

Appeared in: Abelian Varieties (Egloffstein, 1993), De Gruyter, Berlin New York, 1995, pp. 19-23.

Abelian Threefolds in $(\mathbb{P}_2)^3$

Th. Bauer ¹, T. Szemberg ²

March 3, 1994

1. Introduction

The elliptic curves in a projective plane are the smooth cubics. In [3] Hulek proved that the only abelian surfaces in the product space $\mathbb{P}_2 \times \mathbb{P}_2$ are the obvious ones, i.e. the products of two plane cubics. Here we consider the analogous question for abelian threefolds in $\mathbb{P}_2 \times \mathbb{P}_2 \times \mathbb{P}_2$.

We prove:

Theorem. Let A be an abelian threefold over \mathbb{C} , embedded in $\mathbb{P}_2 \times \mathbb{P}_2 \times \mathbb{P}_2$. Then A is a product $E_1 \times E_2 \times E_3$, where E_1 , E_2 and E_3 are smooth plane cubics.

We note that the existence of abelian threefolds in 6-dimensional products of projective spaces was recently studied by Birkenhake [1] in the case of two factors.

2. The Projections

Let $\varphi = (\varphi_1, \varphi_2, \varphi_3) : A \hookrightarrow (\mathbb{P}_2)^3$ be an embedding of an abelian threefold A over \mathbb{C} given by line bundles L_1, L_2, L_3 . Further, let $\pi_i : (\mathbb{P}_2)^3 \longrightarrow \mathbb{P}_2^{(i)}$ denote the projection onto the *i*-th factor and $h_i := [\pi_i^* \mathcal{O}_{\mathbb{P}_2}(1)] \in H^2((\mathbb{P}_2)^3, \mathbb{Z})$. By the Künneth formula the class of A in $H^6((\mathbb{P}_2)^3, \mathbb{Z})$ is of the form

$$[A] = ah_1h_2h_3 + \sum_{\substack{i,j=1,2,3\\i\neq j}} a_{ij}h_i^2h_j \tag{(*)}$$

with integers $a, a_{ij} \ge 0$.

¹Supported by DFG grant Ba 423/3-3

 $^{^{2}\}mathrm{Partially}$ supported by Daimler-Benz Stiftung project number 2.92.34 and KBN grant number 2 1077 91 01

Lemma 2.1 The coefficients of [A] in (*) satisfy the equation

$$a(a-27) = \sum_{\sigma \in S_3} a_{\sigma(1),\sigma(3)} (9 - a_{\sigma(2),\sigma(3)})$$

Proof. The total Chern class of the normal bundle $\mathcal{N}_{A/(\mathbb{P}_2)^3}$ is

$$c(\mathcal{N}_{A/(\mathbb{P}_2)^3}) = \prod_{i=1}^3 (1+3h_i+3h_i^2) \cdot [A],$$

thus

$$c_3(\mathcal{N}_{A/(\mathbb{P}_2)^3}) = (27h_1h_2h_3 + 9\sum_{i\neq j}h_i^2h_j) \cdot [A] = 27a + 9\sum_{i\neq j}a_{ij}.$$

On the other hand we have

$$A^{2} = a^{2} + \sum_{\sigma \in S_{3}} a_{\sigma(1),\sigma(3)} a_{\sigma(2),\sigma(3)}$$

Now our assertion follows from the self-intersection formula $A^2 = c_3(\mathcal{N}_{A/(\mathbb{P}_2)^3})$ ([2], p.103).

In the sequel we will need the following

Lemma 2.2 Let A be an abelian threefold, $\psi : A \longrightarrow \mathbb{P}_2$ a morphism and $E \subset A$ an elliptic curve such that all the restrictions $\psi | t_a^* E$, $a \in A$, are embeddings. Then $\psi(t_a^* E) = \psi(E)$ for all $a \in A$.

