0,θ1, . . .) from the
noisy observations Yk. Certainly, estimating θ gets more involved the smaller the weights σk
are. Asymptotics in this infinite sequence model are w.r.t. ε → 0.

A linear estimator θ̂ = θ̂(h) of θ is defined as θ̂k = hkYk for some given real sequence
h = (h0,h1, . . .), not depending on the Yk. The class of linear estimators thus corresponds to
the class of real, countably infinite sequences h. The mean squared risk of an estimator θ̂ is
defined as

Rε(θ̂ ,θ) = E‖θ̂ −θ‖2 =
∞

∑
k=0

E
[
(θ̂k−θk)

2].
Define the linear minimax risk on a class Θ by

rL
ε (Θ) = inf

h∈RN
sup
θ∈Θ

Rε(θ̂(h),θ),

and the minimax risk on Θ by

rε(Θ) = inf
θ̂

sup
θ∈Θ

Rε(θ̂ ,θ),

where inf
θ̂

is the infimum over all possible estimators. An estimator θ̂ is said to be rate
optimal on Θ if

sup
θ∈Θ

Rε(θ̂ ,θ)� rε(Θ) as ε → 0.

It is said to be asymptotically minimax or asymptotically efficient on Θ if

sup
θ∈Θ

Rε(θ̂ ,θ)∼ rε(Θ) as ε → 0.

The class Θ is typically chosen to be an l2-ellipsoid, i. e., given a constant L > 0 and a
sequence a = (a0,a1, . . .) of real ellipsoid weights, set

Θ = Θ(a,L) =
{

θ :
∞

∑
k=0

a2
kθ

2
k ≤ L

}
. (6)

Pinsker estimator. Let Θ = Θ(a,L) be an ellipsoid according to (6), and assume that for all
ε > 0 there exists a solution cε to the equation

ε
2

∞

∑
k=0

σ
−2
k ak(1− cε ak)+ = cε L, (7)
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where the subscript + denotes positive part, x+ = max{x,0}. Then, the Pinsker estimator is
defined as the linear estimator θ̂(h∗) with weights h∗k = (1− cε ak)+, k = 0,1, . . . .

Theorem 2.1 (Pinsker, 1980). a. The Pinsker estimator θ̂(h∗) is linear minimax on Θ(a,L),
i. e., supθ∈Θ Rε(θ̂(h∗),θ) = rL

ε (Θ) for all ε > 0, where the linear minimax risk is given by

rL
ε (Θ) = ε

2
∞

∑
k=0

σ
−2
k (1− cε ak)+. (8)

b. If
maxk:ak<T σ

−2
k

∑k:ak<T σ
−2
k

−→ 0 (9)

as T →∞, then rε(Θ)∼ rL
ε (Θ) as ε→ 0, i. e., under (9) the Pinsker estimator is even asymp-

totically efficient on Θ(a,L).

The condition (9) is from Cavalier and Tsybakov (2002). As we shall see below, the Pinsker
estimator may also be efficient if this condition is not satisfied.

Remark. If the sequence a is monotonically non-decreasing, then there always exists a so-
lution cε to (7) so that the Pinsker estimator is well-defined and Theorem 2.1 applies. Even
more, in this case cε is unique and known to be given by

cε =
∑

Nε

k=0 σ
−2
k ak

L/ε2 +∑
Nε

k=0 σ
−2
k a2

k

,

where

Nε = max{k : ak ≤ c−1
ε }= max

{
n : ε

2
n

∑
k=0

σ
−2
k ak(an−ak)≤ L

}
, (10)

and the minimax risk is attained at (θ̂(h∗),θ ∗) with

θ
∗
k =

ε

σk

√
(1− cε ak)+

cε ak
. (11)

2.2. The sequence model for the Radon transform

Suppose now that we observe the Radon transform R f of a function f ∈ L2(B1(0); µ2) in the
white noise model (3).

We require the singular value decomposition of the operator R in (1). It consists of triples{
Ψm,l ,Φm,l ,σm,l

}
m≥l≥0, (12)

where the (Ψm,l)m≥l≥0 form an orthonormal basis of L2(B1(0); µ2), the {Φm,l}m≥l≥0 are
orthonormal in L2([−π/2,π/2]× [−1,1]; µ1) and complete in range(R), σm,l > 0 for all m≥
l ≥ 0 and RΨm,l = σm,l Φm,l and R∗Φm,l = σm,l Ψm,l , where R∗ is the adjoint operator of R,
see Proposition B.2. The (Ψm,l)m≥l≥0 and (Φm,l)m≥l≥0 are called the singular functions, the
(σm,l)m≥l≥0 the singular values. The singular values are presented in the next section, while
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the derivation of the SVD together with explicit forms of the singular functions in terms of
orthogonal polynomials, is given in the supplementary Appendix B.1.

Evaluating (4) at the singular functions Φm,l , we obtain the doubly indexed sequence of ob-
servations

Y
(
Φm,l

)
= 〈R f ,Φm,l〉µ1 + εW (Φm,l) = σm,l θm,l + εξm,l ,

where θm,l = 〈 f ,Ψm,l〉µ2 are the Fourier coefficients of f w.r.t. the basis (Ψm,l), and ξm,l =

W (Φm,l) are independent standard-normal random variables. Now rescale Ym,l =σ
−1
m,lY (Φm,l),

so that
Ym,l = θm,l + εσ

−1
m,l ξm,l , m≥ l ≥ 0. (13)

Thus, in the doubly indexed sequence model (13), ellipsoidal smoothness assumptions on f
correspond to the decay of the Fourier coefficients θm,l w.r.t. the basis (Ψm,l)m≥l≥0, while
rates of convergence depend on the decay of the singular values σm,l .

We investigate estimation of θ over the ellipsoids

Θ1 = Θ1(κ,L) =
{

θ : ∑
m≥l≥0

(m+1)2κ
θ

2
m,l ≤ L

}
,

Θ2 = Θ2(κ,L) =
{

θ : ∑
m≥l≥0

(m− l +1)2κ(l +1)2κ
θ

2
m,l ≤ L

}
.

Compared to (6), where a is a full sequence of weights, here we use a slightly different
notation in which the parameter κ determines the whole weighting sequence.

Since m+1≤ (m− l +1)(l +1)≤ (m+1)2 for any 0≤ l ≤ m,

Θ1(2κ,L)⊂Θ2(κ,L)⊂Θ1(κ,L). (14)

The ellipsoid Θ2 was proposed by Johnstone and Silverman (1990) in the context of density
estimation. Johnstone (1989) shows that in case of γ = 1 and λ = 1 it corresponds to a class
of functions having 2κ weak derivatives in a weighted L2-space, see also Proposition B.6 for
a more general result. A simpler yet natural choice is the ellipsoid Θ1.

Remark (Pinsker estimator for the Radon sequence model). In order to apply Pinkser’s Theo-
rem 2.1 to these ellipsoids in the doubly-indexed sequence model, we require total orderings
≺i, i = 1,2, of the index set {(m, l), m ≥ l ≥ 0}, for which the weights in Θi are non-
decreasing: For Θ1, we let (m, l) ≺1 (m̃, l̃) if m < m̃ or if m = m̃ and l < l̃. Similarly, for
Θ2 we let (m, l)≺2 (m̃, l̃) if (l +1)(m− l +1)< (l̃ +1)(m̃− l̃ +1) or if there is equality and
l < l̃.

2.3. The singular values

In this subsection we present the singular values σm,l in the SVD (12) of the Radon transform,
see Section B in the supplement for the proofs. Let

Cm = diag(cm,0, . . . ,cm,m), cm, j =

(
m
j

)
Γ(2γ)Γ( j+ γ)Γ(m− j+ γ)

Γ(m+2γ)Γ(γ)2 , (15)
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and
Am =

(
d j−k

)
j,k=0,...,m, m = 0,1,2, . . . , (16)

which is the Toeplitz matrix determined by the sequence

dz =
1

2π

∫
π

−π

e−izϕ ′
λ (ϕ ′/2)dϕ

′ =
1
π

∫
π/2

−π/2
e−i2zϕ ′

λ (ϕ ′)dϕ
′, z ∈Z.

The Toeplitz matrix Am is Hermitian and positive semidefinite, and it is well known that it is
even positive definite whenever λ is not essentially zero (which we shall always assume), see
for instance Tilli (2003) for universal lower bounds on the smallest eigenvalues of sequences
of Toeplitz matrices. We shall denote its (positive) eigenvalues by

αm,0 ≥ . . .≥ αm,m > 0.

The matrix Bm := CmAm is then also diagonizable, with strictly positive eigenvalues (see
Section B), which we denote by

βm,0 ≥ . . .≥ βm,m > 0.

The singular values of R are given by

σm,l =
√

πβm,l , m≥ l ≥ 0. (17)

The case γ = 1 (Fan beam design). In this case the weights cm,l have the simple form cm,l =

(m+1)−1 for all m, so, given the eigenvalues αm,l of Am, it follows that βm,l = αm,l/(m+1),
and thus the singular values of the operator R are

σm,l =

√
παm,l

m+1
, m≥ l ≥ 0. (18)

Thus, for γ = 1 the decay of σm,l is determined by the decay of the singular values of the
the sequence of Toeplitz matrices Am generated by the function λ . The asymptotic behavior
of the eigenvalues of such sequences of Toeplitz matrices has been intensively studied in
the literature. A famous result by Szegö, see Grenander and Szegö (1958), states that the
averages of the eigenvalues of Am tend to the normalized integral of λ (·/2). Further results
mainly concern the extreme eigenvalues. We shall present the results that we shall require
below in Section 3.

The general case. In the general case, the eigenvalues of Bm cannot be expressed in terms
of those of Am, however, it is possible to derive certain bounds. First, concerning the cm,l ,
and using Γ(x+δ )/Γ(x)∼ xδ as x→∞ for all δ ∈R, it is easily seen that the inner weights,
those for which l grows as pm for some p ∈ (0,1), decay according to

cm,l ∼
Γ(2γ)

Γ(γ)2 (p(1− p))γ−1(m+1)−1,
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while the outer weights with l (or m− l) fixed behave like

cm,l ∼
Γ(2γ)

Γ(γ)2
Γ(l + γ)

Γ(l +1)
(m+1)−γ ,

both as m→ ∞. In particular, for γ ≤ 1, the extreme weights satisfy

min
l=0,...,m

cm,l ∼
Γ(2γ)

Γ(γ)24γ−1 (m+1)−1, max
l=0,...,m

cm,l ∼
Γ(2γ)

Γ(γ)
(m+1)−γ . (19)

For γ > 1 the roles of min and max are reversed.

