Projective Images of Kummer Surfaces

Th. Bauer

April 29, 1993

0. Introduction

The aim of this note is to study the linear systems defined by the even resp. odd sections of a symmetric ample line bundle on an abelian surface.

Let A be an abelian surface over the field of complex numbers and let \mathcal{L}_0 be an ample symmetric line bundle on A. If \mathcal{L}_0 is of type (1,1) and if \mathcal{L}_0 is not a product polarization, then it is well-known that the linear system $|\mathcal{L}_0^2|$ consists of even divisors only and yields a projective embedding of the Kummer surface of A.

Here we will study the following generalized situation: we start with \mathcal{L}_0 of type (1,n) for arbitrary $n \geq 1$ and consider for $d \geq 2$ the linear systems $|\mathcal{L}_0^d|^{\pm}$ defined by the even resp. odd sections of the powers \mathcal{L}_0^d . These systems correspond to line bundles \mathcal{M}_d^+ and \mathcal{M}_d^- on the smooth Kummer surface \widetilde{X} of A (see section 1 for details). Our aim is to study the maps $\widetilde{X} \longrightarrow \mathbb{P}(H^0(\mathcal{M}_d^{\pm}))$ defined by these line bundles.

If \mathcal{L}_0 is of type (1,1) or (1,2), then $h^0(\mathcal{M}_2^-) = 0$ resp. $h^0(\mathcal{M}_2^-) = 2$. Since \mathcal{M}_2^- does not define a map onto a surface in these cases, we exclude \mathcal{M}_2^- from our considerations for n = 1 and n = 2. We prove:

Theorem. a) \mathcal{M}_d^{\pm} is free, except for \mathcal{M}_2^- in the product case $\mathcal{L}_0 = \mathcal{O}_A(E_1 + nE_2)$, where E_1 , E_2 are elliptic curves with $E_1E_2 = 1$. In this case the four symmetric translates of E_2 yield base curves of \mathcal{M}_2^- . Removing these base curves one obtains the line bundle \mathcal{M}_2^+ associated to $\mathcal{O}_A(E_1 + (n-2)E_2)$.

b) Now let \mathcal{M}_d^{\pm} be free (i.e. exclude \mathcal{M}_2^- in the product case). Then the morphism $\widetilde{X} \longrightarrow \mathbb{P}(H^0(\mathcal{M}_d^{\pm}))$ defined by \mathcal{M}_d^{\pm} is birational onto its image and an isomorphism outside the contracted curves, except for \mathcal{M}_2^+ in the product case, where this morphism is of degree 2.

c) Again, let \mathcal{M}_d^{\pm} be free. \mathcal{M}_d^+ resp. \mathcal{M}_d^- contracts the exceptional curves associated to even resp. odd halfperiods of \mathcal{L}_0 . Additional curves are contracted only in the following cases:

i) \mathcal{M}_2^- contracts the symmetric elliptic curves $E \subset A$ with $\mathcal{L}_0 E = 2$. Such elliptic curves E exist iff

$$\mathcal{L}_0 \equiv_{\mathrm{alg}} \mathcal{O}_A(kE + E_1 + E_2) \quad or \quad \mathcal{L}_0 \equiv_{\mathrm{alg}} \mathcal{O}_A(kE + G),$$

where E_1 , E_2 are symmetric elliptic curves with $EE_i = 1$, G is a symmetric irreducible curve with EG = 2 and $k \ge 1$.

- ii) If \mathcal{L}_0 is of type (1,1), then \mathcal{M}_3^+ contracts the unique divisor Θ in $|\mathcal{L}_0|$.
- iii) In the product case $\mathcal{L}_0 = \mathcal{O}_A(E_1 + nE_2)$ the additional contractions are given by the following table:

line bundle	n	contracted curves		
\mathcal{M}_4^-		the four symmetric translates of E_2		
$\overline{\mathcal{M}_3^+}$	odd	the curve E_2		
\mathcal{M}_3^-	even	the four symmetric translates of E_2		
	odd	the three symmetric translates of E_2 different from E_2		

Note: if we have n = 1 in iii), then the roles of E_1 and E_2 can be interchanged. So in this case the corresponding symmetric translates of E_1 are contracted as well. This theorem contains in particular the following special cases:

- \mathcal{M}_{4k}^+ embeds the singular Kummer surface (exceptional curves contracted) for $k \geq 1$ (Sasaki [8]).
- \mathcal{M}_2^+ embeds the singular Kummer surface in the general case (Khaled [2]).
- \mathcal{M}_2^- is very ample for n = 3 in the general case (Naruki [4]).

As to the author's knowledge the other cases have not been considered in the literature so far.

Our method consists in an application of theorems for line bundles on K3-surfaces due to Reider and Saint-Donat.

Throughout this paper the base field is \mathbb{C} .

This work was supported by DFG grant Ba 423/3-4. Furthermore, I would like to thank Prof. Barth for many helpful discussions.

1. Symmetric Line Bundles

In this section we compile some properties of symmetric line bundles on abelian surfaces and of odd and even sections of such bundles.

Odd and Even Halfperiods. Let \mathcal{L} be a symmetric line bundle on an abelian surface A. By definition the involution $\iota : A \longrightarrow A$, $a \longmapsto -a$, admits a lifting $\iota_{\mathcal{L}}$ to the total space of \mathcal{L} . Multiplying by a suitable constant we can achieve that $\iota_{\mathcal{L}}$

is an involution. $\iota_{\mathcal{L}}$ then is uniquely determined up to the sign. From now on we fix one of these two involutions. Let e_1, \ldots, e_{16} be the halfperiods of A. $\iota_{\mathcal{L}}$ operates on the fibers $\mathcal{L}(e_i)$ as multiplication by ± 1 . We denote this sign of $\iota_{\mathcal{L}}$ on $\mathcal{L}(e_i)$ by $q_i = q_i(\mathcal{L})$. We will call the halfperiods e_i with $q_i = +1$ resp. $q_i = -1$ the even resp. odd halfperiods of \mathcal{L} .

Odd and Even Sections. A section $s \in H^0(\mathcal{L})$ is called *even* resp. *odd*, if $\iota_{\mathcal{L}} s\iota = s$ resp. $\iota_{\mathcal{L}} s\iota = -s$. So the even resp. odd sections are just the elements of the eigenspaces $H^0(\mathcal{L})^+$ resp. $H^0(\mathcal{L})^-$ of the linear map $s \mapsto \iota_{\mathcal{L}} s\iota$ on $H^0(\mathcal{L})$.

$$\begin{array}{cccc} \mathcal{L} & \stackrel{\mathcal{L}_{\mathcal{L}}}{\longrightarrow} & \mathcal{L} \\ s \uparrow & & \uparrow \iota_{\mathcal{L}} s \iota \\ A & \stackrel{\mathcal{L}}{\longrightarrow} & A \end{array}$$

Let $\sigma: \widetilde{A} \longrightarrow A$ be the blow-up of A in the sixteen halfperiods. The exceptional divisor Z is a sum of sixteen disjoint rational (-1)-curves Z_1, \ldots, Z_{16} , corresponding to the points e_1, \ldots, e_{16} . We introduce the notations $Z^+ = \sum_{q_i=+1} Z_i$ and $Z^- = \sum_{q_i=-1} Z_i$. Let $\widetilde{\mathcal{L}}$ be the pullback of \mathcal{L} to \widetilde{A} . We denote by $\widetilde{\iota}$ the involution on \widetilde{A} induced by ι and by $\iota_{\widetilde{\mathcal{L}}}$ the corresponding involution of $\widetilde{\mathcal{L}}$. The subspaces $H^0(\widetilde{\mathcal{L}})^+$ and $H^0(\widetilde{\mathcal{L}})^-$ of even and odd sections are defined in the obvious way. We have canonical isomorphisms $H^0(\widetilde{\mathcal{L}})^{\pm} \cong H^0(\mathcal{L})^{\pm}$.