Proof. Denote by $P := \mathbb{P}(H^0(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(3)))$ the projective space of plane cubics and define a map

$$\begin{array}{rcl} \Phi: A & \longrightarrow & P \\ & a & \longmapsto & \psi(t_a^*E) \end{array}$$

We choose ten points $e_1, \ldots, e_{10} \in E$. Then

$$Z := \{(a, C) \in A \times P \mid C \text{ contains } \psi(e_1 - a), \dots, \psi(e_{10} - a)\}$$
$$= \{(a, C) \in A \times P \mid C = \psi(t_a^* E)\}$$

is a subvariety of $A \times P$. The projection $p: Z \longrightarrow A$ is bijective, hence an isomorphism by Zariski's Main Theorem. The map Φ is just the composition $\Phi = q \circ p^{-1}$, where $q: Z \longrightarrow P$ is the second projection. So Φ is a morphism and the image $\Phi(A)$ is a subvariety of P. If $\Phi(A)$ is of dimension ≥ 1 , then $\Phi(A)$ meets the hypersurface

{ singular plane cubics } $\subset P$,

Since this contradicts the assumption that all images of Φ are smooth curves, we conclude that $\Phi(A)$ is a point.

Further, we will frequently apply the following useful Lemma from [1]:

Lemma 2.3 Let X be an abelian variety of dimension g and $\varphi : X \longrightarrow \mathbb{P}_N$ a morphism with dim $\varphi(X) = n < g$. Then $L := \varphi^* \mathcal{O}_{\mathbb{P}_N}(1)$ is semipositive of rank n and φ fits into a commutative diagram

where the upper row is an exact sequence of abelian varieties and f is a morphism, which is finite onto its image.

Now we are ready to prove:

Proposition 2.4 At least one of the projections φ_1 , φ_2 , φ_3 is not surjective.

Proof. Suppose to the contrary that all of them are surjective. Because of the surjectivity of φ_1 Lemma 2.3 gives a diagram

where the upper row is an exact sequence of abelian varieties, E_1 being an elliptic curve and S_1 an abelian surface, and f_1 is a finite morphism of degree d_1 , say.

By Riemann-Roch on S_1 and [4], Theorem 3.3.3, we have

$$3 \le h^0(L_1) = \frac{1}{2}d_1,$$

hence $d_1 \geq 6$. Since $\varphi_1(E_1)$ is a point, we have

$$[E_1] = \alpha h_1^2 h_2^2 h_3 + \beta h_1^2 h_3^2 h_2$$

with $\alpha, \beta \geq 0$.

Claim: We have $\alpha \neq 1$ and $\beta \neq 1$.

Proof: By symmetry it is enough to consider α . Applying the projection formula we get

$$\alpha = E_1 \cdot h_3 = (\varphi_3)_*(E_1) \cdot \mathcal{O}_{\mathbb{P}_2}(1) = \deg(\varphi_3|E_1) \cdot \deg\varphi_3(E_1).$$

If we had $\alpha = 1$, then the morphism $\varphi_3|E_1 : E_1 \longrightarrow \varphi_3(E_1)$ would be of degree 1 onto a line in \mathbb{P}_2 , which of course is impossible.

Let us distinguish between two cases:

Case I: $\alpha = 0$ or $\beta = 0$.

Suppose $\alpha = 0$, i.e. $\varphi_3(E_1)$ is a point. Since both of $\varphi_1(E_1)$ and $\varphi_3(E_1)$ are then points, φ_2 must embed E_1 and all of its translates $t_a^* E_1$, $a \in A$, into \mathbb{P}_2 . By Lemma

Case II: $\alpha \geq 2$ and $\beta \geq 2$.

