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0. Introduction

The aim of this note is to study the linear systems defined by the even resp. odd
sections of a symmetric ample line bundle on an abelian surface.

Let A be an abelian surface over the field of complex numbers and let L0 be
an ample symmetric line bundle on A. If L0 is of type (1, 1) and if L0 is not a
product polarization, then it is well-known that the linear system |L2

0| consists of
even divisors only and yields a projective embedding of the Kummer surface of A.

Here we will study the following generalized situation: we start with L0 of type
(1, n) for arbitrary n ≥ 1 and consider for d ≥ 2 the linear systems |Ld

0|± defined
by the even resp. odd sections of the powers Ld

0. These systems correspond to line
bundles M+

d and M−
d on the smooth Kummer surface X̃ of A (see section 1 for

details). Our aim is to study the maps X̃ −→ IP(H0(M±
d )) defined by these line

bundles.
If L0 is of type (1, 1) or (1, 2), then h0(M−

2 ) = 0 resp. h0(M−
2 ) = 2. Since

M−
2 does not define a map onto a surface in these cases, we exclude M−

2 from our
considerations for n = 1 and n = 2. We prove:

Theorem. a) M±
d is free, except for M−

2 in the product case L0 = OA(E1 +
nE2), where E1, E2 are elliptic curves with E1E2 = 1. In this case the four sym-
metric translates of E2 yield base curves of M−

2 . Removing these base curves one
obtains the line bundle M+

2 associated to OA(E1 + (n− 2)E2).
b) Now letM±

d be free (i.e. excludeM−
2 in the product case). Then the morphism

X̃ −→ IP(H0(M±
d )) defined byM±

d is birational onto its image and an isomorphism
outside the contracted curves, except for M+

2 in the product case, where this mor-
phism is of degree 2.

c) Again, let M±
d be free. M+

d resp. M−
d contracts the exceptional curves asso-

ciated to even resp. odd halfperiods of L0. Additional curves are contracted only in
the following cases:

i) M−
2 contracts the symmetric elliptic curves E ⊂ A with L0E = 2. Such

elliptic curves E exist iff

L0 ≡alg OA(kE + E1 + E2) or L0 ≡alg OA(kE +G),
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where E1, E2 are symmetric elliptic curves with EEi = 1, G is a symmetric
irreducible curve with EG = 2 and k ≥ 1.

ii) If L0 is of type (1, 1), then M+
3 contracts the unique divisor Θ in |L0|.

iii) In the product case L0 = OA(E1 + nE2) the additional contractions are given
by the following table:

line bundle n contracted curves

M−
4 the four symmetric translates of E2

M+
3 odd the curve E2

even the four symmetric translates of E2

M−
3 odd

the three symmetric translates of E2

different from E2

Note: if we have n = 1 in iii), then the roles of E1 and E2 can be interchanged.
So in this case the corresponding symmetric translates of E1 are contracted as well.

This theorem contains in particular the following special cases:

• M+
4k embeds the singular Kummer surface (exceptional curves contracted) for

k ≥ 1 (Sasaki [8]).

• M+
2 embeds the singular Kummer surface in the general case (Khaled [2]).

• M−
2 is very ample for n = 3 in the general case (Naruki [4]).

As to the author’s knowledge the other cases have not been considered in the liter-
ature so far.

Our method consists in an application of theorems for line bundles on K3-surfaces
due to Reider and Saint-Donat.

Throughout this paper the base field is C.

This work was supported by DFG grant Ba 423/3-4. Furthermore, I would like to
thank Prof. Barth for many helpful discussions.

1. Symmetric Line Bundles

In this section we compile some properties of symmetric line bundles on abelian
surfaces and of odd and even sections of such bundles.

Odd and Even Halfperiods. Let L be a symmetric line bundle on an abelian
surface A. By definition the involution ι : A −→ A, a 7−→ −a, admits a lifting ιL
to the total space of L. Multiplying by a suitable constant we can achieve that ιL
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is an involution. ιL then is uniquely determined up to the sign. From now on we
fix one of these two involutions. Let e1, . . . , e16 be the halfperiods of A. ιL operates
on the fibers L(ei) as multiplication by ±1. We denote this sign of ιL on L(ei) by
qi = qi(L). We will call the halfperiods ei with qi = +1 resp. qi = −1 the even resp.
odd halfperiods of L.

Odd and Even Sections. A section s ∈ H0(L) is called even resp. odd, if
ιLsι = s resp. ιLsι = −s. So the even resp. odd sections are just the elements of the
eigenspaces H0(L)+ resp. H0(L)− of the linear map s 7−→ ιLsι on H0(L).

L ιL−→ L
s ↑ ↑ ιLsι
A

ι−→ A

Let σ : Ã −→ A be the blow-up of A in the sixteen halfperiods. The exceptional
divisor Z is a sum of sixteen disjoint rational (−1)-curves Z1, . . . , Z16, corresponding
to the points e1, . . . , e16. We introduce the notations Z+ =

∑
qi=+1

Zi and Z− =∑
qi=−1

Zi. Let L̃ be the pullback of L to Ã. We denote by ι̃ the involution on Ã

induced by ι and by ιL̃ the corresponding involution of L̃. The subspaces H0(L̃)+

and H0(L̃)− of even and odd sections are defined in the obvious way. We have
canonical isomorphisms H0(L̃)± ∼= H0(L)±.