Kummer Surfaces. The quotient $\widetilde{X} = \widetilde{A}/\widetilde{\iota}$ is a projective K3-surface, the smooth Kummer surface of A. It is the minimal desingularisation of $X = A/\iota$, the (singular) Kummer surface of A. Denoting the canonical projections $A \longrightarrow X$ and $\widetilde{A} \longrightarrow \widetilde{X}$ by π and $\widetilde{\pi}$ we have the following commutative diagram

The $\tilde{\pi}$ -images D_1, \ldots, D_{16} of Z_1, \ldots, Z_{16} are disjoint rational (-2)-curves corresponding to the double points $\pi(e_1), \ldots, \pi(e_{16})$ of X. $Z = \sum Z_i$ is the ramification divisor of $\tilde{\pi}, D = \sum D_i$ is the branch locus in \tilde{X} .

Our aim is to study the linear systems $|\mathcal{L}|^{\pm}$ of even resp. odd divisors in $|\mathcal{L}|$. Here a divisor is called *even* resp. *odd*, if it is defined by an even resp. odd section of \mathcal{L} . Along with the subsystems $|\mathcal{L}|^{\pm}$ we will consider certain line bundles \mathcal{M}^+ and \mathcal{M}^- on \widetilde{X} associated to \mathcal{L} . These bundles are given by the following proposition:

Proposition 1.1 The direct image sheaf $\mathcal{M} = \tilde{\pi}_* \mathcal{L}$ is locally free of rank 2. It admits a decomposition $\mathcal{M} = \mathcal{M}^+ \oplus \mathcal{M}^-$ into line bundles \mathcal{M}^+ and \mathcal{M}^- such that $H^0(\mathcal{M}^{\pm}) \cong H^0(\mathcal{L})^{\pm}$.

Proof. For an open set $U \subset \widetilde{X}$ we define $\mathcal{M}^+(U)$ and $\mathcal{M}^-(U)$ to be the eigenspaces of the linear map

$$\widetilde{\mathcal{L}}\left(\widetilde{\pi}^{-1}(U)\right) \longrightarrow \widetilde{\mathcal{L}}\left(\widetilde{\pi}^{-1}(U)\right) \\
s \longmapsto \iota_{\widetilde{\mathcal{L}}}s\widetilde{\iota}.$$

Since multiplication of a section in $\mathcal{M}^{\pm}(U)$ by a function in $\mathcal{O}_{\widetilde{X}}(U)$ preserves the parity of the section, the subvector spaces $\mathcal{M}^{\pm}(U)$ are in fact $\mathcal{O}_{\widetilde{X}}(U)$ -submodules. Since these submodules are easily seen to be of rank 1 and since by definition $H^0(\mathcal{M}^{\pm}) = H^0(\widetilde{\mathcal{L}})^{\pm}$, our assertion is proved. \Box

Proposition 1.2 Let F be a symmetric divisor in $|\mathcal{L}|$. Then the multiplicity m_i of F in the halfperiod e_i is even resp. odd according to the following table:

$$\begin{array}{c|cccc} e_i \ even & e_i \ odd \\ \hline F \ even & m_i \ even & m_i \ odd \\ F \ odd & m_i \ odd & m_i \ even \end{array}$$

Proof. It will be enough to consider the case that e_i is an even halfperiod. First we see that odd sections $s \in H^0(\widetilde{\mathcal{L}})^-$ vanish on Z_i , because $s = \iota_{\widetilde{\mathcal{L}}} s \widetilde{\iota} = -s$ on Z_i . Now let $s \in H^0(\widetilde{\mathcal{L}})^{\pm}$ be a section defining the pullback $\sigma^* F$. Then m_i is the order of vanishing of s along Z_i . We can find a local equation f of Z_i such that $f \widetilde{\iota} = -f$. Then the section

$$\frac{3}{f^{m_i}}$$

is even (because an odd section would vanish on Z_i). We conclude that m_i must be even resp. odd iff s is even resp. odd.

If \mathcal{L} is effective, then the line bundles \mathcal{M}^{\pm} can also be described in the following way: Let Θ be a divisor in $|\mathcal{L}|^+$. We write

$$\sigma^*\Theta = \widehat{\Theta} + \sum_{i=1}^{16} m_i Z_i,$$

where $\widehat{\Theta}$ denotes the proper transform of Θ and m_i the multiplicity of Θ in e_i . Now we define a divisor C on \widetilde{X} by

$$C = \tilde{\pi}(\widehat{\Theta}) + \sum \left[\frac{m_i}{2}\right] D_i,$$

where by $\tilde{\pi}(\Theta)$ we mean the image divisor, whose multiplicities at irreducible components are the same as those of Θ . This procedure gives a bijection $|\mathcal{L}|^+ \longrightarrow |\mathcal{M}^+|$, where $\mathcal{M}^+ = \mathcal{O}_{\widetilde{X}}(C)$. Using the fact that Θ has odd multiplicities in the odd halfperiods we obtain

$$\widetilde{\pi}^* C = \widehat{\Theta} + \sum 2 \left[\frac{m_i}{2} \right] Z_i = \sigma^* \Theta - Z^-,$$

hence $\tilde{\pi}^* \mathcal{M}^+ = \tilde{\mathcal{L}} - Z^-$. (Here and at similar occasions we use the notation $\tilde{\mathcal{L}} - Z^$ as a short form for $\tilde{\mathcal{L}} \otimes \mathcal{O}_{\widetilde{X}}(-Z^-)$). Since we can proceed in the same way with \mathcal{M}^- , we obtain

Proposition 1.3

$$\widetilde{\pi}^* \mathcal{M}^{\pm} = \widetilde{\mathcal{L}} - Z^{\mp}$$

Now we can determine the intersection numbers of \mathcal{M}^{\pm} with the curves D_i by calculating on \tilde{A} . Using $\tilde{\pi}^* D_i = 2Z_i$ we get

Proposition 1.4

$$\mathcal{M}^{+} \cdot D_{i} = \begin{cases} 0, & \text{if } q_{i} = +1 \\ 1, & \text{if } q_{i} = -1 \end{cases}$$
$$\mathcal{M}^{-} \cdot D_{i} = \begin{cases} 1, & \text{if } q_{i} = +1 \\ 0, & \text{if } q_{i} = -1 \end{cases}$$

Consider the following sets:

- i) symmetric effective divisors F on A
- ii) effective divisors C on \widetilde{X} such that none of the exceptional curves D_i , $i = 1, \ldots, 16$, is a component of C

Clearly, the map $F \mapsto C = \tilde{\pi}(\hat{F})$, which maps F to the image in \tilde{X} of the proper transform \hat{F} of F, is a bijection between i) and ii). We will need some formulas relating the intersection numbers of F and C. Here and in the sequel we denote by $m_i = m_i(F)$ the multiplicities of the divisor F in the halfperiods e_i .

