Übungen zur Differentialgeometrie 1

- Blatt 13 -

Abgabe Montag: 09.02

Hausaufgaben:

Aufgabe 1 (4 Punkte). Man beweise: ein 3-dimensionaler (zusammenhängender) Einstein-Raum ist notwendigerweise ein Raum konstanter Krümmung.

Aufgabe 2 (4 Punkte). Sei (S^2, g_0) die 2-Sphäre mit der Standardmetrik und $S^2 \times S^2$ mit der Produktmetrik. Man zeige: $S^2 \times S^2$ ist ein Einstein-Raum, aber kein Raum konstanter Krümmung.

Aufgabe 3 (4 Punkte).

a) Bekanntlich kann man eine symmetrische Bilinearform $\varphi(x,y)$ stets aus der zugehörigen quadratischen Form $\tilde{\varphi}(x)=\varphi(x,x)$ zurückgewinnen über die sogenannte Polarisationformel

$$2\varphi(x,y) = \tilde{\varphi}(x+y) - \tilde{\varphi}(x) - \tilde{\varphi}(y).$$

Analog zeige man für den Krümmungstensor: \mathcal{R} kann aus der biquadratischen Form

$$K(X,Y) = \langle \mathcal{R}(X,Y)Y, X \rangle$$

rekonstruiert werden (und damit aus der Kenntnis aller Schnittkrümmungen).

b) Folgere: Wenn die Schnittkrümmung nicht von der Wahl der Ebene, sondern nur vom Punkt $p \in M$ abhängt, also eine skalare Funktion $K: M \to \mathbb{R}$ ist, so folgt

$$\mathcal{R}(X,Y)Z = K(\langle Y,Z\rangle X - \langle X,Z\rangle Y).$$