Kummer Surfaces. The quotient X̃ = Ã/ι̃ is a projective K3-surface, the
smooth Kummer surface of A. It is the minimal desingularisation of X = A/ι, the
(singular) Kummer surface of A. Denoting the canonical projections A −→ X and
Ã −→ X̃ by π and π̃ we have the following commutative diagram

Zi ⊆ Ã
σ−→ A 3 ei

π̃ ↓ ↓ π
Di ⊆ X̃ −→ X

The π̃-images D1, . . . , D16 of Z1, . . . , Z16 are disjoint rational (−2)-curves corre-
sponding to the double points π(e1), . . . , π(e16) of X. Z =

∑
Zi is the ramification

divisor of π̃, D =
∑
Di is the branch locus in X̃.

Our aim is to study the linear systems |L|± of even resp. odd divisors in |L|.
Here a divisor is called even resp. odd, if it is defined by an even resp. odd section
of L. Along with the subsystems |L|± we will consider certain line bundlesM+ and
M− on X̃ associated to L. These bundles are given by the following proposition:

Proposition 1.1 The direct image sheaf M = π̃∗L̃ is locally free of rank 2. It
admits a decomposition M =M+ ⊕M− into line bundles M+ and M− such that
H0(M±) ∼= H0(L)±.
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Proof. For an open set U ⊂ X̃ we defineM+(U) andM−(U) to be the eigenspaces
of the linear map

L̃
(
π̃−1(U)

)
−→ L̃

(
π̃−1(U)

)
s 7−→ ιL̃sι̃.

Since multiplication of a section in M±(U) by a function in O
X̃

(U) preserves the
parity of the section, the subvector spaces M±(U) are in fact O

X̃
(U)-submodules.

Since these submodules are easily seen to be of rank 1 and since by definition
H0(M±) = H0(L̃)±, our assertion is proved.

Proposition 1.2 Let F be a symmetric divisor in |L|. Then the multiplicity mi of
F in the halfperiod ei is even resp. odd according to the following table:

ei even ei odd

F even mi even mi odd

F odd mi odd mi even

Proof. It will be enough to consider the case that ei is an even halfperiod. First
we see that odd sections s ∈ H0(L̃)− vanish on Zi, because s = ιL̃sι̃ = −s on Zi.

Now let s ∈ H0(L̃)± be a section defining the pullback σ∗F . Then mi is the order
of vanishing of s along Zi. We can find a local equation f of Zi such that f ι̃ = −f .
Then the section

s

fmi

is even (because an odd section would vanish on Zi). We conclude that mi must be
even resp. odd iff s is even resp. odd.

If L is effective, then the line bundlesM± can also be described in the following
way: Let Θ be a divisor in |L|+. We write

σ∗Θ = Θ̂ +
16∑
i=1

miZi,

where Θ̂ denotes the proper transform of Θ and mi the multiplicity of Θ in ei. Now
we define a divisor C on X̃ by

C = π̃(Θ̂) +
∑[

mi

2

]
Di,

where by π̃(Θ̂) we mean the image divisor, whose multiplicities at irreducible compo-
nents are the same as those of Θ̂. This procedure gives a bijection |L|+ −→ |M+|,
where M+ = O

X̃
(C). Using the fact that Θ has odd multiplicities in the odd

halfperiods we obtain

π̃∗C = Θ̂ +
∑

2
[
mi

2

]
Zi = σ∗Θ− Z−,
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hence π̃∗M+ = L̃ −Z−. (Here and at similar occasions we use the notation L̃ −Z−
as a short form for L̃ ⊗ O

X̃
(−Z−)). Since we can proceed in the same way with

M−, we obtain

Proposition 1.3
π̃∗M± = L̃ − Z∓

Now we can determine the intersection numbers of M± with the curves Di by
calculating on Ã. Using π̃∗Di = 2Zi we get

Proposition 1.4

M+ ·Di =

 0, if qi = +1

1, if qi = −1

M− ·Di =

 1, if qi = +1

0, if qi = −1

Consider the following sets:

i) symmetric effective divisors F on A

ii) effective divisors C on X̃ such that none of the exceptional curves Di, i =
1, . . . , 16, is a component of C

Clearly, the map F 7−→ C = π̃(F̂ ), which maps F to the image in X̃ of the
proper transform F̂ of F , is a bijection between i) and ii). We will need some
formulas relating the intersection numbers of F and C. Here and in the sequel we
denote by mi = mi(F ) the multiplicities of the divisor F in the halfperiods ei.

Proposition 1.5 Let F be a symmetric effective divisor on A and let C be its image
on X̃. Then we have

a) F 2 = 2C2 +
16∑
i=1

m2
i

b) M±C =
1

2
(LF −

∑
qi=∓1

mi)

c) mi = CDi

d)
16∑
i=1

mi is even.