Proposition 1.5 Let F be a symmetric effective divisor on A and let C be its image on \widetilde{X} . Then we have

a)
$$F^{2} = 2C^{2} + \sum_{i=1}^{16} m_{i}^{2}$$

b) $\mathcal{M}^{\pm}C = \frac{1}{2}(\mathcal{L}F - \sum_{q_{i}=\mp 1} m_{i})$
c) $m_{i} = CD_{i}$
d) $\sum_{i=1}^{16} m_{i}$ is even.

Proof. a), b) and c) are shown by obvious calculations, whereas d) follows from the fact that $\chi(\widehat{F}) = \chi(\mathcal{O}_{\widetilde{A}}) + C^2 - \frac{1}{2}C \sum D_i$ is an integer.

2. Line Bundles on the Smooth Kummer Surface

Studying the line bundles \mathcal{M}^{\pm} on the K3-surface \widetilde{X} we will apply the following theorem of Saint-Donat ([7], Cor. 3.2, Thm. 5.2 and Thm. 6.1(iii)):

Theorem 2.1 (Saint-Donat) Let S be a K3-surface and let \mathcal{B} be a line bundle on S such that $\mathcal{B}^2 \geq 4$, $|\mathcal{B}| \neq \emptyset$ and such that $|\mathcal{B}|$ has no fixed components. Then $|\mathcal{B}|$ has no base points. Furthermore the morphism $S \longrightarrow \mathbb{P}_N$ defined by \mathcal{B} is birational, except in the following cases:

i) There exists an irreducible curve E such that $p_a(E) = 1$ and $\mathcal{B}E = 2$.

ii) There exists an irreducible curve H such that $p_a(H) = 2$ and $\mathcal{B} = \mathcal{O}_S(2H)$.

If the morphism is birational, then it is an isomorphism outside the contracted curves.

The following intersection property of the elliptic curve E in Saint-Donat's theorem will turn out to be essential:

Proposition 2.2 Assume case i) of Saint-Donat's Theorem and let D be an irreducible curve such that $\mathcal{B}D = 1$. Then $ED \leq 1$.

Proof. First note that we may assume E to be smooth. Now let Φ be the morphism defined by \mathcal{B} . It follows from $\mathcal{B}E = 2$ that the restricted morphism $\Phi|E$ is of degree 2. We conclude that the image $\Phi(E)$ is a line. Since $\Phi(D)$ is also a line, we see that E and D have at most one point in common. This proves our assertion, because by Bertini's Theorem we may assume E and D to intersect transversally.

If the selfintersection numbers of \mathcal{M}^{\pm} are sufficiently high, we will use Reider's method to show that the linear systems $|\mathcal{M}^{\pm}|$ are base point free. For K3-surfaces his theorem takes the following form ([6], Thm. 1 and Prop. 5):

Theorem 2.3 (Reider) Let S be a K3-surface and let L be a nef divisor on S with $L^2 \ge 6$. Then the linear system |L| has base points iff there is a divisor E on S with

$$LE = 1 \quad and \quad E^2 = 0.$$

The intersection matrix of E then is necessarily negative semidefinite. We need:

Proposition 2.4 a) In the situation of Reider's Theorem the divisor E can always be chosen irreducible.

b) If D is a (-2)-curve such that LD = 1, then $ED \leq 1$.

Proof. a) If the linear system |E| has no base component, then it follows from Bertini's theorem that $\mathcal{O}_{\widetilde{X}}(E) = \mathcal{O}_{\widetilde{X}}(kC)$, where C is an irreducible elliptic curve in \widetilde{X} . From LE = 1 we conclude k = 1.

Now if |E| has fixed part B, we write E = B + E' where E' is free of base components, thus $E'^2 \ge 0$. On the other hand we have $E'^2 \le 0$, because the

intersection matrix of E is negative semidefinite. Hence $E'^2 = 0$. Further, if LE' = 0, then E' would be numerically trivial by the Hodge Index Theorem. So from 1 = LE' = LB + LE' we conclude LE' = 1, because L is nef. This shows that we can replace E by E' and argue as above.

can replace *E* by *E* and argue as above. b) From the Hodge Index Theorem we obtain the inequality $L^2(E+D)^2 \leq (L(E+D))^2$, which immediately yields our assertion.

3. The Line Bundles \mathcal{M}^{\pm}

There are formulas for the dimensions $h^0(\mathcal{L})^{\pm} = h^0(\mathcal{M}^{\pm})$, where \mathcal{L} is an ample symmetric line bundle on an abelian variety of arbitrary dimension ([1], Thm. 5.4). Here we give a simple formula in the case of abelian surfaces:

Theorem 3.1 Let \mathcal{L} be an ample symmetric line bundle of type (d_1, d_2) on an abelian surface A and let n^{\pm} be the number of even resp. odd halfperiods of \mathcal{L} . Then we have the following formula for the associated line bundles \mathcal{M}^{\pm} on the smooth Kummer surface \widetilde{X} of A:

$$h^0(\mathcal{M}^{\pm}) = 2 + \frac{d_1 d_2}{2} - \frac{n^{\mp}}{4}$$

Proof. First note that it suffices to prove the formula for one of the line bundles \mathcal{M}^+ or \mathcal{M}^- , because for the other line bundle the formula then follows from $h^0(\mathcal{M}^+) + h^0(\mathcal{M}^-) = h^0(\mathcal{L}) = d_1d_2$. Further, by Riemann-Roch the Euler-Poincaré-Characteristic $\chi(\mathcal{M}^{\pm})$ equals the right hand side of the asserted formula. So it is enough to prove that the higher cohomology groups of \mathcal{M}^{\pm} vanish. We proceed in three steps.

Step 1: We have $h^1(\mathcal{M}^{\pm}) = h^2(\mathcal{M}^{\pm}) = 0$ in each of the following cases:

i) \mathcal{L} is totally symmetric, i.e. $n^+ = 16$ or $n^- = 16$.

ii) $|\mathcal{L}|^+ \neq \emptyset$ or $|\mathcal{L}|^- \neq \emptyset$.

Let i) be fulfilled. We may assume $n^+ = 16$, hence $(\mathcal{M}^+)^2 = d_1 d_2 > 0$ and $\mathcal{M}^+ C > 0$ for any irreducible curve $C \subset \widetilde{X}$ different from the exceptional curves D_1, \ldots, D_{16} . Thus \mathcal{M}^+ is nef and our assertion follows from Ramanujam's Vanishing Theorem [5].

Now suppose ii). Since \mathcal{M}^{\pm} is not trivial, we have $h^2(\mathcal{M}^{\pm}) = 0$. Thus Riemann-Roch gives

$$h^{0}(\mathcal{M}^{\pm}) - h^{1}(\mathcal{M}^{\pm}) = 2 + \frac{d_{1}d_{2}}{2} - \frac{n^{\mp}}{4}.$$

and the assertion follows by simply adding up these two equations.