From these estimates as well as general bounds on the eigenvalues of products of positive
definite Hermitian matrices, see for instance Wang and Zhang (1992) and Zhang and Zhang
(2006) we in obtain the bounds

Γ(2γ)

Γ(γ)24γ−1
αm,m

m+1
(1+o(1))

(≥)
≤ βm,m

(≥)
≤ Γ(2γ)

Γ(γ)

αm,m

(m+1)γ
(1+o(1)),

(γ>1)
−1/2 < γ ≤ 1 .

(20)

3. Minimax and efficient estimation for the Radon transform

3.1. Limited angle Radon transform

We start with estimation in the limited angle case, where λ = 1[−η ,η ] for an η < π/2. In this
case the Toeplitz matrices Am generated by λ are given by

Am =
( sin(2( j− k)η)

π( j− k)

)
j,k=0,...,m

,

where for j = k this expression is understood as the continuous continuation with value 2η/π .
It is well known that the small eigenvalues of Am decay to zero exponentially fast, see Slepian
(1978), and specifically that

αm,m ∼Cm1/2e−ξ m as m→ ∞, (21)

where the constants C,ξ > 0 only depend on the angle η , and where ξ is given by

ξ = log
(

1+
2
√

1− cos(π−2η)√
2−
√

1− cos(π−2η)

)
. (22)

Slepian (1978) also discusses the behaviour of the other extreme as well as of the intermediate
eigenvalues, which we shall not require, however.

By (20) and (18), this implies exponential decay of σm,m as well, leading to a severely ill-
posed inverse problem, see e.g. Mair and Ruymgaart (1996). In this case condition (9) fails to
hold and therefore the second part of Pinsker’s Theorem 2.1 as stated above does not apply.
Since no general results are available, we start from scratch and give a specifically tailored
result for minimax rates in severely ill-posed, doubly indexed sequence models, where in
particular the rate of decay of σm,m is only known up to a polynomial factor.
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We define the projection estimator θ̂(hPr) with truncation level Mε as the linear estimator
with hm,l = 1 for all 0≤ l ≤ m≤Mε , and hm,l = 0 otherwise.

Theorem 3.1. If there exist ρ1,ρ2 ∈ R and τ1 ≥ τ2 > 0 such that the sequence of smallest
singular values σm,m satisfies

mρ1e−τ1m . σm,m . mρ2e−τ2m as m→ ∞, (23)

then

rε(Θi(κ,L)) log(1/ε)2κ(L−1 +o(1)) ∈ [τ2κ
2 ,τ2κ

1 ] as ε → 0, i = 1,2.

If in particular τ1 = τ2 = τ , then any projection estimator θ̂(hPr) with truncation level

Mε =
⌊
τ
−1 log(1/ε)(1− log(1/ε)−δ )

⌋
for some δ ∈ (0,1) is efficient on Θi(κ,L), i = 1,2, and the corresponding minimax risk is
given by

rε(Θi(κ,L))∼ τ
2κ L log(1/ε)−2κ as ε → 0.

The latter result now provides the minimax rate for the limited angle tomography problem
for any γ >−1/2. Indeed, in view of (21) as well as the bound given in (20),

m−1/4e−ξ m/2
(&)

. σm,m

(&)

. e−ξ m/2 m1/4−γ/2,
(γ>1)

−1 < γ ≤ 1,

and we readily arrive at

Corollary 3.2. For any γ >−1/2, the limited angle tomography problem with η < π/2 has
minimax risk

rε(Θi(κ,L))∼ (ξ/2)2κ L log(1/ε)−2κ as ε → 0, i = 1,2,

where ξ is given in (22).

Remark. 1. In severely ill-posed problems, the variance is dominated by the bias, even when
achieving the optimal constant. Therefore, there are several asymptotically efficient estima-
tors, among them the simple projection estimator.

2. The projection estimator is asymptotically efficient and does not depend on the parameters
κ and L of the smoothness class Θi, it is thus adaptive. Since the projection estimator is linear
and the Pinsker estimator linear minimax (for fixed ε), the Pinsker estimator is of course also
efficient.

3. Golubev and Khasminskii (1999) also investigate a single indexed sequence model, in
which σ

−2
k = eαk/k for an α > 0. They show that the Pinsker estimator is even second

order minimax, the second order term being of order ∼ log logε−2/(logε−2)2κ+1, where the
parameter κ corresponds to the smoothness class. Analogous results in our model appear to
be difficult, since the singular values are less precisely known.

Finally, we show that the logarithmic rate remains true for general λ (not necessarily an
indicator function) which vanishes on an interval at the boundaries.
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Corollary 3.3. Let the weight function λ : [−π/2,π/2]→ [0,∞) be Lebesgue measurable
and bounded above. If there exist 0 < η1 < η2 < π/2 such that

inf
|ϕ|≤η1

λ (ϕ)> 0, sup
|ϕ|>η2

λ (ϕ) = 0.

then

rε(Θi(κ,L)) log(1/ε)2κ(22κ L−1 +o(1)) ∈ [ξ 2κ
2 ,ξ 2κ

1 ] as ε → 0, i = 1,2,

for any γ >−1/2, where the ξ j correspond to η j according to (22).

3.2. Weight functions with isolated zeros

In case of a single root of λ (mod π , typically π/2), the extreme eigenvalues αmm of the
sequence of Toeplitz matrices Am decay polynomially, with degree depending on the order
of the root. More precisely, if λ :R→R+ is continuous and π-periodic, if there is a unique
value ϕ0 (mod π) such that λ (ϕ0) = 0, and if there exists ρ > 0 such that, with k = k(ρ) =
bρ/2c, g(ϕ) = λ (ϕ)2k/ρ has 2k continuous derivatives in some neighborhood of ϕ0, and g(2k)

is the first non-vanishing derivative of g at ϕ0, then there exists C > 0 such that α−1
m,m ∼Cmρ ,

see Parter (1961). For example, for λ = cos2, α−1
m,m � m2. By (20), this implies polynomial

decay of the singular values σm,l as well.

First we state the following general result.

Proposition 3.4. a. If there exists ρ ≥ 0 such that βm,m & m−ρ as m→ ∞, then

rε(Θi(κ,L)) = O
(
ε

4κ
2κ+ρ+2

)
as ε → 0, i = 1,2.

b. Let C > 0 and 0≤ ρ1 ≤ ρ < ρ1 +1. If

m−ρ . βm,m . m−ρ1 as m→ ∞, (24)

then the Pinsker estimator on Θi(α,L) is asymptotically efficient, and

rε(Θi(α,L))& ε

4κ+2(ρ−ρ1)
2κ+ρ+1 as ε → 0, i = 1,2.

c. If
β
−1
m,m ∼Cmρ as m→ ∞, (25)

then
rε(Θi(κ,L))≥ C̃ε

4κ
2κ+ρ+1 (1+o(1)) as ε → 0, i = 1,2,

where

C̃ = C̃(κ,ρ,L,C) =
( Cκ

π(κ +ρ +1)

) 2κ
2κ+ρ+1 (L(2κ +ρ +1))

ρ+1
2κ+ρ+1

ρ +1
.

Remark. If the minimal eigenvalue αm,m �m−ρ̃ , then from the estimate in (20), the condition
of a. is satisfied with ρ = ρ̃ +1 in case−1/2 < γ ≤ 1, as well as ρ = ρ̃ +γ for γ > 1. Further,
(24) is satisfied if 0 < γ < 2, in which case ρ is as before and ρ1 = ρ̃ + γ for 0 < γ < 1, and
ρ1 = ρ̃ +1 otherwise. Finally, for condition (25) we require γ = 1.
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3.3. Exact minimax rates and efficiency constants in case γ = 1

Next we intend to find minimax rates and efficiency constants in case where the minimal
eigenvalue βm,m and hence the minimal singular value σm,m decays at a polynomial rate. We
shall require quite precise asymptotics of all singular values σm,l , for which, however, in
general only bounds are available.

Therefore, in this section we restrict ourselves to the case γ = 1 (fan beam design), so that
σm,l =

√
παm,l/(m+1) as given in (18). We shall impose the following assumptions on the

eigenvalues αm,l of the Toeplitz matrices Am.

Assumption A1. There exist C > 0 and ρ ≥ 1 such that

m

∑
l=0

α
−1
m,l ∼Cmρ−1 as m→ ∞.

Assumption A2. There exist ρ ≥ 2, δ > 0, and a positive, bounded sequence c = (c0,c1, . . .)
such that

α
−1
m,l = cm−l lρ−1 +O

(
((m− l +1)(l +1))ρ−1−δ

)
, m≥ l ≥ 0.

Remark. We use the exponent ρ−1 instead of ρ since the parameter ρ then corresponds to
that of Section 3.2.

First we show that the above conditions are satisfied in certain specific cases. We say that λ

is banded if

λ (ϕ) =
r

∑
k=−r

dkei2k ϕ , r ∈N, dr 6= 0, d̄k = d−k,

since, by construction, the Hermitian Toeplitz matrices Am generated by λ are banded in this
case, and in fact, the coefficients dk are exactly the entries of Am. In particular, the condition
d̄k = d−k ensures that λ is real.

Using the results of Böttcher, Grudsky and Maksimenko (2010a) on the uniform behavior of
the eigenvalues of banded Toeplitz matrices Am, we obtain

Proposition 3.5. Suppose that λ is banded and satisfies λ (−π/2) = λ (π/2) = 0. Further,
assume that there is a unique maximizer ϕ0 such that λ is strictly increasing on (−π/2,ϕ0)
and strictly decreasing on (ϕ0,π/2), and the second derivatives of λ at π/2 and ϕ0 are non-
zero. Then the eigenvalues αm,l satisfy Assumption A1 with ρ = 3 and C = 4/(3λ ′′(π/2)), as
well as Assumption A2 with ρ = 3 and c j =

8
λ ′′(π/2)π2 ( j+1)−2.

Linear Minimax risk on Θ1 under A1. Let am,l = (m+ 1)κ be the ellipsoid weights corre-
sponding to Θ1(κ,L). From (10) we have

(m, l)ε = max
{
(m̃, l̃) : ε

2
∑

(m,l)≺1(m̃,l̃)

σ
−2
m,l am,l(am̃,l̃−am,l)≤ L

}
,

where the maximum is taken w.r.t. the total ordering≺1 defined at the end ot Section 2. Since
am,0 = . . . = am,m for all m, we may include all l for the maximal value of m (since these do
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not increase the sum). Therefore, (m, l)ε = (Nε ,Nε), where

Nε = max
{

n : ε
2

n

∑
m=0

m

∑
l=0

σ
−2
m,l am,l(an,n−am,l)≤ L

}
.