Proof. a), b) and c) are shown by obvious calculations, whereas d) follows from the
fact that χ(F̂ ) = χ(O

Ã
) + C2 − 1

2
C
∑
Di is an integer.
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2. Line Bundles on the Smooth Kummer Surface

Studying the line bundles M± on the K3-surface X̃ we will apply the following
theorem of Saint-Donat ([7], Cor. 3.2, Thm. 5.2 and Thm. 6.1(iii)):

Theorem 2.1 (Saint-Donat) Let S be a K3-surface and let B be a line bundle on
S such that B2 ≥ 4, |B| 6= ∅ and such that |B| has no fixed components. Then |B|
has no base points. Furthermore the morphism S −→ IPN defined by B is birational,
except in the following cases:

i) There exists an irreducible curve E such that pa(E) = 1 and BE = 2.
ii) There exists an irreducible curve H such that pa(H) = 2 and B = OS(2H).
If the morphism is birational, then it is an isomorphism outside the contracted

curves.

The following intersection property of the elliptic curve E in Saint-Donat’s the-
orem will turn out to be essential:

Proposition 2.2 Assume case i) of Saint-Donat’s Theorem and let D be an irre-
ducible curve such that BD = 1. Then ED ≤ 1.

Proof. First note that we may assume E to be smooth. Now let Φ be the morphism
defined by B. It follows from BE = 2 that the restricted morphism Φ|E is of degree
2. We conclude that the image Φ(E) is a line. Since Φ(D) is also a line, we see that
E and D have at most one point in common. This proves our assertion, because by
Bertini’s Theorem we may assume E and D to intersect transversally.

If the selfintersection numbers of M± are sufficiently high, we will use Reider’s
method to show that the linear systems |M±| are base point free. For K3-surfaces
his theorem takes the following form ([6], Thm. 1 and Prop. 5):

Theorem 2.3 (Reider) Let S be a K3-surface and let L be a nef divisor on S with
L2 ≥ 6. Then the linear system |L| has base points iff there is a divisor E on S with

LE = 1 and E2 = 0.

The intersection matrix of E then is necessarily negative semidefinite. We need:

Proposition 2.4 a) In the situation of Reider’s Theorem the divisor E can always
be chosen irreducible.

b) If D is a (−2)-curve such that LD = 1, then ED ≤ 1.

Proof. a) If the linear system |E| has no base component, then it follows from
Bertini’s theorem that O

X̃
(E) = O

X̃
(kC), where C is an irreducible elliptic curve

in X̃. From LE = 1 we conclude k = 1.
Now if |E| has fixed part B, we write E = B + E ′ where E ′ is free of base

components, thus E ′2 ≥ 0. On the other hand we have E ′2 ≤ 0, because the
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intersection matrix of E is negative semidefinite. Hence E ′2 = 0. Further, if LE ′ =
0, then E ′ would be numerically trivial by the Hodge Index Theorem. So from
1 = LE ′ = LB + LE ′ we conclude LE ′ = 1, because L is nef. This shows that we
can replace E by E ′ and argue as above.

b) From the Hodge Index Theorem we obtain the inequality L2(E + D)2 ≤
(L(E +D))2, which immediately yields our assertion.

3. The Line BundlesM±

There are formulas for the dimensions h0(L)± = h0(M±), where L is an ample
symmetric line bundle on an abelian variety of arbitrary dimension ([1], Thm. 5.4).
Here we give a simple formula in the case of abelian surfaces:

Theorem 3.1 Let L be an ample symmetric line bundle of type (d1, d2) on an
abelian surface A and let n± be the number of even resp. odd halfperiods of L. Then
we have the following formula for the associated line bundles M± on the smooth
Kummer surface X̃ of A:

h0(M±) = 2 +
d1d2

2
− n∓

4
.

Proof. First note that it suffices to prove the formula for one of the line bun-
dles M+ or M−, because for the other line bundle the formula then follows from
h0(M+)+h0(M−) = h0(L) = d1d2. Further, by Riemann-Roch the Euler-Poincaré-
Characteristic χ(M±) equals the right hand side of the asserted formula. So it is
enough to prove that the higher cohomology groups of M± vanish. We proceed in
three steps.

Step 1: We have h1(M±) = h2(M±) = 0 in each of the following cases:
i) L is totally symmetric, i.e. n+ = 16 or n− = 16.

ii) |L|+ 6= ∅ or |L|− 6= ∅.
Let i) be fulfilled. We may assume n+ = 16, hence (M+)2 = d1d2 > 0 and

M+C > 0 for any irreducible curve C ⊂ X̃ different from the exceptional curves
D1, . . . , D16. ThusM+ is nef and our assertion follows from Ramanujam’s Vanishing
Theorem [5].