Step 2: If the type of \mathcal{L} is different from (1,1) and (1,2), then i) or ii) is fulfilled.

Suppose the contrary and w.l.o.g. assume $|\mathcal{L}| = |\mathcal{L}|^+$. Thus the odd halfperiods of \mathcal{L} are base points of the full linear system $|\mathcal{L}|$. By [3], Prop. 4.1.6 and Lemma 10.1.2.a), then necessarily $d_1 = 1$ and (A, \mathcal{L}) is a polarized product of elliptic curves. But in this case it is easy to see that there are both odd and even divisors in $|\mathcal{L}|$, contradicting our assumption. Step 3: If \mathcal{L} is of type (1,1) or (1,2), then $h^0(\mathcal{M}^{\pm}) = \chi(\mathcal{M}^{\pm})$ holds as well.

First let \mathcal{L} be of type (1,1). If the unique divisor Θ in $|\mathcal{L}|$ is irreducible, then Θ is a smooth hyperelliptic curve, the odd halfperiods of \mathcal{L} being the Weierstraß points of Θ . Thus $n^- = 6$ and $h^0(\mathcal{M}^+) = 1$, hence $h^0(\mathcal{M}^+) = \chi(\mathcal{M}^+)$. The product case can be treated analogously.

Now let \mathcal{L} be of type (1,2). By Step 1 we may assume $h^0(\mathcal{L})^+ = 2$, $h^0(\mathcal{L})^- = 0$ and $n^- > 0$. We have to show that $n^- = 4$. Since this is obvious in the product case, let (A, \mathcal{L}) not be a product of elliptic curves. The odd halfperiods are base points of $|\mathcal{L}|$. Thus we have $n^- \leq 4$, because $\mathcal{L}^2 = 4$. Since n^- must be a multiple of 4, equality $n^- = 4$ holds.

The formula in (3.1) shows in particular that

- n^{\pm} is even, and
- n^{\pm} is a multiple of 4 iff the product d_1d_2 is even.

From now on let \mathcal{L}_0 be an ample symmetric line bundle on A of type (1, n), where $n \geq 1$. For $d \geq 2$ we denote by \mathcal{M}_d^{\pm} the line bundles on \widetilde{X} associated to the powers \mathcal{L}_0^d .

We begin our study of the line bundles \mathcal{M}_d^{\pm} by getting rid of an exceptional case:

Proposition 3.2 Let $\mathcal{L}_0 = \mathcal{O}_A(E_1 + nE_2)$, where E_1 and E_2 are elliptic curves with $E_1E_2 = 1$ and $n \geq 3$. Then the four symmetric translates of E_2 yield base curves of \mathcal{M}_2^- . Removing these base curves one obtains the bundle \mathcal{M}_2^+ associated to $\mathcal{O}_A(E_1 + (n-2)E_2)$.

Proof. If $C \subset \widetilde{X}$ is the curve corresponding to E_2 or to one of its symmetric translates E'_2 , E''_2 , E'''_2 , then $\mathcal{M}_2^- C = -1$. So C is a base curve of \mathcal{M}_2^- . The divisor

$$2(E_1 + nE_2) - (E_2 + E_2' + E_2'' + E_2''')$$

is linearly equivalent to $2(E_1 + (n-2)E_2)$. So the proposition follows from the fact that adding the sum $E_2 + E'_2 + E''_2 + E''_2$ obviously changes the parity of a divisor.

Apart from this exception we will proceed as follows:

- We show that \mathcal{M}_d^{\pm} is nef and we determine the curves C on \widetilde{X} such that $\mathcal{M}_d^{\pm}C = 0.$
- We show that the linear system $|\mathcal{M}_d^{\pm}|$ has no base points.
- The morphism defined by \mathcal{M}_d^{\pm} is either birational or of degree 2. We show that the latter case occurs only with \mathcal{M}_2^+ in case (A, \mathcal{L}_0) is a polarized product of elliptic curves.

The Property Nef. First we consider the case $n \ge 2$. The principally polarized case will be postponed to section 4, because it needs a somewhat different discussion. By (1.5) $\mathcal{M}_2^+ C \ge 0$, where equality holds iff C is one of the exceptional curves D_1, \ldots, D_{16} . Let us consider \mathcal{M}_2^- now:

Lemma 3.3 Let \mathcal{L}_0 be of type (1, n) with $n \geq 3$ and assume that \mathcal{L}_0 is not a product polarization. Then \mathcal{M}_2^- is nef. For an irreducible curve $C \subset \widetilde{X}$ we have $\mathcal{M}_2^-C = 0$ iff the corresponding symmetric curve $F \subset A$ is elliptic and $\mathcal{L}_0F = 2$. Then necessarily

$$\mathcal{L}_0 \equiv_{\mathrm{alg}} \mathcal{O}_A(kF + E_1 + E_2) \quad or \quad \mathcal{L}_0 \equiv_{\mathrm{alg}} \mathcal{O}_A(kF + G),$$

where E_1 , E_2 are symmetric elliptic curves with $FE_i = 1$, G is a symmetric irreducible curve with FG = 2 and $k \ge 1$.

Proof. The last assertion follows easily by considering intersection numbers. For the proof of the other assertions let C be an irreducible curve with $\mathcal{M}_2^- C \leq 0$ and let F be the corresponding symmetric curve on A.

1) First we show that F is contained in a symmetric divisor $\Theta \in |\mathcal{L}_0|$: By (1.5) the assumption $\mathcal{M}_2^- C \leq 0$ means $\mathcal{L}_0^2 F \leq \sum_{i=1}^{16} m_i$, where $m_i = m_i(F)$. Because of $n \geq 3$ the linear systems $|\mathcal{L}_0|^+$ and $|\mathcal{L}_0|^-$ are of dimension ≥ 0 and at least one of them is of positive dimension. Now our claim follows from the fact that—apart from the halfperiods—we may prescribe additional points of intersection for $\Theta \in |\mathcal{L}_0|^{\pm}$ with F.

2) By the Hodge Index Theorem we have $C^2 = -2$, hence $F^2 = \sum m_i^2 - 4$. Now consider the inequalities

$$(F^2)^2 \le \mathcal{L}_0^2 F^2 \le (\mathcal{L}_0 F)^2 \le (\frac{1}{2} \sum m_i)^2,$$

where the first one follows from our claim above. We obtain $4 \leq \sum m_i \leq 8$ from $(F^2)^2 \leq (\frac{1}{2} \sum m_i)^2$. Then we see from $(\mathcal{L}_0^2 F^2) \leq (\frac{1}{2} \sum m_i)^2$ and $(\mathcal{L}_0)^2 \geq 6$ that necessarily $F^2 = 0$ and $\sum m_i = 4$, thus $\mathcal{L}_0 F \leq 2$. Since the product case was excluded, we have $\mathcal{L}_0 F = 2$, i.e. $\mathcal{M}_2^- C = 0$, and F is a symmetric elliptic curve. This proves the lemma.

