Fachbereich Mathematik und Informatik Universität Marburg Prof. Dr. Ilka Agricola Reinier Storm & Marius Kuhrt

Übungen zur Lie-Gruppen und Lie-Algebren

– Blatt 9 – Abgabe Montag: 14-12

Präsenzaufgaben:

Aufgabe 1 (2.3.4 #1). Sei e_{ij} die elementare Matrix die $e_{ij}(v_j) = v_i$ und $e_{ij}(v_k) = 0$ für $k \neq j$. Sei $x = e_{13}$, $y = e_{31}$ und $h = e_{11} - e_{33}$.

- a) Zeigen Sie, dass $\{x, y, h\}$ ein TDS Triple in $\mathfrak{sl}(3, \mathbb{C})$ ist.
- b) Sei $\mathfrak{g} = \mathbb{C}x \oplus \mathbb{C}y \oplus \mathbb{C}h \cong \mathfrak{sl}(2,\mathbb{C})$ und sei $U = M_3(\mathbb{C})$. Wir definieren eine Darstellung $\rho : \mathfrak{g} \to \operatorname{End}(U)$ durch $\rho(A)X = [A, X]$. Zeigen Sie, dass $\rho(h)$ diagonalisierbar ist mit Eigenwerten ± 2 (Vielfachheit 1), ± 1 (Vielfachheit 2), und 0 (Vielfachheit 3). Finden Sie alle $u \in U$, sodass $\rho(h)u = \lambda u$ und $\rho(x)u = 0$, wobei $\lambda = 0, 1, 2$.
- c) Sei $F^{(k)}$ die irreduzible (k+1)-dimensionale Darstellung von \mathfrak{g} . Zeigen Sie, dass

$$U \cong F^{(2)} \oplus F^{(1)} \oplus F^{(1)} \oplus F^{(0)} \oplus F^{(0)}.$$

Aufgabe 2. Zeigen Sie, dass $F^{(2)}$ isomorph zu der adjungierten Darstellung von $\mathfrak{sl}(2,\mathbb{C})$ ist.

Aufgabe 3 ([2.3.4 #3). Beschreiben Sie alle irreduzible Darstellungen von $SO(3,\mathbb{C})$.

Aufgabe 4 (2.3.4 #2). Sei k eine nicht-negative Zahl und sei W_k der Raum aller Polynome in $\mathbb{C}[x]$ von Grad $\leq k$. Für $f \in W_k$ sei

$$\sigma_k(g)f(x) = (cx+a)^k f\left(\frac{dx+b}{cx+a}\right), \quad \text{für } g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{SL}(2,\mathbb{C}).$$

Zeigen Sie, dass $\sigma_k(g)W_k = W_k$ und dass (σ_k, W_k) eine Darstellung definiert die äquivalent zu der (k+1)-dimensionalen irreduzible Darstellung ist.

Aufgabe 5. Zeigen Sie, dass für $GL(n, \mathbb{C})$ und eine endlich-dimensionale Darstellung V das Tensorprodukt $V \otimes V$ sich zerlegt in mindestens zwei Unterdarstellungen:

$$V \otimes V = V \odot V \oplus V \wedge V$$
.

Hausaufgaben:

Aufgabe 6 (2.4.5 #4). Sei $1 \le i, j \le l, i \ne j$ und C_{ij} die Cartan-Zahlen.

- a) Zeigen Sie, dass der α_j Wurzelstring durch α_i gegeben ist durch $\alpha_i, \ldots, \alpha_i C_{ij}\alpha_j$. (Benutzen Sie, dass $\alpha_i \alpha_j$ kein Wurzel ist)
- b) Zeigen Sie, dass $[e_{\alpha_j},e_{-\alpha_i}]=0$ und

$$\operatorname{ad}(e_{\alpha_j})^k(e_{\alpha_i}) \neq 0$$
 für $k = 0, \dots, -C_{ij}$,
 $\operatorname{ad}(e_{\alpha_i})^k(e_{\alpha_i}) = 0$ für $k = -C_{ji} + 1$.

(Hinweis: Benutzen Sie a) und Korollar 2.4.4.)

Aufgabe 7. Beschreiben Sie das Wurzelsystem von der Cartan-Matrix

$$\left[\begin{array}{cc} 2 & -3 \\ -1 & 2 \end{array}\right].$$

Malen Sie ein Bild von dem Wurzelsystem, Sie dürfen annehmen, dass der Winkel zwischen den einfachen positiven Wurzeln $\frac{5}{6}\pi$ betragt.

Aufgabe 8. Sei $(\rho, V = \mathbb{C}^2)$ die Standard-Darstellung von $\mathfrak{sl}(2, \mathbb{C})$.

- a) Zerlegen Sie $V \otimes_{\mathbb{C}} V$ in irreduzible Unterdarstellungen.
- b) Zeigen Sie, dass $\bigcirc_{\mathbb{C}}^{k} \mathbb{C}^{2} \cong F^{(k+1)}$.