Now suppose ii). SinceM± is not trivial, we have h2(M±) = 0. Thus Riemann-
Roch gives

h0(M±)− h1(M±) = 2 +
d1d2

2
− n∓

4
.

and the assertion follows by simply adding up these two equations.
Step 2: If the type of L is different from (1, 1) and (1, 2), then i) or ii) is fulfilled.
Suppose the contrary and w.l.o.g. assume |L| = |L|+. Thus the odd halfperiods

of L are base points of the full linear system |L|. By [3], Prop. 4.1.6 and Lemma
10.1.2.a), then necessarily d1 = 1 and (A,L) is a polarized product of elliptic curves.
But in this case it is easy to see that there are both odd and even divisors in |L|,
contradicting our assumption.
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Step 3: If L is of type (1, 1) or (1, 2), then h0(M±) = χ(M±) holds as well.
First let L be of type (1, 1). If the unique divisor Θ in |L| is irreducible, then

Θ is a smooth hyperelliptic curve, the odd halfperiods of L being the Weierstraß
points of Θ. Thus n− = 6 and h0(M+) = 1, hence h0(M+) = χ(M+). The product
case can be treated analogously.

Now let L be of type (1, 2). By Step 1 we may assume h0(L)+ = 2, h0(L)− = 0
and n− > 0. We have to show that n− = 4. Since this is obvious in the product
case, let (A,L) not be a product of elliptic curves. The odd halfperiods are base
points of |L|. Thus we have n− ≤ 4, because L2 = 4. Since n− must be a multiple
of 4, equality n− = 4 holds.

The formula in (3.1) shows in particular that

• n± is even, and

• n± is a multiple of 4 iff the product d1d2 is even.

From now on let L0 be an ample symmetric line bundle on A of type (1, n),
where n ≥ 1. For d ≥ 2 we denote by M±

d the line bundles on X̃ associated to the
powers Ld

0.
We begin our study of the line bundlesM±

d by getting rid of an exceptional case:

Proposition 3.2 Let L0 = OA(E1 + nE2), where E1 and E2 are elliptic curves
with E1E2 = 1 and n ≥ 3. Then the four symmetric translates of E2 yield base
curves of M−

2 . Removing these base curves one obtains the bundle M+
2 associated

to OA(E1 + (n− 2)E2).

Proof. If C ⊂ X̃ is the curve corresponding to E2 or to one of its symmetric
translates E ′2, E ′′2 , E ′′′2 , then M−

2 C = −1. So C is a base curve of M−
2 . The divisor

2(E1 + nE2)− (E2 + E ′2 + E ′′2 + E ′′′2 )

is linearly equivalent to 2(E1 + (n− 2)E2). So the proposition follows from the fact
that adding the sum E2 + E ′2 + E ′′2 + E ′′′2 obviously changes the parity of a divisor.

Apart from this exception we will proceed as follows:

• We show that M±
d is nef and we determine the curves C on X̃ such that

M±
d C = 0.

• We show that the linear system |M±
d | has no base points.

• The morphism defined by M±
d is either birational or of degree 2. We show

that the latter case occurs only withM+
2 in case (A,L0) is a polarized product

of elliptic curves.
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The Property Nef. First we consider the case n ≥ 2. The principally polarized
case will be postponed to section 4, because it needs a somewhat different discussion.
By (1.5) M+

2 C ≥ 0, where equality holds iff C is one of the exceptional curves
D1, . . . , D16. Let us consider M−

2 now:

Lemma 3.3 Let L0 be of type (1, n) with n ≥ 3 and assume that L0 is not a
product polarization. Then M−

2 is nef. For an irreducible curve C ⊂ X̃ we have
M−

2 C = 0 iff the corresponding symmetric curve F ⊂ A is elliptic and L0F = 2.
Then necessarily

L0 ≡alg OA(kF + E1 + E2) or L0 ≡alg OA(kF +G),

where E1, E2 are symmetric elliptic curves with FEi = 1, G is a symmetric irre-
ducible curve with FG = 2 and k ≥ 1.

Proof. The last assertion follows easily by considering intersection numbers. For the
proof of the other assertions let C be an irreducible curve with M−

2 C ≤ 0 and let
F be the corresponding symmetric curve on A.

1) First we show that F is contained in a symmetric divisor Θ ∈ |L0|: By (1.5)

the assumption M−
2 C ≤ 0 means L2

0F ≤
16∑
i=1

mi, where mi = mi(F ). Because of

n ≥ 3 the linear systems |L0|+ and |L0|− are of dimension ≥ 0 and at least one of
them is of positive dimension. Now our claim follows from the fact that—apart from
the halfperiods—we may prescribe additional points of intersection for Θ ∈ |L0|±
with F .

2) By the Hodge Index Theorem we have C2 = −2, hence F 2 =
∑
m2

i − 4. Now
consider the inequalities

(F 2)2 ≤ L2
0F

2 ≤ (L0F )2 ≤ (
1

2

∑
mi)

2,

where the first one follows from our claim above. We obtain 4 ≤ ∑
mi ≤ 8 from

(F 2)2 ≤ (1
2

∑
mi)

2. Then we see from (L2
0F

2) ≤ (1
2

∑
mi)

2 and (L0)2 ≥ 6 that
necessarily F 2 = 0 and

∑
mi = 4, thus L0F ≤ 2. Since the product case was

excluded, we have L0F = 2, i.e. M−
2 C = 0, and F is a symmetric elliptic curve.

This proves the lemma.

We know that for i = 1, . . . , 16 we have M±
dDi = 0, if qi = +1. Now we are

interested in curves C different from the Di with M±
d C = 0. For brevity we will

simply call them additional contractions in the sequel.