Let F_1 be a general fibre of φ_1 . Then we obtain

$$[F_1] = [A] \cdot h_1^2 = a_{23}h_1^2h_2^2h_3 + a_{32}h_1^2h_3^2h_2.$$

Furthermore, we have $[F_1] = d_1 \cdot [E_1]$, hence

$$a_{23} = d_1 \cdot \alpha \ge 6 \cdot 2 = 12$$

and also $a_{32} \ge 12$. Arguing in the same way with the projections φ_2 and φ_3 we obtain

$$a_{ij} \ge 12$$
 for $i, j = 1, 2, 3, i \ne j$.

Lemma 2.1 then yields

$$-183 \le a(a-27) = \sum_{(i,j,k) \in S_3} a_{ij}(9-a_{kj}) \le -216,$$

a contradiction. We conclude that not all of the projections φ_1 , φ_2 and φ_3 can be surjective.

3. The Product Decomposition

Now we can prove the Theorem stated in the Introduction:

Theorem 3.1 Let A be an abelian threefold over \mathbb{C} , embedded in $\mathbb{P}_2 \times \mathbb{P}_2 \times \mathbb{P}_2$. Then A is a product $E_1 \times E_2 \times E_3$, where E_1 , E_2 and E_3 are smooth plane cubics.

Proof. By Proposition 2.4 we may assume that φ_1 is not surjective. By Lefschetz hyperplane theorem there are no abelian threefolds in $\mathbb{P}_2 \times \mathbb{P}_2$, since $\mathbb{P}_2 \times \mathbb{P}_2$ is simply connected. Thus the image $\varphi_1(A) \subset \mathbb{P}_2^{(1)}$ must be a curve. Then we have a diagram

where E_1 is an elliptic curve, S_1 an abelian surface and f_1 a morphism, which is finite onto its image. Since the image $\varphi_1(S_1)$ is a point, S_1 is embedded into $\mathbb{P}_2^{(2)} \times \mathbb{P}_2^{(3)}$ by (φ_2, φ_3) . According to [3], 2.1, S_1 is then a product of elliptic curves $E_2 = \varphi_2(S_1)$ and $E_3 = \varphi_3(S_1)$. Identifying S_1 with its image under (φ_2, φ_3) we may consider E_2 , E_3 as elliptic curves on A.

with an abelian surface S_2 , an elliptic curve E'_2 and a finite morphism f_2 . Since $\varphi_2(S_2)$ is a point, S_2 is embedded into $\mathbb{P}_2^{(1)} \times \mathbb{P}_2^{(3)}$ by (φ_1, φ_3) and again $S_2 = \varphi_1(S_2) \times \varphi_3(S_2)$ according to [3]. In fact $S_2 = E_1 \times E_3$. The morphism f_2 is an isomorphism because φ_2 embeds E_2 , hence $E'_2 \cong E_2$. Since E_2 is contained in A the exact sequence

$$0 \longrightarrow S_2 \longrightarrow A \longrightarrow E_2 \longrightarrow 0$$

splits. Then it follows

$$A \cong S_2 \times E_2 \cong E_1 \times E_2 \times E_3$$

and the Theorem is proved.

We conclude with the following

Question. Is every abelian variety of dimension n in $(\mathbb{P}_2)^n$ a product of smooth plane cubics?

Acknowledgements. We would like to thank Prof. W. Barth for helpful discussions.

References

- [1] Birkenhake, Ch: Abelian Threefolds in Products of Projective Spaces. To appear.
- [2] Fulton, W.: Intersection Theory. Springer-Verlag, New York 1984
- [3] Hulek, K.: Abelian Surfaces in Products of Projective Spaces. Algebraic Geometry L'Aquila, SLN 1417 (1988)
- [4] Lange, H., Birkenhake, Ch.: Complex Abelian Varieties. Springer-Verlag, Grundlehren 302 (1992)

Th. Bauer, T. Szemberg Mathematisches Institut der Universität Bismarckstr. 1 1/2 D-91054 Erlangen email: bauerth@mi.uni-erlangen.de szember@mi.uni-erlangen.de permanent address of the second author: Instytut Matematyki Uniwersytet Jagielloński Reymonta 4 PL-30-059 Kraków