We know that for i = 1, ..., 16 we have $\mathcal{M}_d^{\pm} D_i = 0$, if $q_i = +1$. Now we are interested in curves C different from the D_i with $\mathcal{M}_d^{\pm} C = 0$. For brevity we will simply call them *additional contractions* in the sequel.

Lemma 3.4 Let \mathcal{L}_0 be of type (1, n) with $n \ge 2$ and let $d \ge 3$.

a) If \mathcal{L}_0 is not a product polarization, then \mathcal{M}_d^{\pm} is nef and has no additional contractions.

b) If $\mathcal{L}_0 = \mathcal{O}_A(E_1 + nE_2)$ is a product polarization, then \mathcal{M}_d^{\pm} is nef, too. The additional contractions are given by the table in section 0.

Proof. For an irreducible curve $C \subset \widetilde{X}$ different from the exceptional curves D_1, \ldots, D_{16} we have

$$\mathcal{M}_{d}^{\pm}C \geq \frac{1}{2}(3\mathcal{L}_{0}F - \sum_{i=1}^{16}m_{i}) = \mathcal{M}_{2}^{-}C + \frac{1}{2}\mathcal{L}_{0}F.$$

We see that for a curve with $\mathcal{M}_d^{\pm}C \leq 0$ necessarily $\mathcal{M}_2^{-}C < 0$ holds.

As for a): For $n \ge 3$ \mathcal{M}_2^- is nef by (3.3) and we are done. If n = 2, then \mathcal{M}_2^- is free, hence nef, by (3.6) below.

As for b): Only the symmetric translates of E_2 can yield curves with $\mathcal{M}_2^- C < 0$. Thus our claim follows by simply calculating $\mathcal{M}_d^{\pm} C$ for each of these curves.

Base Points. First we consider those cases, where we can apply Reider's theorem. We will then have to deal separately with the line bundles defining maps into \mathbb{P}_3 .

Lemma 3.5 Let \mathcal{L}_0 be of type (1, n) with $n \ge 1$ and let $d \ge 2$. If \mathcal{M}_d^{\pm} is nef and $(\mathcal{M}_d^{\pm})^2 \ge 6$, then \mathcal{M}_d^{\pm} is free.

Proof. Assume that \mathcal{M}_d^{\pm} has base points. The assumptions on \mathcal{M}_d^{\pm} allow us to apply Reider's Theorem. Thus there is a curve C on \widetilde{X} such that $C^2 = 0$ and $\mathcal{M}_d^{\pm}C = 1$. By (2.4) we can assume C to be irreducible. So we get a symmetric curve F on A such that

$$F^{2} = \sum_{i=1}^{10} m_{i}^{2} d\mathcal{L}_{0} F = 2 + \sum_{q_{i}=\pm 1} m_{i},$$

where the m_i denote the multiplicities of F in the halfperiods. By (2.4) we have $m_i \leq 1$, if $q_i = \mp 1$. Now consider the following inequality for the sum $s = \sum_{q_i = \mp 1} m_i$:

$$\mathcal{L}_0^2 s \le \mathcal{L}_0^2 F^2 \le (\mathcal{L}_0 F)^2 = \frac{1}{d^2} (2+s)^2$$

Using $s \leq 16$ and $(\mathcal{M}_d^{\pm})^2 \geq 6$ we find that the only solution is s = 0. Hence d = 2 and $\mathcal{L}_0 F = 1$. But then $F^2 = 0$ by the Index Theorem, i.e. F must be a sum of two algebraically equivalent elliptic curves, contradicting $\mathcal{L}_0 F = 1$.

It remains to consider the line bundles \mathcal{M}_d^{\pm} of selfintersection smaller than 6. These are

- i) \mathcal{M}_2^+ , if \mathcal{L}_0 is of type (1,1),
- ii) \mathcal{M}_2^- , if \mathcal{L}_0 is of type (1,2) or (1,3) and
- iii) \mathcal{M}_3^- , if \mathcal{L}_0 is of type (1, 1).

Case iii) will be considered in section 4. Here we turn to the bundles \mathcal{M}_2^+ and \mathcal{M}_2^- . We give a proof that these bundles are free, which works for all polarizations $(1, n), n \geq 1$ resp. $n \geq 2$. This shows that for \mathcal{M}_2^\pm we could have done without Reider's Theorem.

Lemma 3.6 Let \mathcal{L}_0 be of type (1, n). Then

a) \mathcal{M}_2^+ is free for all $n \geq 1$.

b) \mathcal{M}_2^- is free for $n \geq 2$, if \mathcal{L}_0 is not a product polarization.

Proof. According to Saint-Donat's Theorem it is enough to prove that the systems $|\mathcal{M}_2^{\pm}|$ have no base *curves*.

1) First suppose that there are base curves different from the exceptional curves D_1, \ldots, D_{16} . Then the system $|\mathcal{L}_0^2|^{\pm}$ on A has a fixed part B. Since this system is invariant under translation by halfperiods, so is B. Hence $\mathcal{O}_A(B)$ is totally symmetric. If $B^2 > 0$, then we have $h^0(B)^{\pm} = \frac{1}{B^2} \pm 2$, which never equals 1, because B^2 is a multiple of 8. Thus necessarily $B^2 = 0$, i.e. B is a sum of algebraically equivalent elliptic curves. B has odd multiplicities in the halfperiods. Now let Θ be a divisor in the system $|\mathcal{L}_0^2|^{\pm} - B$. Then $\mathcal{O}_A(\Theta)$ is totally symmetric and

$$|\mathcal{L}_0^2|^{\pm} - B = |\Theta|^{\mp}.$$

As for b): Since we are not in the product case, we have $\Theta^2 > 0$. Using (3.1) we see that $h^0(\Theta)^+ = h^0(\mathcal{L}_0^2)^-$ implies $\Theta B = 8$. But this occurs in the product case only, because Θ is a square and B is at least a 4-th power in the Néron-Severi group of A.

As for a): If $\Theta^2 > 0$, then $h^0(\Theta)^- = h^0(\mathcal{L}_0^2)^+$ gives the contradiction $\Theta^2 > (\mathcal{L}_0^2)^2$. If $\Theta^2 = 0$, i.e. Θ is a sum of k elliptic curves, k > 0, then we compute

$$h^{0}(\Theta)^{-} = \frac{\Theta B}{2} + 2 \ge 2k + 2,$$

which again is impossible.

2) Now suppose that one of the exceptional curves D_i is a base curve of \mathcal{M}_2^{\pm} . Using the translation argument again, we see that then all the curves D_1, \ldots, D_{16} must be base curves. Thus the line bundles $\mathcal{N}^{\pm} = \mathcal{M}_2^{\pm} - \sum_{i=1}^k D_i$ are nef for $k = 1, \ldots, 16$. Now we compute the selfintersection numbers

$$(\mathcal{N}^+)^2 = (\mathcal{M}_2^+)^2 - 2k$$

 $(\mathcal{N}^-)^2 = (\mathcal{M}_2^-)^2 - 4k$

If $(\mathcal{N}^{\pm})^2$ is positive, then by Ramanujam's Vanishing Theorem [5] and Riemann-Roch this number must be equal to $(\mathcal{M}_2^{\pm})^2$, which is impossible. Hence $(\mathcal{N}^{\pm})^2 = 0$ for all k, a contradiction again.