Lemma 3.4 Let L0 be of type (1, n) with n ≥ 2 and let d ≥ 3.
a) If L0 is not a product polarization, then M±

d is nef and has no additional
contractions.

b) If L0 = OA(E1 + nE2) is a product polarization, then M±
d is nef, too. The

additional contractions are given by the table in section 0.
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Proof. For an irreducible curve C ⊂ X̃ different from the exceptional curves
D1, . . . , D16 we have

M±
d C ≥

1

2
(3L0F −

16∑
i=1

mi) =M−
2 C +

1

2
L0F.

We see that for a curve with M±
d C ≤ 0 necessarily M−

2 C < 0 holds.
As for a): For n ≥ 3 M−

2 is nef by (3.3) and we are done. If n = 2, then M−
2 is

free, hence nef, by (3.6) below.
As for b): Only the symmetric translates of E2 can yield curves withM−

2 C < 0.
Thus our claim follows by simply calculating M±

d C for each of these curves.

Base Points. First we consider those cases, where we can apply Reider’s theo-
rem. We will then have to deal separately with the line bundles defining maps into
IP3.

Lemma 3.5 Let L0 be of type (1, n) with n ≥ 1 and let d ≥ 2. If M±
d is nef and

(M±
d )2 ≥ 6, then M±

d is free.

Proof. Assume thatM±
d has base points. The assumptions onM±

d allow us to apply
Reider’s Theorem. Thus there is a curve C on X̃ such that C2 = 0 and M±

d C = 1.
By (2.4) we can assume C to be irreducible. So we get a symmetric curve F on A
such that

F 2 =
16∑
i=1

m2
i dL0F = 2 +

∑
qi=∓1

mi,

where the mi denote the multiplicities of F in the halfperiods. By (2.4) we have
mi ≤ 1, if qi = ∓1. Now consider the following inequality for the sum s =

∑
qi=∓1

mi:

L2
0s ≤ L2

0F
2 ≤ (L0F )2 =

1

d2
(2 + s)2

Using s ≤ 16 and (M±
d )2 ≥ 6 we find that the only solution is s = 0. Hence d = 2

and L0F = 1. But then F 2 = 0 by the Index Theorem, i.e. F must be a sum of two
algebraically equivalent elliptic curves, contradicting L0F = 1.

It remains to consider the line bundles M±
d of selfintersection smaller than 6.

These are
i) M+

2 , if L0 is of type (1, 1),
ii) M−

2 , if L0 is of type (1, 2) or (1, 3) and
iii) M−

3 , if L0 is of type (1, 1).
Case iii) will be considered in section 4. Here we turn to the bundles M+

2 and
M−

2 . We give a proof that these bundles are free, which works for all polarizations
(1, n), n ≥ 1 resp. n ≥ 2. This shows that for M±

2 we could have done without
Reider’s Theorem.
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Lemma 3.6 Let L0 be of type (1, n). Then
a) M+

2 is free for all n ≥ 1.
b) M−

2 is free for n ≥ 2, if L0 is not a product polarization.

Proof. According to Saint-Donat’s Theorem it is enough to prove that the systems
|M±

2 | have no base curves.
1) First suppose that there are base curves different from the exceptional curves

D1, . . . , D16. Then the system |L2
0|± on A has a fixed part B. Since this system is

invariant under translation by halfperiods, so is B. Hence OA(B) is totally symmet-
ric. If B2 > 0, then we have h0(B)± = 1

B2 ± 2, which never equals 1, because B2 is
a multiple of 8. Thus necessarily B2 = 0, i.e. B is a sum of algebraically equivalent
elliptic curves. B has odd multiplicities in the halfperiods. Now let Θ be a divisor
in the system |L2

0|± −B. Then OA(Θ) is totally symmetric and

|L2
0|± −B = |Θ|∓.

As for b): Since we are not in the product case, we have Θ2 > 0. Using (3.1)
we see that h0(Θ)+ = h0(L2

0)− implies ΘB = 8. But this occurs in the product case
only, because Θ is a square and B is at least a 4-th power in the Néron-Severi group
of A.

As for a): If Θ2 > 0, then h0(Θ)− = h0(L2
0)+ gives the contradiction Θ2 > (L2

0)2.
If Θ2 = 0, i.e. Θ is a sum of k elliptic curves, k > 0, then we compute

h0(Θ)− =
ΘB

2
+ 2 ≥ 2k + 2,

which again is impossible.
2) Now suppose that one of the exceptional curves Di is a base curve of M±

2 .
Using the translation argument again, we see that then all the curves D1, . . . , D16

must be base curves. Thus the line bundles N± = M±
2 −

k∑
i=1

Di are nef for k =

1, . . . , 16. Now we compute the selfintersection numbers

(N+)2 = (M+
2 )2 − 2k

(N−)2 = (M−
2 )2 − 4k

If (N±)2 is positive, then by Ramanujam’s Vanishing Theorem [5] and Riemann-
Roch this number must be equal to (M±

2 )2, which is impossible. Hence (N±)2 = 0
for all k, a contradiction again.

