Fachbereich Mathematik und Informatik Universität Marburg Prof. Dr. Ilka Agricola Reinier Storm & Marius Kuhrt

Übungen zur Lie-Gruppen und Lie-Algebren

- Blatt 6 -

Abgabe Montag: 30-11

Präsenzaufgaben:

Aufgabe 1 (1.7.3 #2). Zeigen Sie, dass $\mathbf{Sp}(1)$ isomorph zu $\mathbf{SU}(2)$ als Lie Gruppe ist. (Hinweis: Benutzen Sie die Hausaufgabe auf Blatt 3.)

Aufgabe 2. Sei $G \subset \mathbf{GL}(n, \mathbb{F})$ eine Lie Gruppe und

$$G_e := \{ \exp(X_1) \cdot \dots \cdot \exp(X_m) \in G : X_1, \dots, X_m \in \mathfrak{g} \text{ und } m \in \mathbb{N} \}.$$

Zeigen Sie, dass G_e die zusammenhängende Komponente der Identität ist.

Aufgabe 3 (1.7.3 #3). Sei ψ die reelle Transformation von \mathbb{C}^{2n} gegeben durch

$$\psi[z_1,\ldots,z_n,z_{n+1},\ldots,z_{2n}]=[\overline{z}_{n+1},\ldots,\overline{z}_{2n},-\overline{z}_1,\ldots,-\overline{z}_n].$$

Wir definieren $\mathbf{SU}^*(2n) = \{g \in \mathbf{SL}(2n, \mathbb{C}) : g\psi = \psi g\}$. Zeigen Sie, dass $\mathbf{SU}^*(2n)$ als Lie Gruppe isomorph zu $\mathbf{SL}(n, \mathbb{H})$ ist.

Aufgabe 4. Wir betrachten die Abbildung $\sigma(x) = \overline{x}$. Zeigen Sie, dass σ ein Automorphismus von $\mathbf{U}(n)$ und $\mathbf{SU}(n)$ ist. Zeigen Sie, dass σ ein äußerer Automorphismus ist für n > 3 und $\mathbf{U}(2)$ aber ein innerer Automorphismus für $\mathbf{SU}(2)$.

Aufgabe 5. Zeigen Sie, dass $\mathbf{Sp}(1,\mathbb{F})$ isomorph zu $\mathbf{SL}(2,\mathbb{F})$ ist, wobei $\mathbb{F} = \mathbb{C}, \mathbb{R}$.

Aufgabe 6.

Hausaufgaben:

Aufgabe 7 (1.7.3 #1). Sei $G = \mathbb{C}^{\times}$. Wir definieren die Konjugation $\tau(z) = \overline{z}^{-1}$. Sei $V \subset \mathcal{O}[G]$ der Unterraum mit Basis $f_1(z) = z$ und $f_2(z) = z^{-1}$. Wir definieren $(Cf)(z) = \overline{f(\tau(z))}$ und $\rho(z)f(w) = f(wz)$ für $f \in V$ und $z \in G$.

a) Finden Sie eine Basis v_1, v_2 des reellen Unterraumes $V_+ = \{ f \in V : Cf = f \}$, sodass in diese Basis

$$\rho(z) = \begin{bmatrix} (z+z^{-1})/2 & (z-z^{-1})/2i \\ -(z-z^{-1})/2i & (z+z^{-1})/2 \end{bmatrix},$$

für alle $z \in \mathbb{C}^{\times}$.

b) Sei $K = \{z \in G : \tau(z) = z\}$. Benutzen Sie a) um zu zeigen, dass $G \cong \mathbf{SO}(2, \mathbb{C})$ als algebraische Gruppe und $K \cong \mathbf{SO}(2)$ als Lie Gruppe.

Aufgabe 8 (1.7.3 #4). Sei $G = \mathbf{Sp}(\mathbb{C}^{2n}, \Omega)$. Zeigen Sie, dass die Abbildung $g \mapsto (g^*)^{-1}$ ein involutiven Automorphismus von G definiert. Zeigen Sie, dass $g \mapsto \tau(g) = K_{p,q}(g^*)^{-1}K_{p,q}$ eine komplexe Konjugation definiert, wobei $K_{p,q} = \mathrm{diag}[I_p, -I_q, I_p, -I_q]$.