By A1 we have ∑
m
l=0 σ

−2
m,l ∼Cπ−1mρ , yielding

n

∑
m=0

m

∑
l=0

σ
−2
m,l am,l(an,n−am,l)∼

C
π

n

∑
m=0

(
nκ mκ+ρ −m2κ+ρ

)
∼ C

π

κ

(κ +ρ +1)(2κ +ρ +1)
n2κ+ρ+1

as n→ ∞, and thus

Nε ∼
(

πL(κ +ρ +1)(2κ +ρ +1)
Cκε2

)1/(2κ+ρ+1)
as ε → 0.

Since cε ∼ N−κ
ε by (10), and minding that (1− cε am,l)+ = 0 for m > Nε , from Pinsker’s

theorem we obtain

rL
ε (Θ1(κ,L))∼ ε

2
Nε

∑
m=0

m

∑
l=0

σ
−2
m,l (1−N−κ

ε (m+1)κ)

∼ Cε2

π

Nε

∑
m=0

(
mρ −N−κ

ε mκ+ρ
)

∼ Cε2

π

κ

(ρ +1)(κ +ρ +1)
Nρ+1

ε

∼C∗1 ε
4κ

2κ+ρ+1

(26)

with C∗1 =C∗1(κ,ρ,L,C) given in Theorem 3.6 below.

Linear Minimax risk on Θ2 under A2. In order to simplify calculations, note that the ellipsoid
Θ2 can be rewritten as

Θ2(κ,L) =
{

θ : ∑
j,k≥0

( j+1)2κ(k+1)2κ
θ

2
j+k,k ≤ L

}
,

corresponding to the sequence of ellipsoid weights a j+k,k = ( j+ 1)κ(k+ 1)κ , j,k ≥ 0. As-
sumption A2 then reads

α
−1
j+k,k = c jkρ−1 +O

(
(( j+1)(k+1))ρ−1−δ

)
, j,k ≥ 0. (27)

Define the totally ordered index sets

(n) =
{
( j,k) ∈N2

0 : ( j+1)(k+1)≤ n
}
, n ∈N.

Similarly as above, for the parameter ( j,k)ε in (10) we have
{
( j,k)≺2 ( j,k)ε

}
∪{( j,k)ε}=
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(Nε), where

Nε = max
{

n : ε
2

∑
( j,k)∈(n)

σ
−2
j+k,ka j+k,k

(
nκ −a j+k,k

)
≤ L
}
.

Since σ
−2
j+k,k = ( j+ k+1)π−1α

−1
j+k,k, Lemma A.6 in Section A.3 gives

∑
( j,k)∈(n)

σ
−2
j+k,ka j+k,k

(
nκ −a j+k,k

)
∼ K(ρ,c)

π

κ

(κ +ρ +1)(2κ +ρ +1)
n2κ+ρ+1

as n→ ∞, where

K(ρ,c) =
∞

∑
j=0

c j( j+1)−(ρ+1). (28)

Therefore,

Nε ∼
(

πL(κ +ρ +1)(2κ +ρ +1)
K(ρ,c)κε2

)1/(2κ+ρ+1)
as ε → 0,

so following the lines in (26) and using Lemma A.6, we find that

rL
ε (Θ2(κ,L)) = ε

2
∑

( j,k)∈(Nε )

σ
−2
j+k,k(1−N−κ

ε a j+k,k)

∼C∗2 ε
4κ

2κ+ρ+1

(29)

with C∗2 =C∗2(κ,ρ,L,c) given in Theorem 3.6 below.

Asymptotic efficiency on Θ1 and Θ2. Given (26) and (29), we now easily arrive at

Theorem 3.6. For i = 1,2, under A1 and A2, respectively,

rε(Θi(κ,L))∼C∗i ε
4κ

2κ+ρ+1 as ε → 0,

where

C∗i =
(

Ξiκ

π(κ +ρ +1)

) 2κ
2κ+ρ+1

(
L(2κ +ρ +1)

) ρ+1
2κ+ρ+1

ρ +1
,

Ξi =

{
C, i = 1,

K(ρ,c), i = 2. (30)

Example 3.7. For the ordinary Radon transform, i. e. λ = 1, we have ∑
m
l=0 α

−1
m,l = m+ 1,

whence A1 is satisfied for C = 1 and ρ = 2, leading to the minimax rate

rε(Θ1(κ,L))� ε
4κ

2κ+3 as ε → 0.

On the other hand, Cavalier and Tsybakov (2002) proved that in this case we have

rε(Θ2(κ,L))� ε
4κ

2κ+2 as ε → 0,

so we apparently improve by estimating within the smaller ellipsoid Θ2. This is no longer
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true in general, however, when the inverse problem gets more ill-posed. For a banded weight
function λ satisfying the assumptions of Proposition 3.5, Theorem 3.6 implies that

rε(Θi(κ,L))� ε
4κ

2κ+4 as ε → 0

for both i = 1 and i = 2. A slight improvement can only be found for the efficiency constant.
Here, Ξ1 = 4/(3λ

′′
(π/2)) and Ξ2 = 8/(λ

′′
(π/2)ζ (6)π2), where ζ denotes the Riemann zeta

function. Thus, Ξ1/Ξ2 = π2ζ (6)/6≈ 1.63

4. Concluding remarks

• We have shown how the design influences the degree of ill-posedness of the Radon
transform in two dimensions, and that the whole range from mildly ill-posedness to
severely ill-posedness may arise quite naturally.

• Without weight on the angle, the rate of convergence remains the same over Θ1(κ,L)
for all parameters γ ∈ (0,1] (which governs the weight function on the signed distance),
see Section B.3 in the supplement, where we also derive the asymptotic minimax con-
stants.

• In order to avoid computation of the spectral data, iterative methods might be an alter-
native, see Bissantz et al. (2007).

• The case of an unknown weight function, for which additional data is available (e.g. in
the random coefficients model) leads to a problem with noisy operator, as studied in
Hoffmann and Reiss (2008).

• In higher dimensions, injectivity of the limited angle Radon transform as well as the
analytic form of its SVD seem not be established.
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A. Proofs

A.1. Proofs for Section 3.1

The method of proof for the lower bound resembles that used in Golubev and Khasminskii
(1999). Since the proof of Proposition 2 in that paper seems to be problematic (in particular
the estimate in (26)), we provide a complete proof of a slightly stronger result (see Lemma
A.2 below). The main ingredient is the following lemma.

Lemma A.1. Let µ ≥ 0,σ > 0, P(X = µ) = P(X =−µ) = 1/2 and Y |X ∼N(X ,σ2). Then

E
(
E(X |Y )−X

)2 ≥ µ
2 (1−2 µ

2/σ
2).

Proof. We have

E[X |Y ] = µ
e−

1
2
(Y−µ)2

σ2 − e−
1
2
(Y+µ)2

σ2

e−
1
2
(Y−µ)2

σ2 + e−
1
2
(Y+µ)2

σ2

= µ
e

µY
σ2 − e−

µY
σ2

e
µY
σ2 + e−

µY
σ2

.

Since E[X |Y ]|(X = µ)
d
=−E[X |Y ]|(X =−µ), it follows that

E
[
(E[X |Y ]−X)2]= E

[
(E[X |Y ]−µ)2|X = µ

]
= µ

2 E
[
4(1+ exp(2Z))−2],

where Z ∼N
(
t, t
)

with t = µ2/σ2. It remains to show that

E
[
4(1+ exp(2Z))−2]≥ 1−2t. (31)

For any x ∈ R, 4(1+ ex)−2 ≥ 3 · 1(−∞,−2](x)+ (1− x) · 1(−2,∞)(x). Integrating this w.r.t. the
distribution of 2Z thus gives the lower bound

1+2Φ

(
− 1+ t√

t

)
−
∫

∞

−2

x
2
√

2πt
e−

1
2
(x−2t)2

4t = 1−2t−R(t)

with remainder

R(t) =
∫ −2

−∞

−x
2
√

2πt
e−

1
2
(x−2t)2

4t −2Φ

(
− 1+ t√

t

)
=
∫ −2

−∞

−x−2
2
√

2πt
e−

1
2
(x−2t)2

4t ,

where Φ is the distribution function of N(0,1). Evidently, from the last expression it follows
that R(t) is non-negative for all t > 0, which proves the lower bound (31) and thus concludes
the proof.

Lemma A.2. For any ellipsoid Θ, the minimax risk in sequence model (5) satisfies

rε(Θ)≥∑
k

θ
2
k −

2
ε2 ∑

k
θ

4
k σ

2
k ,

uniformly in θ = (θk)k≥0 ∈Θ and ε > 0.
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Proof. Fix θ0 = (θ0,k)k≥0 ∈ Θ. Let πk(θ0,k) = πk(−θ0,k) = 1/2, and let π = ∏k πk be the
product distribution on Θ. Then, for all estimators θ̂ ,

sup
θ∈Θ

∞

∑
k=0

Eθ

[
(θ̂k−θk)

2]≥ ∫
Θ

∞

∑
k=0

Eθ

[
(θ̂k−θk)

2]
π(dθ) =

∞

∑
k=0

∫
Θ

Eθ

[
(θ̂k−θk)

2]
π(dθ)

and thus

rε(Θ)≥
∞

∑
k=0

inf
θ̂k

∫
Θ

Eθ

[
(θ̂k−θk)

2]
π(dθ). (32)

Now for any X = (Xk)k≥0 ∼ π such that (Yk,Xk)k≥0 are independent and such that Yk|Xk ∼
N(Xk,ε

2σ
−2
k ), by sufficiency, the Bayes risks in (32) are minimized by θ̂k = E[Xk|Yk], so that

the conclusion follows from Lemma A.1.

Lemma A.3. Consider the sequence model (5) and the ellipsoid Θ(a,L) according to (6)
with ak = (k+1)κ . If there exist γ1,γ2 > 1 such that

liminf
k→∞

σk/σk+1 ≥ γ1, limsup
k→∞

σk/σk+1 ≤ γ2, (33)

then

ε
−2

∞

∑
k=0

(θ ∗k )
4
σ

2
k = rL

ε (Θ(a,L))O(N−1
ε ) as ε → 0,

where θ ∗ is the Pinsker solution according to (11).