Degree of the Morphisms. Now we want to determine the degree of the maps defined by the line bundles \mathcal{M}_d^{\pm} . We always exclude \mathcal{M}_2^{-} in the product case. According to the results above this is the same as requiring \mathcal{M}_d^{\pm} to be nef.

First we show that case ii) of Saint-Donat's Theorem 2.1 never occurs for the line bundles \mathcal{M}_d^{\pm} :

Proposition 3.7 There is no irreducible curve H on \widetilde{X} such that $p_a(H) = 2$ and $\mathcal{M}_d^{\pm} = \mathcal{O}_{\widetilde{X}}(2H)$.

Proof. We have $H^2 = 2$ by the adjunction formula, hence $(\mathcal{M}_d^{\pm})^2 = 8$. Furthermore, from $2HD_i = \mathcal{M}_d^{\pm}D_i \leq 1$ we conclude $\mathcal{M}_d^{\pm}D_i = 0$ for $i = 1, \ldots, 16$. This is possible only for the bundle \mathcal{M}_2^+ associated to a (1, 2)-polarization. In this case we consider the symmetric curve F on A corresponding to H. We have $F^2 = 4 + \sum_{i=1}^{16} m_i(F)^2$ and $4 = \mathcal{L}_0 F$. It follows from $\mathcal{L}_0^2 F^2 \leq (\mathcal{L}_0 F)^2$ that $F^2 = 4$, thus $\sum m_i(F)^2 = 0$. This is impossible, because $\mathcal{O}_A(F)$ cannot be totally symmetric.

Lemma 3.8 Let \mathcal{L}_0 be an ample symmetric line bundle of type (1, n) with $n \geq 1$ and let \mathcal{M}_d^{\pm} be nef, $d \geq 2$. Then the morphism defined by \mathcal{M}_d^{\pm} is birational onto its image and an isomorphism outside the contracted curves, except for \mathcal{M}_2^+ in the product case, where this morphism is of degree 2.

Proof. According to Saint-Donat's Theorem and (3.7) we have to check whether there is an elliptic curve C on \widetilde{X} with $\mathcal{M}_d^{\pm}C = 2$. Equivalently we ask whether there is a symmetric curve $F \subset A$ having at most two components such that

$$F^{2} = \sum_{i=1}^{16} m_{i}^{2} d\mathcal{L}_{0} F = 4 + \sum_{q_{i} = \mp 1} m_{i}.$$
 (*)

By (2.2) we have $m_i \leq 1$, if $q_i = \mp 1$. Denote the sum $\sum_{q_i = \mp 1} m_i$ by s.

1) First we consider the case s = 0. Then obviously d = 2 or d = 4. If d = 4, then we have $\mathcal{L}_0 F = 1$, hence $F^2 = 0$ by the Index Theorem. Thus F is a sum of two algebraically equivalent elliptic curves, contradicting $\mathcal{L}_0 F = 1$. If d = 2, then $\mathcal{L}_0 F = 2$, and again this implies that F must be the sum of two algebraically equivalent elliptic curves. This occurs if and only if \mathcal{L}_0 is a product polarization, as claimed.

2) Now suppose s > 0. From (*) we get the inequalities

$$\mathcal{L}_0^2 s \le \mathcal{L}_0^2 F^2 \le (\mathcal{L}_0 F)^2 = \frac{1}{d^2} (4+s)^2.$$

These inequalities can be satisfied only if d and $(\mathcal{L}_0)^2$ are small enough. Using $s \leq 16$ we arrive at:

- i) the case \mathcal{M}_2^- , where \mathcal{L}_0 is of type (1,3) and s = 16, and
- ii) the case \mathcal{M}_3^{\pm} , where \mathcal{L}_0 is of type (1,1) and s = 8 or s = 2.

It remains to show that in these situations there is no curve F satisfying (*). But this follows from (4.4) and (5.2) below.

4. Special Case: Principal Polarizations

In this section we study the line bundles \mathcal{M}_d^{\pm} in case \mathcal{L}_0 is a principal polarization. We have to consider two cases:

e_7		e_4		e_5		e_6	
	Θ_1		Θ_8		Θ_9		Θ_{10}
e_3		e_{14}		e_{15}		e_{16}	
	Θ_2		Θ_{11}		Θ_{12}		Θ_{13}
e_2		e_{11}		e_{12}		e_{13}	
	Θ_3		Θ_{14}		Θ_{15}		Θ_{16}
e_1		e_8		e_9		e_{10}	
	Θ_7		Θ_4		Θ_5		Θ_6

Table 1: The 16₆-configuration on a principally polarized abelian surface. The sixteen symmetric translates of Θ are denoted by $\Theta_i = t_{e_i}^* \Theta$, i = 1, ..., 16. The table is organised such that e_i lies on Θ_j iff e_i appears in the same line or column as Θ_j unless e_i and Θ_j appear at the same position of the table.

I) The irreducible case. $\mathcal{L}_0 = \mathcal{O}_A(\Theta)$, where Θ is a smooth hyperelliptic curve. Then Θ contains six halfperiods e_1, \ldots, e_6 .

II) The product case. $\mathcal{L}_0 = \mathcal{O}_A(E_1 + E_2)$, where E_1 and E_2 are elliptic curves with $E_1E_2 = 1$. Then $E_1 + E_2$ contains six halfperiods as smooth points and one halfperiod as the intersection of E_1 and E_2 .

First we turn to the irreducible case. We will make use of the well-known (16_6) configuration. On A this means the following:

- every halfperiod lies on exactly six symmetric translates of Θ .
- every symmetric translate of Θ contains exactly six halfperiods.

The Property Nef. Since obviously \mathcal{M}_2^+ has no additional contractions, we only have to consider \mathcal{M}_d^{\pm} for $d \geq 3$ here.

Lemma 4.1 Let $\mathcal{L}_0 = \mathcal{O}_A(\Theta)$ be an irreducible principal polarization and let $d \geq 3$. Then \mathcal{M}_d^{\pm} is nef. \mathcal{M}_d^{\pm} has no additional contractions, except for \mathcal{M}_3^+ , which contracts the image of Θ .

Proof. Let $C \subset \widetilde{X}$ be an irreducible curve different from the exceptional curves D_1, \ldots, D_{16} and let F be the corresponding symmetric curve on A. We have

$$\mathcal{M}_d^{\pm}C = \frac{1}{2}(d\Theta F - \sum_{q_i=\pm 1} m_i),$$

where $m_i = m_i(F)$ and $q_i = q_i(d\Theta)$. It is enough to consider the bundles \mathcal{M}_3^+ , $\mathcal{M}_3^$ and \mathcal{M}_4^- .

1) Let us consider \mathcal{M}_3^+ first. Here $\sum_{q_i=-1} m_i = \sum_{i=1}^6 m_i$. If $F = \Theta$, then we get $\mathcal{M}_3^+C = 0$. Now let $F \neq \Theta$. In case $\sum_{i=1}^6 m_i = 0$ we clearly have $\mathcal{M}_3^+C > 0$. In case $\sum_{i=1}^6 m_i > 0$ we have

$$3\Theta F \ge 3\sum_{i=1}^{6} m_i > \sum_{i=1}^{6} m_i,$$

hence $\mathcal{M}_3^+ C > 0$ as well.

