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We review the theory on semiparametric hidden Markov models (HMMs),
that is, HMMs for which the state-dependent distributions are not fully para-
metrically, but rather semi- or nonparametrically specified. We start by review-
ing identifiability in such models, where by exploiting the dependence much
stronger results can be achieved than for independent finite mixtures. We also
discuss estimation, in particular in an algorithmic fashion by using appropriate
versions or modifications of the Baum-Welch (or EM-) algorithm. We present
some simulation results and give an application to modeling bivariate finan-
cial time series, where we compare parametric with nonparametric fits for the
state-dependent distributions as well as the resulting state-decoding.
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1 Introduction

A hidden Markov model (HMM) consists of an observed process (Yi)ieny as well as a
latent (unobserved) process (X¢)ien, such that 1. the (Y;)ien are independent given the
(Xt)ten, 2. the conditional distribution of Yy given the (X;):cn depends on X only and
3. (Xi)ten is a finite-state Markov chain. We assume that (X;)qen is time-homogeneous.
The cardinality K of the state space X = {1,..., K} of (X})sen is then called the number
of states of the HMM, and we denote the entries of the transition probability matrix
(t.p.m.) by (@jk)jk=1,.. k- The t.p.m. is assumed to be irreducible and aperiodic, and its
unique stationary distribution is denoted by 7. The conditional distributions of Yy given
Xs=k, k=1,...,K, are called the state-dependent distributions. We assume that they
are independent of s. Since the marginal distributions of the (Y}):en are finite mixtures in
the state-dependent distributions, HMMSs are also called Markov-dependent mixtures.

HMMs and related latent state models have important applications e.g. in speech recog-
nition @], ion channel modeling [5], biological sequence alignment ﬂﬁ], finance @], and
time series modeling in general [54].

Extensions of HMMs to non-finite state space as well as models where the (Y;);en have a
conditional time-series structure are discussed in ﬂﬁ, |2_4|]



For statistical modeling, the state-dependent distributions are most often assumed to
belong to some parametric family such as the normal distributions. In this case, the sta-
tistical theory is quite well-developed, see @, , , ] for theory on maximum likelihood
estimation, or Nﬁ for Bayesian methods.

Recently, there has been some interest in a semi- or even fully nonparametric specifica-
tion of the state-dependent distributions, cf. ﬂﬂ, @, @, @, ﬁ] for some applications of
such models. We shall call the resulting HMMs semiparametric HMMs. Semiparametric
modeling may be of interest

a. to guard against misspecification,

b. as part of lack of fit tests for a parametric family of state-dependent distributions,

c. theoretically.

In this article we review the results on identifiability and estimation in such semiparametric
HMMs. In SectionPlwe discuss identifiability, and in particular review recent results which
show the additional identifying power of a dependent regime, as compared to the case
of independent mixtures. Section [3] is devoted to estimation in semiparametric HMMs.
While there are few estimation methods which are theoretically justified, the popular EM-
algorithm can readily be extended to such models. Thus, from an algorithmic point of
view, the fitting of such models is relatively straightforward. Finally, we give an application
to the modeling of a bivariate time series of financial log-returns, where we compare the
performance of a simple parametric HMM with normal state-dependent distributions with
that of a nonparametric alternative.

2 ldentifiability of semiparametric hidden Markov models

When studying HMMs with semiparametrically specified component distributions, a major
issue is identifiability. In the parametric case, shows that full identifiability up to label
switching follows from identifiability of the marginal finite mixtures (see ﬂﬁ: |j, @] for
results and references), since by an old result of [50] this implies identifiability of product
distributions.

For HMMs with finite observational space, generic identifiability of the parameters, that
is, identifiability except on a subset of the parameters space of Lebesgue measure zero,
is achieved in E], see also @] Note that identifiability completely fails for independent
mixtures, thus, these results are a clear indication that using the dependence in an HMM,
by considering the joint distribution of successive observations, much stronger results can
be obtained.