Proof. First, we may rewrite

ε
−2

∞

∑
k=0

(θ ∗k )
4
σ

2
k = ε

2
Nε

∑
k=0

σ
−2
k

(1− cε ak

cε ak

)2
,

where cε ∼ N−κ
ε . Set nε = bNε/2c, and define the partial sums

S1,ε =
nε

∑
k=0

σ
−2
k (1− cε ak)

2/(cε ak)
2, S2,ε =

Nε

∑
k=nε+1

σ
−2
k (1− cε ak)

2/(cε ak)
2.

The first sum S1,ε is comparatively small since it comprises the larger σk only. In fact, with
(33) it follows that

S1,ε ≤ c−2
ε

nε

∑
k=0

σ
−2
k . σ

−2
Nε

c−2
ε

nε

∑
k=0

γ
−2(Nε−k)
1 . σ

−2
Nε

N2κ
ε γ
−Nε

1

which is O(σ−2
Nε

N−δ
ε ) for any δ > 0. Using 1− (1− x)κ ≤max(1,κ)x, 0≤ x≤ 1, as well as
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cε > a−1
Nε+1 and (33) again, the second sum satisfies

S2,ε .
Nε

∑
k=nε+1

σ
−2
k (1− cε ak)

2 =
Nε−nε−1

∑
j=0

σ
−2
Nε− j(1− cε aNε− j)

2

. σ
−2
Nε

Nε−nε−1

∑
j=0

γ
−2 j
1

(
1−
(Nε − j+1

Nε +2

)κ)2
. σ

−2
Nε

Nε−nε−1

∑
j=0

γ
−2 j
1

( j+1
Nε +2

)2

. σ
−2
Nε

N−2
ε . (34)

With this, both sums S1,ε and S2,ε can now be bounded above in terms of the linear minimax
risk rL

ε (Θ) as follows. Using cε ≤ a−1
Nε

, 1− (1− x)κ ≥min(1,κ)x, 0≤ x≤ 1, and the second
inequality in (33),

rL
ε (Θ) = ε

2
Nε

∑
j=0

σ
−2
Nε− j(1− cε aNε− j)& ε

2
σ
−2
Nε

Nε

∑
j=0

γ
−2 j
2

(
1−
(Nε +1− j

Nε +1

)κ)
& ε

2
σ
−2
Nε

(Nε +1)−1
Nε

∑
j=0

γ
−2 j
2 j

& ε
2
σ
−2
Nε

N−1
ε . (35)

This provides
ε

2(S1,ε +S2,ε). ε
2
σ
−2
Nε

N−2
ε . rL

ε (Θ)N−1
ε

and thus concludes the proof.

Proof of Theorem 3.1. First we prove that τ2κ
2 L log(1/ε)−2κ is an asymptotic lower bound

on the minimax risk on Θi. In a second step we calculate the risk of the specific projection
estimator as introduced in the theorem and show that it attains the upper bound.

Consider the subellipsoid

Θ̃ = Θ̃(κ,L) =
{

θ :
∞

∑
m=0

(m+1)2κ
θ

2
m,m ≤ L,θm,l = 0,m 6= l

}
, (36)

and given an estimator θ̂ define the estimator θ̃ by

θ̃m,l =

{
θ̂m,l , m = l,

0, m 6= l.

Then, Rε(θ̂ ,θ)≥ Rε(θ̃ ,θ) for all θ ∈ Θ̃, and since Θ̃(κ,L)⊂Θi(κ,L),

sup
θ∈Θi

Rε(θ̂ ,θ)≥ sup
θ∈Θ̃

Rε(θ̂ ,θ)≥ sup
θ∈Θ̃

Rε(θ̃ ,θ).

As θ̂ was arbitrary, this shows that

rε(Θi(κ,L))≥ inf
θ̂ :θm,l=0,m 6=l

sup
θ∈Θ̃

Rε(θ̂ ,θ),
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where the right-hand side, by Lemma A.2 and (23), is in turn bounded below by

∞

∑
m=0

θ
2
m,m−

2
ε2

∞

∑
m=0

θ
4
m,mσ

2
m,m ≥

∞

∑
m=0

θ
2
m,m−

C
ε2

∞

∑
m=0

θ
4
m,mm2ρ2e−2τ2m

for some C > 0, uniformly in θ ∈ Θ̃.

Now, the term on the right can be bounded by the linear minimax risk r̃L
ε corresponding to a

sequence model with σm,m replaced by σ̃m,m =mρ2e−τ2m, for which condition (33) is satisfied.
In fact, letting θ̃ ∗ be the Pinsker solution according to (11) corresponding to this surrogate
sequence model, we have

∞

∑
m=0

(θ̃ ∗m,m)
2 ≥

∞

∑
m=0

ε2 σ̃2
m,m

σ̃2
m,mε2 +(θ̃ ∗m,m)

2
(θ̃ ∗m,m)

2 = r̃L
ε (Θ̃),

and from Lemma A.3 it follows that

ε
−2

∞

∑
m=0

(θ̃ ∗m,m)
4
σ̃

2
m,m = o(r̃L

ε (Θ̃)), (37)

which together provide

inf
θ̂ :θm,l=0,m 6=l

sup
θ∈Θ̃

Rε(θ̂ ,θ)≥ r̃L
ε (Θ̃)(1+o(1)).

Hence, for the lower bound it remains to evaluate the surrogate linear minimax risk r̃L
ε (Θ̃).

Denoting by c̃ε and Ñε the solutions to (7) and (10) in the surrogate model with σ̃m,m, since
c̃ε(m+1)κ ≤ 1 for m≤ Nε we estimate

r̃L
ε (Θ̃) = ε

2
∞

∑
m=0

σ̃
−2
m,m(1− c̃ε(m+1)κ)+

= c̃2
ε L+ ε

2
Ñε

∑
m=0

σ̃
−2
m,m(1− c̃ε(m+1)κ)2

+

≤ c̃2
ε L+ ε

−2
∞

∑
m=0

(θ̃ ∗m,m)
4
σ̃

2
m,m = c̃2

ε L+o(r̃L
ε (Θ̃)),

by (37), so that
r̃L

ε (Θ̃)∼ c̃2
ε L as ε → 0.
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Using c̃ε ∼ N−κ
ε and min(1,κ)x≤ 1− (1− x)κ ≤max(1,κ)x, 0≤ x≤ 1, we get

c̃ε L = ε
2

Ñε

∑
m=0

σ̃
−2
m,m(m+1)κ(1− c̃ε(m+1)κ)

∼ ε
2

Ñε

∑
j=0

σ̃
−2
Ñε− j,Ñε− j(Ñε − j)κ

(
1−
(

1− j−1
Ñε

)κ)
� ε

2e2τ2Ñε Ñ−1
ε

Ñε

∑
j=0

e−2τ2 j(Ñε − j)κ−2ρ2( j−1)

� ε
2e2τ2Ñε Ñκ−2ρ2−1

ε ,

where the last sum was approximated using Lemma A.4 below. Therefore, Ñ2κ−2ρ2−1
ε e2τ2Ñε �

ε−2, which in turn holds true if and only if

Ñε = τ
−1
2
(

log(1/ε)+
2κ−2ρ2−1

2
loglog(1/ε)+O(1)

)
,

and thus Ñε ∼ τ
−1
2 log(1/ε). This gives

c̃ε ∼ τ
κ
2 log(1/ε)−κ as ε → 0

and hence provides the lower bound.

For the upper bound, consider a projection estimator θ̂(hPr) with trunctation level Mε . Its
risk is given by

Rε(θ̂(hPr),θ) = ε
2

Mε

∑
m=0

m

∑
l=0

σ
−2
m,l +

∞

∑
m=Mε+1

m

∑
l=0

θ
2
m,l .

Now

sup
θ∈Θi

∞

∑
m=Mε+1

m

∑
l=0

θ
2
m,l ≤ sup

θ∈Θi

M−2κ
ε

∞

∑
m=Mε+1

m

∑
l=0

(m+1)2κ
θ

2
m,l ≤ LM−2κ

ε ,

n

∑
m=0

m

∑
l=0

σ
−2
m,l ≤

n

∑
m=0

(m+1)σ−2
m,m .

n

∑
m=0

m1−2ρ1e2τ1m . n1−2ρ1e2τ1n,

(38)

where we used Lemma A.4 below for the last estimate. Therefore, there exists a constant
C > 0 such that

sup
θ∈Θi

Rε(θ̂(hPr),θ)≤Cε
2M1−2ρ1

ε e2τ1Mε +M−2κ
ε L.

In order to minimize the bound on the right-hand side, Mε has to be chosen of order log(1/ε),
and if we specifically take Mε = bτ−1

1 log(1/ε)(1− log(1/ε)−δ )c for some δ ∈ (0,1), then

ε
2M1−2ρ1+2κ

ε e2τ1Mε � log(1/ε)1−2ρ1+2κ

e2log(1/ε)1−δ
−→ 0,

yielding

sup
θ∈Θi

Rε(θ̂(hPr),θ)≤ LM−2κ
ε (1+o(1)) = τ

2κ
1 L log(1/ε)−2κ(1+o(1)).
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This finally provides the upper bound and thus concludes the proof.

Lemma A.4. For all γ > 1 and δ ,c1,c2 ∈R,

n

∑
j=0

γ
− j(n− j)c1( j+δ )c2 ∼ nc1

∞

∑
j=0

γ
− j( j+δ )c2 as n→ ∞.

Proof of Lemma A.4. Assume that c1 ≥ 0, the case c1 < 0 is analogous. Then, for all n,

n

∑
j=0

γ
− j(1− j/n)c1( j+δ )c2 ≤

∞

∑
j=0

γ
− j( j+δ )c2 ,

providing the upper bound. To establish the lower bound, let 0 < ε < 1 and set nε = bεnc.
Then,

n

∑
j=nε+1

γ
− j(1− j/n)c1( j+δ )c2 ≤ (1− ε)c1

n

∑
j=nε+1

γ
− j( j+δ )c2 −→ 0,

so that

lim
n→∞

n

∑
j=0

γ
− j(1− j/n)c1( j+δ )c2 ≥ (1− ε)c1 lim

n→∞

nε

∑
j=0

γ
− j( j+δ )c2

= (1− ε)c1
∞

∑
j=0

γ
− j( j+δ )c2 .

Now letting ε → 0 provides the lower bound and concludes the proof.