Degree of the Morphisms. Now we want to determine the degree of the
maps defined by the line bundlesM±

d . We always excludeM−
2 in the product case.

According to the results above this is the same as requiring M±
d to be nef.

First we show that case ii) of Saint-Donat’s Theorem 2.1 never occurs for the
line bundles M±

d :

Proposition 3.7 There is no irreducible curve H on X̃ such that pa(H) = 2 and
M±

d = O
X̃

(2H).
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Proof. We have H2 = 2 by the adjunction formula, hence (M±
d )2 = 8. Furthermore,

from 2HDi =M±
dDi ≤ 1 we concludeM±

dDi = 0 for i = 1, . . . , 16. This is possible
only for the bundleM+

2 associated to a (1, 2)-polarization. In this case we consider

the symmetric curve F on A corresponding to H. We have F 2 = 4 +
16∑
i=1

mi(F )2 and

4 = L0F . It follows from L2
0F

2 ≤ (L0F )2 that F 2 = 4, thus
∑
mi(F )2 = 0. This is

impossible, because OA(F ) cannot be totally symmetric.

Lemma 3.8 Let L0 be an ample symmetric line bundle of type (1, n) with n ≥ 1
and let M±

d be nef, d ≥ 2. Then the morphism defined by M±
d is birational onto

its image and an isomorphism outside the contracted curves, except for M+
2 in the

product case, where this morphism is of degree 2.

Proof. According to Saint-Donat’s Theorem and (3.7) we have to check whether
there is an elliptic curve C on X̃ with M±

d C = 2. Equivalently we ask whether
there is a symmetric curve F ⊂ A having at most two components such that

F 2 =
16∑
i=1

m2
i dL0F = 4 +

∑
qi=∓1

mi. (∗)

By (2.2) we have mi ≤ 1, if qi = ∓1. Denote the sum
∑

qi=∓1
mi by s.

1) First we consider the case s = 0. Then obviously d = 2 or d = 4. If d = 4,
then we have L0F = 1, hence F 2 = 0 by the Index Theorem. Thus F is a sum
of two algebraically equivalent elliptic curves, contradicting L0F = 1. If d = 2,
then L0F = 2, and again this implies that F must be the sum of two algebraically
equivalent elliptic curves. This occurs if and only if L0 is a product polarization, as
claimed.

2) Now suppose s > 0. From (*) we get the inequalities

L2
0s ≤ L2

0F
2 ≤ (L0F )2 =

1

d2
(4 + s)2.

These inequalities can be satisfied only if d and (L0)2 are small enough. Using s ≤ 16
we arrive at:

i) the case M−
2 , where L0 is of type (1, 3) and s = 16, and

ii) the case M±
3 , where L0 is of type (1, 1) and s = 8 or s = 2.

It remains to show that in these situations there is no curve F satisfying (*). But
this follows from (4.4) and (5.2) below.

4. Special Case: Principal Polarizations

In this section we study the line bundles M±
d in case L0 is a principal polarization.

We have to consider two cases:
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e7 e4 e5 e6

Θ1 Θ8 Θ9 Θ10

e3 e14 e15 e16

Θ2 Θ11 Θ12 Θ13

e2 e11 e12 e13

Θ3 Θ14 Θ15 Θ16

e1 e8 e9 e10

Θ7 Θ4 Θ5 Θ6

Table 1: The 166-configuration on a principally polarized abelian surface. The sixteen symmetric
translates of Θ are denoted by Θi = t∗eiΘ, i = 1, . . . , 16. The table is organised such that ei lies on
Θj iff ei appears in the same line or column as Θj unless ei and Θj appear at the same position
of the table.

I) The irreducible case. L0 = OA(Θ), where Θ is a smooth hyperelliptic
curve. Then Θ contains six halfperiods e1, . . . , e6.

II) The product case. L0 = OA(E1 +E2), where E1 and E2 are elliptic curves
with E1E2 = 1. Then E1 + E2 contains six halfperiods as smooth points and one
halfperiod as the intersection of E1 and E2.

First we turn to the irreducible case. We will make use of the well-known (166)-
configuration. On A this means the following:

• every halfperiod lies on exactly six symmetric translates of Θ.

• every symmetric translate of Θ contains exactly six halfperiods.

The Property Nef. Since obviously M+
2 has no additional contractions, we

only have to consider M±
d for d ≥ 3 here.

Lemma 4.1 Let L0 = OA(Θ) be an irreducible principal polarization and let d ≥
3. Then M±

d is nef. M±
d has no additional contractions, except for M+

3 , which
contracts the image of Θ.

Proof. Let C ⊂ X̃ be an irreducible curve different from the exceptional curves
D1, . . . , D16 and let F be the corresponding symmetric curve on A. We have

M±
d C =

1

2
(dΘF −

∑
qi=∓1

mi),
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where mi = mi(F ) and qi = qi(dΘ). It is enough to consider the bundles M+
3 , M−

3

and M−
4 .

1) Let us consider M+
3 first. Here

∑
qi=−1

mi =
6∑

i=1
mi. If F = Θ, then we get

M+
3 C = 0. Now let F 6= Θ. In case

6∑
i=1

mi = 0 we clearly have M+
3 C > 0. In case

6∑
i=1

mi > 0 we have

3ΘF ≥ 3
6∑

i=1

mi >
6∑

i=1

mi,

hence M+
3 C > 0 as well.