When turning to semi - or nonparametrically specified component distributions, most
research focuses on independent finite mixtures (sometimes with addition of covariates).
Here, identifiability is most often only possible in specific, somewhat restrictive situations,
in particular for location mixtures, often additional with the assumption of symmetric
components, and mainly for two components. See @, @, , @, @, @, , @, @, @, B,
4 Ej]), E} An exception are mixtures of product distributions, for which identifiability in
the fully nonparametric case is possible under some assumptions, see @, , , ]

For HMMs, much stronger results can be obtained. From the joint distribution of two
successive observations (Y7, Y3), in @] the authors obtain full identifiability of the number



of states K and of the state-dependent distributions F/(-—pug), k = 1,..., K without further
assumptions on F' such as symmetry (1 = 0 for normalization), if the t.p.m. has full rank.
Using the methods developed in E,], @] obtained a general identifiability result. They
showed that if the number of components K is known, and the t.p.m. has full rank K, and
the component distributions are linearly independent, then from the joint distribution of
three successive observations (Y7, Ys, Y3) all parameters are identified.

@] have the final word on nonparametric identifiability of HMMs. They show that if the
t.p.m. has full rank, and if the state-dependent distributions are all distinct (not necessarily
linearly independent), then all parameters including the number of components are fully
nonparametrically identified (up to label switching).

3 Estimation

Concerning estimation, we may distinguish two general approaches. The first is to con-
struct estimators, based on some particular identification result, for which theoretical
properties such as consistency, rates of convergence and asymptotic normality can be es-
tablished. The only method designed specifically for HMMs, in a situation which is not
identified for independent mixtures seems to be the location model in @]

The second approach which we shall focus on below is based on the EM-algorithm (see @,

]) or variants thereof. Theoretically, the EM-algorithm serves to compute the maximum
likelihood (ML) estimator. However, since the theory of nonparametric ML estimation for
HMDMs still needs to be developed, estimation via the EM algorithm for semiparametric
HMMs is currently a rather heuristic, numerical approach.

If the family of state-dependent distributions allows for a weighted nonparametric max-
imum likelihood estimator, an actual EM-algorithm may be formulated. In the mixture
context, see @, @, @ . Otherwise, the M-step may be modified to include e.g. kernel
smoothing, such as in é, , , El],

For HMMs the EM-algorithm is also called the Baum-Welch algorithm, see ﬂa] ﬂﬂ]
presents the following nonparametric EM-algorithm. Assume that the Markov chain is
parametrized in all transition probabilities, without further restrictions. The parameter
vector is denoted by

T
V= (al,la e O K—1,021, .-, K K13 f17 v 7fK) )
where the fj, are the state-dependent densities. Introduce the notation 27 = (z1,...,z,)".

The log-likelihood is then given by

Ln('ﬁ):log( > pn(w?>Y1”;'l9)),

zreXy

n—1 n
Pn (xrllv len; 79) = Tgy (79) H Oy xiyq (79) H fiFt (yﬁ 79)
t=1 t=1



For the EM-algorithm, consider the objective function

Q(V,9") = Eyr (log(pn (X1, Y1";9))[Y]")

K n—1 K
= P1nlk; ) log 7 (0 Z D briranl ks 0') log o k()
k=1 t=1 jk=1
n K
YD byl ) log fr(Ya),
t=1 k=1

where
Gejn (k5 0") = Py (Xy = k[YT"), Geav1jn (G k3 0') = Por (X = J, Xpy1 = k|YT")

which can be efficiently computed from the forward and backward probabilities, based on
the parameter 1, see ﬂE, | for a complete treatment. The formal M-step is now to
compute the maximizer

YU+ = argmax, Q(Q?, 19(1)),

which can be performed separately for the parameters of the t.p.m. as well as the state-
dependent densities. For the t.p.m., nothing changes as compared to the fully parametric
case. The explicit solution

(I+1) S brirn (G, ks 90)

ko T n— .
’ K Yyt Gr1jn (4, K5 90)

is available for fixed starting distribution, otherwise (e.g. in the stationary case), a numer-
ical solution must be obtained. Now consider the state-dependent densities. If there are
no structural parameters and a weighted MLE is available in F}, then one obtains

Q

£ = argmax; r > Sm(k; 9Y) log fi(Y2).
=1

Major examples are the classes of log-concave densities and of monotone densities, see
]. A further example is the class of finite mixtures of some parametric family as state-
dependent densities, see @, , @]

A prime example involving a structural parameter is a location-scale model, in which case
one needs to resort to a ECM-algorithm (see ])

If the state-dependent densities, or the structural parameter f belong to some more general
nonparametric class for which no nonparametric MLE is available, one may resort to EM-
like algorithms. Here, the M-step is suitably replaced, and in some instances one obtains
the decent property for a modified objective function.