Proof of Corollary 3.3. Let αm,l be the eigenvalues of the Toeplitz matrices Am generated by
λ . By assumption, there exist constants c,C > 0 such that λ ≥ c1[−η1,η1] and λ ≤C1[−η2,η2].

Denoting by α
( j)
m,l the eigenvalues of the Toeplitz matrices generated by 1[−η j ,η j ], j = 1,2, it

follows that
cα

(1)
m,l ≤ αm,l ≤Cα

(2)
m,l , m≥ l ≥ 0,

see Grenander and Szegö (1958). Therefore,

m1/2e−ξ1m . αm,m . m1/2e−ξ2m

with ξi correspondingly defined as in (22). Using the bound given in (20) as well as the first
part of Theorem 3.1 finishes the proof.

A.2. Proofs for Section 3.2

Proof of Proposition 3.4. a. Because of the inclusion relation (14), it suffices to consider
i = 1. As in Theorem 3.1, consider a projection estimator θ̂(hPr) with truncation level Mε .
Its bias is estimated in (38), while the variance term may be bounded by

Mε

∑
m=0

m

∑
l=0

σ
−2
m,l ≤

Mε

∑
m=0

(m+1)σ−2
m,m .

Mε

∑
m=0

mρ+1 . Mρ+2
ε , (39)
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yielding
sup
θ∈Θi

Rε(θ̂(hPr),θ). ε
2Mρ+2

ε +M−2κ
ε .

The bound on the right is minimized choosing Mε of order ε−2/(2κ+ρ+2), which provides the
upper bound.

b. Since
σ−2

n,n

∑
n
m=0 ∑

m
l=0 σ

−2
m,l

≤
σ−2

n,n

∑
n
m=0 σ

−2
m,m

= O(nρ−ρ1−1) = o(1), n→ ∞, (40)

condition (9) is satified, and the Pinsker estimator is efficient.

Let ε > 0, i ∈ {1,2}, and θ̂ be an arbitrary estimator for θ ∈ Θi. From the reduction scheme
introduced at the beginning of the proof of Theorem 3.1, we at once obtain the lower bound

rε(Θi)≥ rε(Θ̃)

with reduced ellipsoid Θ̃ = Θ̃(κ,L) defined in (36).

We can now use Pinsker’s theorem to estimate the minimax risk on Θ̃(κ,L) which evidently
coincides with the minimax risk for estimating the single-indexed sequence (θ0,0,θ1,1, . . .)
within the ellipsoid Θ(a,L) defined in (6) for am = (m+1)κ . The linear minimax risk on Θ̃

is therefore given by

rL
ε (Θ̃) = ε

2
Nε

∑
m=0

σ
−2
m,m(1− cε(m+1)κ),

where

Nε = max
{

n : ε
2

n

∑
m=0

σ
−2
m,m(m+1)κ((n+1)κ − (m+1)κ)≤ L

}
and cε ∼ N−κ

ε . Using ∑
n
m=0 mz ∼ (z+1)−1nz+1 as n→ ∞ for all z≥ 0,

n

∑
m=0

mρ(m+1)κ((n+1)κ − (m+1)κ)∼ κ(n+1)2κ+ρ+1

(κ +ρ +1)(2κ +ρ +1)
.

As ε → 0, under (24) this provides Nε & ε
− 2

2κ+ρ+1 , so that

rL
ε (Θ̃)& ε

2
Nε

∑
m=0

mρ1(1−N−κ
ε (m+1)κ)& ε

2Nρ1+1
ε & ε

4κ+2(ρ−ρ1)
2κ+ρ+1

Finally, (40) shows that condition (9) is satisfied for the sub-problem with Θ̃(α,L) as well,
so that

rε(Θ̃(α,L))∼ rL
ε (Θ̃(α,L)).

c. Under (25) we find the exact rates

Nε ∼
(

πL(κ +ρ +1)(2κ +ρ +1)
Cκε2

) 1
2κ+ρ+1

,
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and

rL
ε (Θ̃)∼ Cε2

π

Nε

∑
m=0

mρ(1−N−κ
ε (m+1)κ)∼ Cκε2Nρ+1

ε

π(ρ +1)(κ +ρ +1)

∼ C̃(κ,ρ,L,C)ε
4κ

2κ+ρ+1 .

A.3. Proofs for Section 3.3

Under the assumptions of Proposition 3.5, it follows from theorem 1.4 of Böttcher et al.
(2010a) that the inner and large eigenvalues of Am are bounded away from zero, uniformly in
m, i. e., given a small ε > 0 there exists Cε > 0 such that

αm,l ≥Cε (41)

whenever (m− l +1)/(m+2)≥ ε . Further, their theorem 1.5 states that for the small eigen-
values it holds that

αm,l =
λ ′′(π/2)π2

8

(m− l +1
m+2

)2
+O

((m− l +1
m+2

)3)
(42)

as m→ ∞ and (m− l)/m→ 0.

Lemma A.5. If λ is banded and satisfies the assumptions of Proposition 3.5 holds, then there
exists a constant C > 0 such that the eigenvalues αm,l of the Toeplitz matrices Am generated
by g satisfy ∣∣∣α−1

m,l −
8

λ ′′(π/2)π2

( m+2
m− l +1

)2∣∣∣≤C
m+2

m− l +1
, m≥ l ≥ 0.

Proof. Set c = 8/(λ ′′(π/2)π2) and ∆m,l =
∣∣α−1

m,l − c
( m+2

m−l+1

)2∣∣. For the small eigenvalues
αm,l , (42) provides

∆m,l =
(m− l +1)2− cαm,l(m+2)2

αm,l(m− l +1)2

=
(m− l +1)2 O

(
(m− l +1)/(m+2)

)
(m− l +1)4/(m+2)2

(
1+O

(
(m− l +1)/(m+2)

))
=

m+2
m− l +1

O(1)
1+O

(
(m− l +1)/(m+2)

)
)
.

Choosing ε > 0 small enough, 1+O
(
(m− l + 1)/(m+ 2)

)
) is bounded away from 0, uni-

formly in m and l, whenever (m− l +1)/(m+2)≤ ε , which shows that there is C1 > 0 such
that

∆m,l ≤C1(m+2)/(m− l +1), (m− l +1)/(m+2)≤ ε.

Choosing Cε according to (41), for the inner and large eigenvalues we even obtain the uniform
bound

∆m,l ≤C−1
ε + cε

−2 =: C2, (m− l +1)/(m+2)≥ ε.
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Setting C = max{C1,C2} concludes the proof.

Remark. In order to obtain (41) and (42) we actually apply theorems 1.4 and 1.5 of Böttcher
et al. (2010a) to the generating function g(ϕ) = λ (ϕ/2−π/2). Due to the additional shift of
π/2, the resulting Toeplitz matrix does not coincide with Am, it does have the same eigenval-
ues, though.

Proof of Proposition 3.5. In order to show the statement concerning Assumption A1, in view
of Lemma A.5,

m

∑
l=0

α
−1
m,l =

8(m+2)2

λ ′′(π/2)π2

m

∑
l=0

(m− l +1)−2 +
m

∑
l=0

O
( m+2

m− l +1

)
.

The error is O(m logm) = o(m2). Using that ∑
∞
j=1 j−2 = π2/6, the driving part is asymptoti-

cally equivalent to 4
3 m2/λ ′′(π/2), concluding the proof.

Concerning Assumption A2, from Lemma A.5 there exists C > 0 such that, for all m≥ l ≥ 0,

∣∣α−1
m,l − cm−l l2∣∣≤C(m+2)+

8
λ ′′(π/2)π2

∣∣(m+2)2− l2
∣∣

(m− l +1)2 .

Now, (m+2)2 = (m− l +1)2 +2(m− l +1)(l +1)+ l2 +2l +2, which shows that the right
summand is bounded by C1(l +1) for an adequate constant C1 > 0. Therefore we obtain∣∣α−1

m,l − cm−l l2∣∣≤C(m+2)+C1(l +1)≤ (C+C1)(m− l +1)(l +1),

whence A2 holds true for any δ ≤ 1.

Lemma A.6. If there exist β ≥ 1, δ > 0, and a positive, bounded sequence c = (c0,c1, . . .)
such that

α
−1
j+k,k = c jkβ +O

(
(( j+1)(k+1))β−δ

)
, j,k ≥ 0,

then, for all α ≥ 0,

∑
( j,k)∈(n)

( j+ k+1)( j+1)α(k+1)α
α
−1
j+k,k ∼

K(β +1,c)
α +β +2

nα+β+2

as n→ ∞, where K(β ,c) = ∑
∞
j=0 c j( j+1)−(β+1).

Proof of Lemma A.6. Conveniently, assume that δ ≤ 1, and set [n] = {( j,k) : j,k ≥ 1, jk ≤
n}, ᾱ j+k,k = α j+k−2,k−1, and c̄ j = c j−1, so that the sum above reads

∑
( j,k)∈[n]

( j+ k−1) jα kα
ᾱ
−1
j+k,k

= ∑
( j,k)∈[n]

jα kα+1
ᾱ
−1
j+k,k + ∑

( j,k)∈[n]
jα+1kα

ᾱ
−1
j+k,k− ∑

( j,k)∈[n]
jα kα

ᾱ
−1
j+k,k.

Denote these latter three sums by S1,n, S2,n, and S3,n, respectively. We will see that the first
sum S1,n is the driving part. In fact, S3,n is bounded by S2,n which itself will be shown to be
negligible at rate nα+β+2.
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Remember the approximation

bxc

∑
j=1

jγ = (γ +1)−1xγ+1 +O
(
xγ
)
= O

(
xγ+1), x≥ 1,γ ≥ 0,

where the constants hidden in the O-terms only depend on γ , no longer on x. Further, using
|kβ −(k−1)β |= O(kβ−1) and the boundedness of the c j, (??) gives ᾱ j+k,k = c̄ jkβ +O

(
(( j+

1)(k+1))β−δ
)
, so for any x≥ 1,γ ≥ 0, and j ∈N,

bxc

∑
k=1

kγ
ᾱ
−1
j+k,k = c̄ j

bxc

∑
k=1

kγ+β +
bxc

∑
k=1

O
(

jβ−δ kγ+β−δ
)

=
c̄ j

γ +β +1
xγ+β+1 +O

(
jβ−δ xγ+β+1−δ

)
.