2) Now we turn to \mathcal{M}_3^- . In this case $\sum_{q_i=+1} m_i = \sum_{i=7}^{16} m_i$. We can assume $\sum_{i=7}^{16} m_i > 0$, $m_{i_0} > 0$ say. Further, we may assume $F \neq \Theta$. Using table 1 we see that there are three symmetric translates $\Theta^{(1)}$, $\Theta^{(2)}$, $\Theta^{(3)}$ of Θ such that

- i) all of the ten even halfperiods e_7, \ldots, e_{16} lie on the divisor $\Theta^{(1)} + \Theta^{(2)} + \Theta^{(3)}$, and
- ii) e_{i_0} lies on at least two of the three translates.

So we have

$$3\Theta F = \sum_{k=1}^{3} \Theta^{(k)} F \ge \sum_{k=1}^{3} \sum_{e_i \in \Theta^{(k)}} m_i > \sum_{i=7}^{16} m_i,$$

hence $\mathcal{M}_3^- C > 0$.

3) Finally we consider \mathcal{M}_4^- . Here we can proceed as in 2) using four symmetric translates covering all the sixteen halfperiods to conclude $\mathcal{M}_4^-C > 0$.

In the product case we can proceed similarly, now using suitable symmetric translates of E_1 and E_2 , to obtain

Lemma 4.2 Let $\mathcal{L}_0 = \mathcal{O}_A(E_1 + E_2)$ be a product principal polarization and let $d \geq 3$. Then \mathcal{M}_d^{\pm} is nef. The additional contractions are given by the following table:

line bundle	contracted curves		
\mathcal{M}_4^-	the symmetric translates of E_1 and E_2		
\mathcal{M}_3^+	the curves E_1 and E_2		
\mathcal{M}_3^-	the symmetric translates of E_1 and E_2 different from E_1 and E_2		

Base Points. In the discussion on base points in section 3 we left out \mathcal{M}_3^- in the principally polarized case. We will fill this gap now:

Lemma 4.3 If \mathcal{L}_0 is a principal polarization, then \mathcal{M}_3^- is free.

Proof. It is sufficient to show that there are no base curves. First assume that we are in the irreducible case and let $\mathcal{L}_0 = \mathcal{O}_A(\Theta)$.

1) For i = 1, ..., 16 we denote the image in \widetilde{X} of the translate $t_{e_i}^* \Theta$ by C_i . By (1.5) the C_i are (-2)-curves. Now we claim

$$\mathcal{M}_{3}^{-} = \mathcal{O}_{\widetilde{X}}(C_{2} + C_{3} + C_{7} + D_{1} + D_{2} + D_{3} + D_{7}) \\ = \mathcal{O}_{\widetilde{X}}(C_{8} + C_{9} + C_{10} + D_{4} + D_{5} + D_{6} + D_{7}).$$
(*)

Indeed, an immediate calculation shows that the pullbacks to \widetilde{A} of all the three line bundles above are numerically equivalent. Then the line bundles themselves are numerically equivalent on \widetilde{X} . But on a K3-surface numerically equivalent line bundles are isomorphic.

2) From (*) we conclude that the only possible base curve for \mathcal{M}_3^- is the exceptional curve D_7 . In this case $\mathcal{M}_3^- - D_7$ is free. Further we have $(\mathcal{M}_3^- - D_7)^2 = 0$. As a consequence of Bertini's theorem then $\mathcal{M}_3^- - D_7 = \mathcal{O}_{\widetilde{X}}(kE)$, where E is an elliptic curve and $k = h^1(\mathcal{M}_3^- - D_7) + 1$. By Riemann-Roch we compute k = 3, contradicting $(\mathcal{M}_3^- - D_7)D_8 = 1$.

The product case can be treated similarly, using translates of the elliptic curves E_1 and E_2 instead of Θ -translates. We omit the details.

By the method used in (4.3) one can show that all the line bundles \mathcal{M}_d^{\pm} are free, if \mathcal{L}_0 is of type (1,1). So we do not really need to apply Reider's Theorem in the principally polarized case.

Degree of the Morphisms. In order to prove that the morphisms defined by \mathcal{M}_3^{\pm} are birational, we had to know that the abelian surface A cannot contain curves with certain properties. The following proposition completes the proof of (3.8) in the principally polarized case:

Proposition 4.4 Let \mathcal{L}_0 be of type (1,1), let $F \subset A$ be a symmetric curve and let $s = \sum_{q_i=\mp 1} m_i$, where $q_i = q_i(\mathcal{L}_0^3)$ and $m_i = m_i(F)$. Then the following conditions cannot be fulfilled at the same time:

i)
$$F^2 = \sum_{i=1}^{10} m_i^2$$

ii) $3\mathcal{L}_0 F = 4 + s$
iii) $s = 2 \text{ or } s = 8$

Proof. Assume that there is a curve F satisfying i), ii) and iii). First suppose s = 2. Then $F^2 \ge 2$ and $\mathcal{L}_0 F = 2$. It follows from the Index Theorem that then $F^2 = 2$, i.e. $\mathcal{O}_A(F)$ is of type (1, 1), contradicting i).

Now suppose s = 8. Here $F^2 \ge 8$ and $\mathcal{L}_0 F = 4$. Applying the Index Theorem again, we conclude that $\mathcal{O}_A(F)$ is algebraically equivalent to \mathcal{L}_0^2 . Further, F contains exactly eight halfperiods (as smooth points), all of which are even halfperiods of \mathcal{L}_0 . According to (4.5) below this is impossible.

Proposition 4.5 Let $\mathcal{L}_0 = \mathcal{O}_A(\Theta)$ be of type (1,1) and let \mathcal{B} be a symmetric line bundle algebraically equivalent to $\mathcal{O}_A(2\Theta)$, $\mathcal{B} \not\cong \mathcal{O}_A(2\Theta)$. Then \mathcal{B} has eight even and eight odd halfperiods. Neither of these two sets is contained in the set of ten even halfperiods of \mathcal{L}_0 .

Proof. We have $\mathcal{B} \cong t_a^* \mathcal{O}_A(2\Theta)$ for some $a \in A$. Necessarily 2a is a halfperiod, e_i say. Thus by the Theorem of the Square ([3], 2.3.3)

$$t_a^* 2\Theta \equiv_{\text{lin}} \Theta + t_{e_i}^* \Theta,$$

i.e. $\Theta + t_{e_i}^* \Theta$ is a symmetric divisor in $|\mathcal{B}|$. It contains eight halfperiods to an even order and eight halfperiods to an odd order. Six resp. four of these are even halfperiods of $\mathcal{O}_A(\Theta)$. This proves our assertion.

5. Special Case: Polarizations of Type (1,3)

In this section we complete our study of the line bundles \mathcal{M}_d^{\pm} in case \mathcal{L}_0 is of type (1,3). First we have a closer look at the line bundle \mathcal{L}_0 . A straightforward calculation with intersection numbers shows that there are five cases:

I) The irreducible case. All divisors in $|\mathcal{L}_0|^+$ and $|\mathcal{L}_0|^-$ are irreducible.