Dannemann ] considers a penalized version of the objective function, where the penalty
is on the state-dependent densities. For an appropriate choice, this gives spline-type
estimators of the state-dependent densities.

The M-step concerning the state-dependent densities can also be substituted by a smooth-
ing step, see @] for kernels or ﬂﬂ] for a wavelet-based approach. @] propose a variant of



the kernel method, for which they also show the ascent property for a suitable objective
function.

4 Simulation

In this section we illustrate the flexibility of the nonparametric approach using simulated
data. We generate 5000 bivariate observations from a two-state HMM with state de-
pendent skew-normal distributions (contour plots are given in Figure [I]) and transition

probability matrix
0.7 0.3
A= (0.4 0.6> ’

If we use normal state dependent distributions we obtain a reasonable estimate of the
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Figure 1: True parameter - Contour plot

Ao 0.74 0.25
- \0.49 0.51)°
however, the state-dependent distribution cannot capture the skewness. When using a non-

parametric approach assuming the state-dependent distributions to be log-concave based
on the estimation procedure from ﬂﬁ] we estimate the transition probability matrix

Ao (073 021
~\0.37 063)°

contour plots for the state-dependent distributions are given in Figure

transition probability matrix

5 Application

In this section we use the EM-algorithm from section 3 to illustrate two choices of state
dependent densities for a bivariate time series of financial logreturns. The states of the
hidden Markov model may be interpreted as different volatility states.
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Figure 2: Logconcave estimation - Contour plot

We use a database of 2926 logreturns from the stocks of Deutsche Bank and Munich RE
on a daily basis from 21st January 2000 to 23rd April 20137 and fit a three state hidden
Markov model using the EM-algorithm.

First we consider a parametric model with state-dependent normal distributions. The es-
timate for the transition probability matrix and the corresponding stationary distribution
are given by

0.807 0.193 8 x 107°
A=10392 0575 0.033 |, 7= (0.659 0.321 0.020).
0.056 0.477  0.467

The estimated state dependent parameters are
_ [(-1.80x 1074 y o (18x 1074 0.8 x 1074
Fr=1\ 149 x 104 )~ 1= 08%x107% 1.0x1074)"

_[(—24x1074 s (94 1074 5.0x 1074
H2=\ 27 x104)> 27 \5.0x 107 6.7x1074)"

(644 x 1074 5. _ (548 1074 29.0 x 1074
B3 = \52.9 x 1074 ) 37 \20.0x 1074 39.6 x 1071

We observe that state 1 represents a state with low volatility whereas state three corre-
spond to a high volatility state. The estimated densities are shown in Figure Bl

Next, we assume the state-dependent densities to be log-concave (without structural pa-
rameter) and compute the MLE by using the nonparametric version of the EM algorithm
to obtain the estimated densities.

Here, the estimates from the parametric fit are used as starting values for the EM-algorithm
in a nonparametric setting.

The estimation procedure for multivariate log-concave densities is described in @] For

'"Data access from http://de.finance.yahoo.com/
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Figure 3: Parametric estimation
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Figure 4: Logconcave estimation

the evaluation of the maximum likelihood estimator in the M-step we use the R package
LogConcDEAD introduced in ﬂﬁ] The resulting transition probability matrix and sta-
tionary distribution are

0.860 0.140 0.000
A={0325 0644 0031, 7= (0689 0294 0.017).
0.046 0.482 0.472

The estimated densities are shown in Figures[3 and Ml contour plots for the log-concave fit
are given in Figure[Bl The nonparametric fit is somewhat skewed, otherwise, the dispersion
is similar to that in the parametric case. In Figure [fl we plot the time series together with
a state-decoding using global decoding with the Viterbi-algorithm (see ﬂﬁ]), both from
the nonparametric as well as from the parametric fit. The state-decoding based on the
nonparametric fit has slightly less transitions than in the parametric case. However, both
are still quite similar, which indicates that the parametric fit is reasonable.
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Figure 6: Upper two figures: Series of log-returns of the two stocks. Lower two figures:
Global decoding using the Viterbi-algorithm based on parameter estimates from
parametric fit (upper figure) and nonparametric log-concave fit (lower figure).
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