The sum S2,n therefore satisfies

S2,n =
n

∑
j=1

jα+1
bn/ jc

∑
k=1

kα
ᾱ
−1
j+k,k

=
n

∑
j=1

jα+1(O((n/ j)α+β+1)+O
(

jβ−δ (n/ j)α+β+1−δ
))

= nα+β+1
n

∑
j=1

O
(

j−β
)
+nα+β+1−δ

n

∑
j=1

O(1)

= O
(
nα+β+1 logn

)
+O

(
nα+β+2−δ

)
,

providing the negligibility of S2,n and S3,n. Finally, the first sum S1,n gives

S1,n =
n

∑
j=1

jα

bn/ jc

∑
k=1

kα+1
ᾱ
−1
j+k,k

=
n

∑
j=1

c̄ j jα

α +β +2
(n/ j)α+β+2 +

n

∑
j=1

jα O
(

jβ−δ (n/ j)α+β+2−δ
)

=
nα+β+2

α +β +2

n

∑
j=1

c̄ j j−(β+2)+nα+β+2−δ
n

∑
j=1

O
(

j−2)
=

K(β +1,c)nα+β+2

α +β +2
(
1+o(1)

)
+O

(
nα+β+2−δ

)
,

which concludes the proof.

Proof of Theorem 3.6. In view of (26) and (29), it remains to show that condition (9) holds.

Under A1,
n

∑
m=0

m

∑
l=0

σ
−2
m,l =

1
π

n

∑
m=0

(m+1)
m

∑
l=0

α
−1
m,l � nρ+1
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and

max
m=0,...,n

max
l=0,...,m

σ
−2
m,l ≤ max

m=0,...,n

m

∑
l=0

σ
−2
m,l � nρ .

And under A2,

max
( j,k)∈(n)

σ
−2
j+k,k = max

( j,k)∈(n)

( j+ k+1
π

c jkρ−1)+O(nρ−δ ) = O(nρ),

while Lemma A.6 shows that
∑

( j,k)∈(n)
σ
−2
j+k,k � nρ+1.

So, evidently, in both cases (9) holds.

B. Appendix

B.1. The singular value decomposition

Davison (1983) presents the SVD of the Radon transform with weight functions w1 and w2,
without weight on the angle. Further, in case of limited angle and γ = 1, he relates the singular
values to the eigenvalues of certain hermitian Toeplitz matrices. We extend his analysis by
allowing a general weight function λ on the angle as well as general parameter γ >−1/2 for
the weighted Radon transform R in (1).

We start with the following two results.

Proposition B.1. If λ is integrable, the Radon transform R as a map between the weighted
L2-spaces in (1) is continuous with operator norm

‖R‖2 = sup
‖ f‖µ2=1

‖R f‖2
µ1

=
∫

π/2

−π/2
λ (ϕ)dϕ.

Proof. For ϕ ∈ [−π/2,π/2] fixed, define

Rϕ : L2(B1(0); µ2)−→ L2([−1,1];w1(s)ds) (43)

by Rϕ f (s) = R f (ϕ,s). This operator has norm ‖Rϕ‖ = 1, see Davison (1981, Theorem 1),
providing

‖R f‖2
µ1

=
∫

π/2

−π/2
‖Rϕ f‖2

w1
λ (ϕ)dϕ ≤ ‖ f‖2

µ2

∫
π/2

−π/2
λ (ϕ)dϕ.

Further, w−1
1 and w−1

2 are normalized to one, and Rϕ w−1
2 = w−1

1 for all ϕ , yielding

‖R‖2 = sup
‖ f‖µ2=1

‖R f‖2
µ1

=
∫

π/2

−π/2
λ (ϕ)dϕ.
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Proposition B.2. The adjoint operator of R is given by

R∗ : L2([−π/2,π/2]× [−1,1]; µ1)−→ L2(B1(0); µ2),

(R∗g)(x,y) = w2(x,y)−1
∫

π/2

−π/2
g(ϕ,xcosϕ + ysinϕ)w1(xcosϕ + ysinϕ)λ (ϕ)dϕ.

Proof. For ϕ ∈ [−π/2,π/2] fixed, let the operator Rϕ , as in (43), be defined by (Rϕ f )(s) =
(R f )(ϕ,s). The adjoint R∗ϕ of Rϕ is then, for g ∈ L2([−1,1];w1), given by

(R∗ϕ g)(x,y) = w2(x,y)−1g(xcosϕ + ysinϕ)w1(xcosϕ + ysinϕ),

which, applying the rotation (x,y) = (scosϕ− t sinϕ,ssinϕ + t cosϕ), follows from

〈Rϕ f ,g〉w1 =
∫ 1

−1

∫ √1−s2

−
√

1−s2
f (scosϕ− t sinϕ,ssinϕ + t cosϕ)g(s)w1(s)dt ds

=
∫

B1(0)
f (x,y)g(xcosϕ + ysinϕ)w1(xcosϕ + ysinϕ)dxdy

=
∫

B1(0)
f (x,y)(R∗ϕ g)(x,y)w2(x,y)dxdy

= 〈 f ,R∗ϕ g〉w2 .

For g ∈ L2([−π/2,π/2]× [−1,1]; µ1), defining gϕ on [−1,1] by gϕ(s) = g(ϕ,s), this, by
definition of R∗, particularly gives

(R∗g)(x,y) =
∫

π/2

−π/2
(R∗ϕ gϕ)(x,y)λ (ϕ)dϕ, (44)

providing

〈R f ,g〉µ1 =
∫

π/2

−π/2
〈Rϕ f ,gϕ〉w1λ (ϕ)dϕ =

∫
π/2

−π/2
〈 f ,R∗ϕ gϕ〉w2λ (ϕ)dϕ

=
∫

B1(0)
f (x,y)

∫
π/2

−π/2
(R∗ϕ gϕ)(x,y)λ (ϕ)dϕ w2(x,y)dxdy

= 〈 f ,R∗g〉µ2 ,

which shows that R and R∗ are adjoint to one another.

Next let us introduce the ingredients of the singular value decomposition. For the Toeplitz
matrix Am in (16), let

{vm,l = (v(0)m,l , . . . ,v
(m)
m,l )

′}m
l=0

denote an orthonormal basis of eigenvectors corresponding to the real eigenvalues αm,0 ≥
. . .≥ αm,m > 0. Define the matrices

Vm =
(
vm,0, . . . ,vm,m

)
, Λm = diag(αm,0, . . . ,αm,m),



Weighted angle Radon transform 31

Let Cm be defined in (15), and let

Bm = Λ
1/2
m V∗mCmVmΛ

1/2
m , (45)

a Hermitian matrix which is similar to CmAm, and hence has the same eigenvalues. Let

{wm,l = (w(0)
m,l , . . . ,w

(m)
m,l )

′}m
l=0

denote an orthonormal basis of eigenvectors of Bm corresponding to the eigenvalues βm,0, . . . ,βm,m >
0.

For m≥ l ≥ 0, let hm,l(ϕ) = e−i(m−2l)ϕ , and let

˜̃hm,l = w′m,l h̃m =
m

∑
k1,k2=0

w(k1)
m,l v(k2)

m,k1√
παm,k1

hm,k2 . (46)

Let Cγ
m denote the Gegenbauer or ultraspherical polynomials on [−1,1], and let

φm = w−1
1 Cγ

m, m = 0,1, . . . .

where w1 is defined in (2). The φm are orthogonal and complete in L2([−1,1];w1(s)ds),
with

〈φm,φm〉w1 =

√
πγ21−2γ Γ(m+2γ)

m!(m+ γ)Γ(γ)Γ(γ +1/2)
,

see Davison (1983). For m≥ l ≥ 0, let

Φm,l(ϕ,s) =
φm(s)
‖φm‖w1

˜̃hm,l(ϕ), −π/2≤ ϕ ≤ π/2,−1≤ s≤ 1, (47)

Further, let P(α,β )
n denote the Jacobi polynomials, and for (x,y) = r eiθ let

Ψ̃m,l(x,y) =
hm,l(θ)Jm,l(r)

w2(x,y)
, Jm,l(r) =

πΓ
(
γ +m− l

)
(m− l)!Γ(γ)

rm−2lP(γ−1,m−2l)
l (2r2−1), (48)

and

Ψm,l(x,y) =

√
βm,l

π
√

dm

m

∑
k1,k2=0

w(k1)
m,l v(k2)

m,k1

cm,k2

√
αm,k1

Ψ̃m,k2(x,y), (49)

Theorem B.3. Set σm,l =
√

πβm,l as in (17). The singular value decomposition of R between
the weighted L2-spaces in (1) is given by{

Ψm,l ,Φm,l ,σm,l
}

m≥l≥0,

where Φm,l is defined in (47), and Ψm,l is defined in (49). In particular, the functions
(Ψm,l)m≥l≥0 form an orthonormal basis of L2(B1(0); µ2), so that R is injective, and we have
for all f ∈ L2(B1(0); µ2) that

f =
∞

∑
m=0

m

∑
l=0

σ
−1
m,l 〈R f ,Φm,l〉µ1Ψm,l .
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Proof of Theorem B.3. We start with the following lemma.

Lemma B.4. For φm = w−1
1 Cγ

m and h ∈ L2([−π/2,π/2];λ (ϕ)dϕ), the function g(ϕ,s) =
h(ϕ)φm(s) satisfies

(RR∗g)(ϕ,s) =
φm(s)
Cγ

m(1)

∫
π/2

−π/2
h(ϕ ′)Cγ

m(cos(ϕ ′−ϕ))λ (ϕ ′)dϕ
′.

Proof. Using (44), for g ∈ L2([−π/2,π/2]× [−1,1]; µ1) we may rewrite

(RR∗g)(ϕ,s) =
∫

π/2

−π/2
(Rϕ R∗

ϕ ′gϕ ′)(s)λ (ϕ ′)dϕ
′.

Now, from theorem 3.1 in Davison and Grunbaum (1981) it follows that

(Rϕ R∗
ϕ ′φm)(s) =

Cγ
m(cos(ϕ ′−ϕ))

Cγ
m(1)

φm(s), ϕ,ϕ ′ ∈ [−π/2,π/2],

and, by linearity of Rϕ and R∗
ϕ ′ , for g = hφm we have

(Rϕ R∗
ϕ ′gϕ ′)(s) = h(ϕ ′)(Rϕ R∗

ϕ ′φm)(s),

which together complete the proof.