2) Now we turn toM−
3 . In this case

∑
qi=+1

mi =
16∑
i=7

mi. We can assume
16∑
i=7

mi > 0,

mi0 > 0 say. Further, we may assume F 6= Θ. Using table 1 we see that there are
three symmetric translates Θ(1), Θ(2), Θ(3) of Θ such that

i) all of the ten even halfperiods e7, . . . , e16 lie on the divisor Θ(1) + Θ(2) + Θ(3),
and

ii) ei0 lies on at least two of the three translates.

So we have

3ΘF =
3∑

k=1

Θ(k)F ≥
3∑

k=1

∑
ei∈Θ(k)

mi >
16∑
i=7

mi,

hence M−
3 C > 0.

3) Finally we consider M−
4 . Here we can proceed as in 2) using four symmetric

translates covering all the sixteen halfperiods to conclude M−
4 C > 0.

In the product case we can proceed similarly, now using suitable symmetric
translates of E1 and E2, to obtain

Lemma 4.2 Let L0 = OA(E1+E2) be a product principal polarization and let d ≥ 3.
Then M±

d is nef. The additional contractions are given by the following table:

line bundle contracted curves

M−
4 the symmetric translates of E1 and E2

M+
3 the curves E1 and E2

M−
3

the symmetric translates of E1 and E2

different from E1 and E2

Base Points. In the discussion on base points in section 3 we left out M−
3 in

the principally polarized case. We will fill this gap now:

Lemma 4.3 If L0 is a principal polarization, then M−
3 is free.
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Proof. It is sufficient to show that there are no base curves. First assume that we
are in the irreducible case and let L0 = OA(Θ).

1) For i = 1, . . . , 16 we denote the image in X̃ of the translate t∗eiΘ by Ci. By
(1.5) the Ci are (−2)-curves. Now we claim

M−
3 = O

X̃
(C2 + C3 + C7 +D1 +D2 +D3 +D7)

= O
X̃

(C8 + C9 + C10 +D4 +D5 +D6 +D7).
(∗)

Indeed, an immediate calculation shows that the pullbacks to Ã of all the three
line bundles above are numerically equivalent. Then the line bundles themselves
are numerically equivalent on X̃. But on a K3-surface numerically equivalent line
bundles are isomorphic.

2) From (*) we conclude that the only possible base curve forM−
3 is the excep-

tional curve D7. In this case M−
3 −D7 is free. Further we have (M−

3 −D7)2 = 0.
As a consequence of Bertini’s theorem then M−

3 − D7 = O
X̃

(kE), where E is an
elliptic curve and k = h1(M−

3 − D7) + 1. By Riemann-Roch we compute k = 3,
contradicting (M−

3 −D7)D8 = 1.
The product case can be treated similarly, using translates of the elliptic curves

E1 and E2 instead of Θ-translates. We omit the details.

By the method used in (4.3) one can show that all the line bundlesM±
d are free,

if L0 is of type (1, 1). So we do not really need to apply Reider’s Theorem in the
principally polarized case.

Degree of the Morphisms. In order to prove that the morphisms defined by
M±

3 are birational, we had to know that the abelian surface A cannot contain curves
with certain properties. The following proposition completes the proof of (3.8) in
the principally polarized case:

Proposition 4.4 Let L0 be of type (1, 1), let F ⊂ A be a symmetric curve and let
s =

∑
qi=∓1

mi, where qi = qi(L3
0) and mi = mi(F ). Then the following conditions

cannot be fulfilled at the same time:

i) F 2 =
16∑
i=1

m2
i

ii) 3L0F = 4 + s
iii) s = 2 or s = 8.

Proof. Assume that there is a curve F satisfying i), ii) and iii). First suppose s = 2.
Then F 2 ≥ 2 and L0F = 2. It follows from the Index Theorem that then F 2 = 2,
i.e. OA(F ) is of type (1, 1), contradicting i).

Now suppose s = 8. Here F 2 ≥ 8 and L0F = 4. Applying the Index Theorem
again, we conclude that OA(F ) is algebraically equivalent to L2

0. Further, F contains
exactly eight halfperiods (as smooth points), all of which are even halfperiods of L0.
According to (4.5) below this is impossible.
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Proposition 4.5 Let L0 = OA(Θ) be of type (1, 1) and let B be a symmetric line
bundle algebraically equivalent to OA(2Θ), B 6∼= OA(2Θ). Then B has eight even and
eight odd halfperiods. Neither of these two sets is contained in the set of ten even
halfperiods of L0.

Proof. We have B ∼= t∗aOA(2Θ) for some a ∈ A. Necessarily 2a is a halfperiod, ei
say. Thus by the Theorem of the Square ([3], 2.3.3)

t∗a2Θ ≡lin Θ + t∗eiΘ,

i.e. Θ + t∗eiΘ is a symmetric divisor in |B|. It contains eight halfperiods to an
even order and eight halfperiods to an odd order. Six resp. four of these are even
halfperiods of OA(Θ). This proves our assertion.