II) The quasi-product case. $\mathcal{L}_0 = \mathcal{O}_A(E_1 + E_2)$, where E_1 and E_2 are elliptic curves with $E_1E_2 = 3$.

III) The hyperelliptic case. $\mathcal{L}_0 = \mathcal{O}_A(H + E)$, where E is an elliptic curve, H a hyperelliptic curve and EH = 2.

IV) The diagonal case. $\mathcal{L}_0 = \mathcal{O}_A(E_1 + E_2 + E_3)$, where E_1 , E_2 and E_3 are elliptic curves with $E_i E_j = 1$ for $i \neq j$.

V) The product case. $\mathcal{L}_0 = \mathcal{O}_A(E_1 + 3E_2)$, where E_1 and E_2 are elliptic curves with $E_1E_2 = 1$.

We have six odd halfperiods, e_1, \ldots, e_6 say, hence $h^0(\mathcal{L}_0)^- = 1$ and $h^0(\mathcal{L}_0)^+ = 2$. by (3.1). Let Θ^- denote the unique divisor in $|\mathcal{L}_0|^-$ and for $j = 7, \ldots, 16$ let Θ_j^+ denote a divisor in $|\mathcal{L}_0|^+$ through e_j . Then we have

Proposition 5.1 a) If Θ^- is irreducible, then it is smooth.

b) If Θ_j^+ is irreducible, then it has a double point in e_j and is smooth away from e_j .

Proof. a) Let C be the image of Θ^- in \widetilde{X} . By (1.5) then

$$2C^2 = (\Theta^-)^2 - \sum_{i=1}^{16} m_i^2,$$

where $m_i = m_i(\Theta^-)$. *C* is irreducible, hence $C^2 \ge -2$ by the adjunction formula. We conclude $\sum_{i=1}^{16} m_i^2 \le 10$. Since Θ^- vanishes in the halfperiods e_7, \ldots, e_{16} , we must have $m_1 = \ldots = m_6 = 0$ and $m_7 = \ldots = m_{16} = 1$, thus $C^2 = -2$. So $C \cong \mathbb{P}_1$ is smooth. We conclude that Θ^- is smooth too, because the halfperiods are smooth points of Θ^- .

b) Again we obtain $\sum_{i=1}^{16} m_i^2 \leq 10$. Since Θ_j^+ vanishes in e_1, \ldots, e_6 and in e_j , we must have $m_1 = \ldots = m_6 = 1$ and $m_j = 2$, hence $C^2 = -2$ and the assertion follows as above.

Let us sum up what the results of section 3 mean for a non-product (1,3)polarization: For $d \geq 2$ the line bundle \mathcal{M}_d^{\pm} defines a birational morphism, which
is an isomorphism outside the contracted curves. \mathcal{M}_2^+ and \mathcal{M}_d^{\pm} , $d \geq 3$, have no
additional contractions. For \mathcal{M}_2^- we have:

- In cases I) and II) \mathcal{M}_2^- defines an embedding of X.
- In case III) \mathcal{M}_2^- contracts the four symmetric translates of E.
- In case IV) \mathcal{M}_2^- contracts the 12 symmetric translates of E_1 , E_2 and E_3 .

In order to complete the proof of (3.8) it remains to show that A does not contain curves with certain properties:

Proposition 5.2 Let \mathcal{L}_0 be of type (1,3) and assume that we are not in the product case. Then there is no symmetric curve F on A such that

i)
$$F^2 = 16$$

ii) $m_1 = \ldots = m_{16} = 1$
iii) $\mathcal{L}_0 F = 10$

Proof. We consider the four cases arising if \mathcal{L}_0 is not a product polarization.

1) The irreducible case. We have $h^0(F)^- = 2$, so there is a divisor $F' \in |F|^$ through an arbitrary point of Θ^- . We conclude from $\Theta^- F = 10$ that $\Theta^- \subset F'$. For $j = 7, \ldots, 16$ we have $(F' - \Theta^-)\Theta_j^+ = 4$, hence Θ_j^+ is contained in F', because $F' - \Theta^-$ and Θ_j^+ have six halfperiods in common. But obviously F' cannot contain all the curves Θ_j^+ .

2) The quasi-product case. For this and the remaining cases note that the symmetric line bundle $\mathcal{O}_A(F) \otimes \mathcal{L}_0^{-1}$ is ample. Indeed, it has positive selfintersection and positive intersection with \mathcal{L}_0 .

Using the fact that $\mathcal{O}_A(F)$ is totally symmetric, hence a square, we conclude from $(F - E_1 - E_2)E_i > 0$ that $FE_i \ge 4$ for i = 1, 2. We can assume $FE_1 = 4$, $FE_2 = 6$. Because of $h^0(F)^+ = 6$ there is a divisor $F' \in |F|^+$ through the four halfperiods of E_2 . Since F' then has even multiplicities in these halfperiods, E_2 must be contained in F'. We calculate $(F' - E_2)E_1 = 1$, hence $F' - E_2$ is algebraically equivalent to a divisor $4E_1 + E'$, where E' is an elliptic curve with $E_1E' = 1$. Intersecting $F' - E_2$ with E_2 we arrive at a contradiction.

3) The hyperelliptic case. We obtain FH = 6 and FE = 4 from (F-H-E)H > 0and (F-H-E)E > 0. By the Index Theorem $\mathcal{O}_A(F-H-E)$ and $\mathcal{O}_A(H)$ are algebraically equivalent. But this contradicts the fact that $\mathcal{O}_A(F - H - E)$ and \mathcal{L}_0 must have the same set of odd halfperiods.

4) The diagonal case. Here we get $FE_i \ge 4$ from $(F - E_1 - E_2 - E_3)E_i > 0$, which again is impossible.

Combining the results of section 3 with those of of the principally polarized case (section 4) and with proposition 5.2 above, we obtain the theorem stated in the introduction.

References

- Birkenhake, Ch., Lange, H.: Symmetric Theta-Structures. Manuscripta Math. 70, 67-91 (1990)
- [2] Khaled, A.: Projective normality and equations of Kummer varieties. Prépubl. Univ. Paris (1992)
- [3] Lange, H., Birkenhake, Ch.: Complex Abelian Varieties. Berlin Heidelberg New York: Springer 1992
- [4] Naruki, Isao: On Smooth Quartic Embedding of Kummer Surfaces. Proc. Japan Acad.
 67, Ser. A, 223-225 (1991)
- [5] Ramanujam, C.P.: Supplement to the article 'Remarks on the Kodaira vanishing theorem'. Journal of the Indian Math. Soc. 38, 121-124 (1974)
- [6] Reider, Igor: Vector bundles of rank 2 and linear systems on algebraic surfaces. Annals of Mathematics 127, 309-316 (1988)
- [7] Saint-Donat, B.: Projective models of K3 surfaces. Amer. J. of Math. 96, 602-639 (1974)
- [8] Sasaki, R.: Bounds on the degree of the equations defining Kummer varieties. J. Math. Soc. Japan, Vol. 33, No. 2, 323-333 (1981)

Thomas Bauer Mathematisches Institut der Universität Bismarckstr. $1\frac{1}{2}$ W-8520 Erlangen