Lemma B.4 constitutes the first step to determine the spectral decomposition of the operator
RR∗ and hence the SVD of R. It shows that RR∗ leaves the subspaces Vm of L2([−π/2,π/2]×
[−1,1]; µ1) with

Vm =
{

h(ϕ)φm(s), h ∈ L2([−π/2,π/2];λ (ϕ)dϕ)
}

invariant. Therefore, in the next lemma we study the action of the self-adjoint integral opera-
tors Tm on L2([−π/2,π/2],λ (ϕ)dϕ) given by

Tmh(ϕ) =Cγ
m(1)

−1
∫

π/2

−π/2
h(ϕ ′)Cγ

m(cos(ϕ ′−ϕ))λ (ϕ ′)dϕ
′.

Lemma B.5. Then the following statements hold:

1. Tm vanishes on the orthogonal complement of lin{hm,l}m
l=0, and Tmhm = π(CmAm)

′hm.

2. The functions

h̃m,l =
1

√
παm,l

v′m,lhm =
1

√
παm,l

m

∑
k=0

v(k)m,lhm,k, l = 0, . . . ,m,

are an orthonormal basis of

lin{hm,l}m
l=0 ⊂ L2([−π/2,π/2];λ (ϕ)dϕ),
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and

Tmh̃m = πB′mh̃m, where h̃m = (h̃m,0, . . . , h̃m,m)
′, Tmh̃m = (Tmh̃m,0, . . . ,Tmh̃m,m)

′,

and Bm is defined in (45).

3. The functions
( ˜̃hm,l

)m
l=0, defined in (46), form an orthonormal basis of lin{hm,l}m

l=0 as
well and

Tm
˜̃hm,l = πβm,l

˜̃hm,l .

Proof. Ad 1.: In view of (4.9.19) and (4.9.21) in Szegö (1967), the polynomials Cγ
m(cosϕ)

attain the explicit form

Cγ
m(cosϕ) =

m

∑
j=0

Γ( j+ γ)Γ(m− j+ γ)

Γ(γ)2 j!(m− l)!
ei(m−2 j)ϕ ,

so that, since Cγ
m(1) = Γ(m+2γ)/(Γ(2γ)m!), setting

cm, j =

(
m
j

)
Γ(2γ)Γ( j+ γ)Γ(m− j+ γ)

Γ(m+2γ)Γ(γ)2

we find that

Tmh(ϕ) =
m

∑
j=0

cm, je−i(m−2 j)ϕ
∫

π/2

−π/2
h(ϕ ′)ei(m−2 j)ϕ ′

λ (ϕ ′)dϕ
′.

This evidently shows that Tmh = 0 for h in the orthogonal complement of lin{hm,0, . . . ,hm,m}
in L2([−π/2,π/2];λ (ϕ)dϕ), and defining

dz =
1
π

∫
π/2

−π/2
e−i2zϕ ′

λ (ϕ ′)dϕ
′, z ∈Z,

we find that

Tmhm,l = π

m

∑
j=0

cm, jdl− jhm, j,

proving part 1.

Ad 2.: Orthonormality of the functions h̃m,0 . . . , h̃m,m follows from that of vm,0, . . . ,vm,m. In
fact, using

〈hm,k1 ,hm,k2〉λ =
∫

π/2

−π/2
hm,k1(ϕ)hm,k2(ϕ)λ (ϕ)dϕ = πak2−k1 ,

we have

〈h̃m,l1 , h̃m,l2〉λ =
1

√
αm,l1αm,l2

m

∑
k1,k2=0

v(k1)
m,l1

v(k2)
m,l2

ak2−k1

=
1

√
αm,l1αm,l2

v′m,l2
Amvm,l1 =

√
αm,l1
αm,l2

v′m,l2
vm,l1 .
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This in particular implies that h̃m,0, . . . , h̃m,m are linearly independent so that, since h̃m,l ∈
lin{hm,l}m

l=0, l = 0, . . . ,m, they are a corresponding basis, too, concluding part c.

Finally, note that h̃m = π−1/2Λ−1/2V′mhm, hm = π1/2VmΛ1/2h̃m, and AmVm = VmΛm, with
part b providing

Tmh̃m = π
−1/2

Λ
−1/2
m V′mTmhm = π

1/2
Λ
−1/2
m V′mA′mCmhm

= π
1/2

Λ
1/2
m V′mCmhm = πΛ

1/2
m V′mCmVmΛ

1/2
m h̃m,

which shows part 2.

Part 3. is proved similarly as part 2.

From Lemma B.4 and Lemma B.5, part 3., it follows that for all m≥ l ≥ 0,

RR∗Φm,l = φ̃mTm
˜̃hm,l = πβm,lΦm,l . (50)

Further, from Lemma B.5, parts 1. and 3., the system {Φm,l}m≥l≥0 is orthonormal and com-
plete in the orthogonal complement of the kernel of R∗, and hence in the closure of range(R).

Setting σm,l =
√

πβm,l and Ψm,l = σ
−1
m,l R∗Φm,l , it follows from (50) that

RΨm,l = σm,l Φm,l , R∗Φm,l = σm,l Ψm,l .

To complete the proof of the theorem, it remains to show (49) and that the {Ψm,l}0≤l≤m form
an orthonormal basis of L2(B1(0); µ2).

The functions (Ψ̃m,l)0≤l≤m in (48) form an orthogonal basis of L2(B1(0); µ2). Call the func-
tions on the right side of (49) Ψ̂m,l(x,y). By orthonormality of the vectors vm,l and wm,l , it
follows that the (Ψ̂m,l)0≤l≤m form an orthogonal basis of L2(B1(0); µ2) as well.

From Davison (1983, theorem 3.2),(
RΨ̃m,l

)
(ϕ,s) = πcm,l hm,l(ϕ)φm(s). (51)

Further by (51) and the definitions of Φm,l and Ψ̂m,l , we have that
(
RΨ̂m,l

)
= σm,lΦm,l . Since

the (Φm,l)0≤l≤m are orthonormal in L2([−π/2,π/2]× [−1,1]; µ1), this implies that R as an
operator between the weighted L2 spaces in (1) is injective. By (50), for the functions Ψm,l =

σ
−1
m,l R∗Φm,l we also have that

(
RΨm,l

)
= σm,lΦm,l , so that Ψm,l = Ψ̂m,l by injectivity. This

concludes the proof of Theorem B.3.

B.2. Singular functions and smoothness conditions in case γ = 1

First we specialize our results for the singular functions to the case γ = 1. Here the weights
cm,l have the simple form cm,l = (m+ 1)−1 for all m, so, given the eigenvalues αm,l of Am,
it follows that βm,l = αm,l/(m+1), and thus the singular values of the operator R are σm,l =√

παm,l/(m+1), m≥ l ≥ 0. Further, dm = 1 for all m, and

C1
m(s) =Um(s) =

sin((m+1)arccoss)
sinarccoss
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are the Chebyshev polynomials of the second kind. Therefore, the singular functions Φm,l in
detector space reduce to

Φm,l(ϕ,s) =
2
π

√
1− s2

παm,l
Um(s)

m

∑
k=0

v(k)m,le
−i(m−2k)ϕ

with {vm,l = (v(0)m,l , . . . ,v
(m)
m,l )

′}m
l=0 the orthonormal system of eigenvectors of Am.

The functions Ψ̃m,l reduce to the Zernike functions zm,l defined by

zm,l(x,y) = Zm−2l
m (r)e−i(m−2l)θ ,

where m≥ l ≥ 0 and (x,y) = reiθ ∈ B1(0), and where the radial part Zm−2l
m on the unit interval

[0,1] is given by

Zn
m(r) =

(m−n)/2

∑
k=0

(−1)k(m− k)!
k!((m+n)/2− k)!((m−n)/2− k)!

rm−2k

for m−n even. The singular function Ψm,l in (49) are then expressed as

Ψm,l(x,y) =
√

m+1
π

m

∑
k=0

v(k)m,lzm,k(x,y), m≥ l ≥ 0. (52)

Next, following Johnstone (1989) we relate ellipsoid-type smoothness conditions to certain
weak derivatives w.r.t. a weighted L2-norm. To this end, introduce the measure

dµ3(x,y) = π
−1(s+1)(1− x2− y2)s dxdy, (x,y) ∈ B1(0).

Proposition B.6. In case γ = 1, a function f ∈ L2(B1(0); µ2) has weak derivatives of order s
in the weighted L2-space L2(B1(0); µ3) if and only if its Fourier coefficients θm,l = 〈 f ,Ψm,l〉,
with singular base functions Ψm,l given in (52), satisfy

∞

∑
m=0

m

∑
l,k=0

θ
2
m,l
(
v(k)m,l

)2
(m− k+1)s(k+1)s < ∞.

Proposition B.6 motivates us to consider

Θ3 = Θ3(κ,L) =
{

θ : ∑
m≥l,k≥0

(m− k+1)2κ(k+1)2κ
(
v(k)m,l

)2
θ

2
m,l ≤ L

}
,

where vm,l = (v(0)m,l , . . . ,v
(m)
m,l )

′ are the orthonormal eigenvectors of Am. Θ3 corresponds to
functions having 2κ weak derivatives which are bounded by a constant depending on L, in
a weighted L2-space. However, an analytic treatment of Θ3 is difficult since the behavior
of the entries v(k)m,l of the eigenvectors of Am is generally unknown, and even in the specific
cases where results are available (cf. Böttcher, Grudsky and Maksimenko, 2010b), these are
pretty involved. We therefore focused on the smoothness classes Θ1 and Θ2, but point out the
inclusion relations

Θ1(2κ,L)⊂Θ3(κ,L)⊂Θ1(κ,L),
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which follow since (m+ 1)2κ ≤ ∑
m
l,k=0(m− k + 1)2κ(k + 1)2κ

(
v(k)m,l

)2 ≤ (m+ 1)4κ for any
0≤ l ≤ m.

Proof of Proposition B.6. In order to deduce the summability condition of Proposition B.6,
similar as in Johnstone (1989) we differentiate the singular functions Ψm,l given in (52) by
means of the differential operators D=(∂/∂x− i∂/∂y)/2 and D̄=(∂/∂x+ i∂/∂y)/2. These
differential operators have the advantage of providing neat formulas for the derivatives of the
Zernike functions zm,l . In fact, we will see below that for p,q ∈N such that p+q = s we get

DpD̄qzm,l =

{ s!
π

hs+1
m−s,l−p , m−q≥ l ≥ p,

0, else,
(53)

where

hγ

m,l(x,y) =
∫

π/2

−π/2
Cγ

m(xcosϕ + ysinϕ)e−i(m−2l)ϕ dϕ, (54)

and where the norm of these derivatives with respect to µ3 is explicitly given by

‖DpD̄qzm,l‖2
µ3

=
π1/2(s+1)(2s+1)!
22s+1s!Γ(s+3/2)

(m− l + p)!(l +q)!
(l− p)!(m− l−q)!(m+1)

. (55)

Now, it suffices to show that the summability condition

∞

∑
m=0

m

∑
l,k=0

θ
2
m,l
(
v(k)m,l

)2
(m− k+1)s(k+1)s < ∞

is equivalent to DpD̄q f ∈ L2(B1(0); µ3) for all p,q ∈N such that p+q = s. For this, we first
give bounds on the Lp-norms of the Zernike functions above. Clearly,

(m− l + p)!
(m− l−q)!