5. Special Case: Polarizations of Type (1, 3)

In this section we complete our study of the line bundles M±
d in case L0 is of

type (1, 3). First we have a closer look at the line bundle L0. A straightforward
calculation with intersection numbers shows that there are five cases:

I) The irreducible case. All divisors in |L0|+ and |L0|− are irreducible.
II) The quasi-product case. L0 = OA(E1 +E2), where E1 and E2 are elliptic

curves with E1E2 = 3.
III) The hyperelliptic case. L0 = OA(H + E), where E is an elliptic curve,

H a hyperelliptic curve and EH = 2.
IV) The diagonal case. L0 = OA(E1 + E2 + E3), where E1, E2 and E3 are

elliptic curves with EiEj = 1 for i 6= j.
V) The product case. L0 = OA(E1 + 3E2), where E1 and E2 are elliptic

curves with E1E2 = 1.

We have six odd halfperiods, e1, . . . , e6 say, hence h0(L0)− = 1 and h0(L0)+ = 2.
by (3.1). Let Θ− denote the unique divisor in |L0|− and for j = 7, . . . , 16 let Θ+

j

denote a divisor in |L0|+ through ej. Then we have

Proposition 5.1 a) If Θ− is irreducible, then it is smooth.
b) If Θ+

j is irreducible, then it has a double point in ej and is smooth away
from ej.

Proof. a) Let C be the image of Θ− in X̃. By (1.5) then

2C2 = (Θ−)2 −
16∑
i=1

m2
i ,

where mi = mi(Θ
−). C is irreducible, hence C2 ≥ −2 by the adjunction formula.

We conclude
16∑
i=1

m2
i ≤ 10. Since Θ− vanishes in the halfperiods e7, . . . , e16, we must
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have m1 = . . . = m6 = 0 and m7 = . . . = m16 = 1, thus C2 = −2. So C ∼= IP1 is
smooth. We conclude that Θ− is smooth too, because the halfperiods are smooth
points of Θ−.

b) Again we obtain
16∑
i=1

m2
i ≤ 10. Since Θ+

j vanishes in e1, . . . , e6 and in ej, we

must have m1 = . . . = m6 = 1 and mj = 2, hence C2 = −2 and the assertion follows
as above.

Let us sum up what the results of section 3 mean for a non-product (1, 3)-
polarization: For d ≥ 2 the line bundle M±

d defines a birational morphism, which
is an isomorphism outside the contracted curves. M+

2 and M±
d , d ≥ 3, have no

additional contractions. For M−
2 we have:

• In cases I) and II) M−
2 defines an embedding of X̃.

• In case III) M−
2 contracts the four symmetric translates of E.

• In case IV) M−
2 contracts the 12 symmetric translates of E1, E2 and E3.

In order to complete the proof of (3.8) it remains to show that A does not contain
curves with certain properties:

Proposition 5.2 Let L0 be of type (1, 3) and assume that we are not in the product
case. Then there is no symmetric curve F on A such that

i) F 2 = 16
ii) m1 = . . . = m16 = 1

iii) L0F = 10

Proof. We consider the four cases arising if L0 is not a product polarization.
1) The irreducible case. We have h0(F )− = 2, so there is a divisor F ′ ∈ |F |−

through an arbitrary point of Θ−. We conclude from Θ−F = 10 that Θ− ⊂ F ′.
For j = 7, . . . , 16 we have (F ′ − Θ−)Θ+

j = 4, hence Θ+
j is contained in F ′, because

F ′ −Θ− and Θ+
j have six halfperiods in common. But obviously F ′ cannot contain

all the curves Θ+
j .

2) The quasi-product case. For this and the remaining cases note that the sym-
metric line bundle OA(F ) ⊗ L−1

0 is ample. Indeed, it has positive selfintersection
and positive intersection with L0.

Using the fact thatOA(F ) is totally symmetric, hence a square, we conclude from
(F −E1 −E2)Ei > 0 that FEi ≥ 4 for i = 1, 2. We can assume FE1 = 4, FE2 = 6.
Because of h0(F )+ = 6 there is a divisor F ′ ∈ |F |+ through the four halfperiods of
E2. Since F ′ then has even multiplicities in these halfperiods, E2 must be contained
in F ′. We calculate (F ′ −E2)E1 = 1, hence F ′ −E2 is algebraically equivalent to a
divisor 4E1 + E ′, where E ′ is an elliptic curve with E1E

′ = 1. Intersecting F ′ − E2

with E2 we arrive at a contradiction.
3) The hyperelliptic case. We obtain FH = 6 and FE = 4 from (F−H−E)H > 0

and (F − H − E)E > 0. By the Index Theorem OA(F − H − E) and OA(H) are
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algebraically equivalent. But this contradicts the fact that OA(F −H −E) and L0

must have the same set of odd halfperiods.
4) The diagonal case. Here we get FEi ≥ 4 from (F − E1 − E2 − E3)Ei > 0,

which again is impossible.

Combining the results of section 3 with those of of the principally polarized case
(section 4) and with proposition 5.2 above, we obtain the theorem stated in the
introduction.
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