≤ (m− l + p)s ≤ (m− l +1)sss,
(l +q)!
(l− p)!

≤ (l +q)s ≤ (l +1)sss.

Further, m− l− q+ 1 ≥ (m− l + 1)(q+ 1)−1 and l− p+ 1 ≥ (l + 1)(p+ 1)−1 whenever
m−q≥ l ≥ p, yielding

(m− l + p)!
(m− l−q)!

≥ (m− l−q+1)s ≥ (m− l +1)s(s+1)−s,

(l +q)!
(l− p)!

≥ (l− p+1)s ≥ (l +1)s(s+1)−s.

Therefore, by (55) there exist constants cs,Cs > 0, only depending on s = p+q, such that

cs ≤
m+1

(m− l +1)s(l +1)s ‖D
pD̄qzm,l‖2

µs
3
≤Cs

for all m−q≥ l ≥ p.

Now, expanding f as a Fourier series in the singular functions Ψm,l ,

f =
∞

∑
m=0

m

∑
l=0

θm,lΨm,l = π
−1

∞

∑
m=0

√
m+1

m

∑
l=0

θm,l

m

∑
k=0

v(k)m,lzm,k,
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whence, using the orthogonality of the zm,k which in turn follows from that of the Ψ1
m,k, see

(56) below, the weak derivatives of f with respect to the operators D and D̄ satisfy

‖DpD̄q f‖2
µs

3
= π

−2
∞

∑
m=s

(m+1)
m

∑
l=0

θ
2
m,l

m−q

∑
k=p

(
v(k)m,l

)2‖DpD̄qzm,k‖2
µs

3

�
∞

∑
m=s

m

∑
l=0

θ
2
m,l

m−q

∑
k=p

(
v(k)m,l

)2
(m− k+1)s(k+1)s.

This sum is finite for all p,q ∈N such that p+q = s if and only if the same holds true for k
ranging from 0 to m. And finally, since the θ 2

m,l are finite due to f ∈ L2, the outer sum can be
extended to m ranging from 0 to infinity.

Proof of (55). For clarity, in the following we express the dependence of all functions on
the parameter γ . Further, recall that the measures µ

γ

i , i = 1,2,3, are defined in terms of the
weight functions

wγ

1(ϕ,s) =
π1/2Γ(γ +1/2)

γΓ(γ)
(1− s2)1/2−γ , |s| ≤ 1, |ϕ| ≤ π/2,

wγ

2(x,y) = πγ
−1(1− x2− y2)1−γ , (x,y) ∈ B1(0),

wγ

3(x,y) = π
−1(γ +1)(1− x2− y2)γ , (x,y) ∈ B1(0).

Assume that λ = 1, in which case the singular functions in detector space, for arbitrary γ , are
given by

Φ
γ

m,l(ϕ,s) =
Cγ

m(s)e−i(m−2l)ϕ√
πdγ

m wγ

1(s)
,

and the singular values by σm,l =
√

πcγ

m,l , where

dγ
m =

√
πγ21−2γ Γ(m+2γ)

m!Γ(γ +1/2)(m+ γ)Γ(γ)
, cγ

m,l =

(
m
l

)
Γ(2γ)Γ(γ +m− l)Γ(γ + l)

Γ(2γ +m)Γ(γ)2 .

Hence, in view of Lemma B.2, the eigenfunctions in brain space can be written as

Ψ
γ

m,l(x,y) =
1

π

√
dγ

mcγ

m,l wγ

2(x,y)

∫
π/2

−π/2
Cγ

m(xcosϕ + ysinϕ)e−i(m−2l)ϕ dϕ

=
hγ

m,l(x,y)

π

√
dγ

mcγ

m,l wγ

2(x,y)

with hγ

m,l defined in (54), and in particular, regarding (52) and minding that d1
m = 1, c1

m,l =

(m+1)−1, and w1
2(x,y) = π , the Zernike functions are given by

zm,l(x,y) =
π√

m+1
Ψ

1
m,l(x,y) = π

−1h1
m,l(x,y). (56)

We now come back to the differential operators D = (∂/∂x− i∂/∂y)/2 and D̄ = (∂/∂x+
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i∂/∂y)/2. From the Gegenbauer identity d/dsCγ
m(s) = 2γCγ+1

m−1(s), see e. g. (4.7.14) in Szegö
(1967), it readily follows that

Dhγ

m,l = γhγ+1
m−1,l−1, D̄hγ

m,l = γhγ+1
m−1,l ,

where in particular Dhγ

m,0 = D̄hγ
m,m = 0. For p,q ∈N such that p+q = s this provides (53).

The norm of these derivatives can now be evaluated with respect to µs
3. For this, note that

wγ

3 = (wγ+1
2 )−1 and that the Ψ

γ

m,l are normalized with respect to µ
γ

2 . Therefore,

∥∥hγ+1
m,l

∥∥
µ

γ

3
= π

√
dγ+1

m cγ+1
m,l

∥∥wγ+1
2 Ψ

γ+1
m,l

∥∥
µ

γ

3
= π

√
dγ+1

m cγ+1
m,l

∥∥Ψ
γ+1
m,l

∥∥
µ

γ+1
2

= π

√
dγ+1

m cγ+1
m,l ,

for p,q ∈N such that p+q = s yielding∥∥DpD̄qzm,l
∥∥

µs
3
=

s!
π

∥∥hs+1
m−s,l−p

∥∥
µs

3
= s!

√
dγ+1

m−sc
γ+1
m−s,l−p.

Plugging in the formulas for cγ

m,l and dγ
m given above provides (55).

B.3. Exact rates for the ordinary Radon transform

To complement the above analysis, we finally show that in contrast to the weight function λ

on the angle, which strongly effects the rate of convergence, the parameter γ in the weight
functions w1 and w2 alone does not influence the rate of convergence.

In case that λ ≡ 1, i. e., the Radon transform inverse problem as studied in the past, exact
minimax rates can be given not only for γ = 1, the situation for which the rates are well
known, but for arbitrary γ . We here concentrate on the case γ ∈ (0,1], including parallel
beam design, for instance.

Recall that for λ ≡ 1 the singular values σm,l are given by

σm,l =
√

πcm,l

with

cm,l =

(
m
l

)
Γ(2γ)Γ(l + γ)Γ(m− l + γ)

Γ(m+2γ)Γ(γ)2 .

In view of Lemma B.7 and using Γ(m+2γ)/Γ(m+1)∼ m2γ−1,

m

∑
l=0

c−1
m,l =

Γ(γ)2

Γ(2γ)

Γ(m+2γ)

Γ(m+1)

m

∑
l=0

Γ(l +1)
Γ(l + γ)

Γ(m− l +1)
Γ(m− l + γ)

∼Cγ m2,

as m→ ∞, where Cγ =
√

πΓ(γ)2Γ(2−γ)
Γ(2γ)Γ(5/2−γ)23−2γ . Since this can be treated as imposing A1 for ρ = 2

and C =Cγ , Theorem 3.6 provides the minimax risk

rε(Θ1(κ,L))∼C∗1 ε
4κ

2κ+3 as ε → 0
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with

C∗1 =
( Cγ κ

π(κ +3)

) 2κ
2κ+3

(
L(2κ +3)

) 3
2κ+3

3
.

For example, using the duplication formula Γ(z)Γ(z+0.5)= 21−2z√πΓ(2z), z∈Z, in parallel
beam design we particularly have

C0.5 = π
2/8.

Lemma B.7. Denoting by Γ the Gamma function, for any γ ∈ (0,1],

m

∑
l=0

Γ(l +1)
Γ(l + γ)

Γ(m− l +1)
Γ(m− l + γ)

∼
√

πΓ(2− γ)

Γ(5/2− γ)
22γ−3m3−2γ as m→ ∞.

Proof. Set f (x) = Γ(x)/Γ(x+ γ−1), and without loss of generality always assume that m is
even. Then, by symmetrie in l and m− l,

m

∑
l=0

Γ(l +1)
Γ(l + γ)

Γ(m− l +1)
Γ(m− l + γ)

= 2
m/2

∑
l=0

f (l +1) f (m− l +1).

Let ε > 0. As x→ ∞, the function f satisfies f (x) ∼ x1−γ , whence there exists xε > 0 such
that

1− ε ≤ f (x+1)/x1−γ ≤ 1+ ε, x≥ xε . (57)

Setting mε = dxεe, it is evident that

mε−1

∑
l=0

f (l +1) f (m− l +1) = O(m1−γ).

Further,

m/2

∑
l=m0

f (l +1) f (m− l +1)&
m/2

∑
l=m0

l1−γ(m− l)1−γ ≥ (m/2)1−γ

m/2

∑
l=m0

l1−γ

& m3−2γ .

For each ε fixed, we therefore obtain the upper bound

limsup
m→∞

m/2

∑
l=0

f (l +1) f (m− l +1)≤ ((1+ ε)2 +o(1)) limsup
m→∞

m/2

∑
l=0

l1−γ(m− l)1−γ ,

and likewise the lower bound

liminf
m→∞

m/2

∑
l=0

f (l +1) f (m− l +1)≥ ((1− ε)2 +o(1)) liminf
m→∞

m/2

∑
l=0

l1−γ(m− l)1−γ ,
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so letting ε → 0 gives

m/2

∑
l=0

f (l +1) f (m− l +1)∼
m/2

∑
l=0

l1−γ(m− l)1−γ = m3−2γ 1
m

m/2

∑
l=0

(l/m)1−γ(1− l/m)1−γ

∼ m3−2γ

∫ 1/2

0
x1−γ(1− x)1−γ dx.

With this, and minding that∫ 1

0
x1−γ(1− x)1−γ dx =

√
πΓ(2− γ)22γ−3

Γ(5/2− γ)
,

we conclude the proof.


