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0. Introduction

In the present note we consider the question of global generation and very ampleness
of tensor products of ample line bundles on abelian varieties.

It is a classical result of Lefschetz ([3], Theorem 4.5.1) that the third tensor
power of an ample line bundle on an abelian variety is very ample. It is also well
known that the second power is globally generated. We generalize these results to
the product of three resp. two arbitrary ample line bundles. Further we give criteria
for a tensor product of two ample line bundles to be very ample.

The essential tool in the proof of the results for the powers of an ample line
bundle is the theorem of the square ([3], Theorem 2.3.3). Our method is to replace
this theorem by arguments involving the isogeny associated to an ample line bundle.

Throughout this note the base field is C.

1. Very ample tensor products of three factors

Theorem 1.1 Let X be an abelian variety and let L1, L2, L3 be ample line bundles
on X. Then we have:

a) L1 + L2 is globally generated.
b) L1 + L2 + L3 is very ample.

Proof. a) Let a ∈ X and let Θ1 ∈ |L1|, Θ2 ∈ |L2|. Consider the homomorphism

Φ : X ×X −→ Pic0(X)

(x1, x2) 7−→ t∗x1
L1 − L1 + t∗x2

L2 − L2 .

Here txi
denotes the translation map X −→ X, x 7−→ x + xi. Since L1 and L2

are ample, Φ is surjective, hence its kernel is of dimension n := dimX. For any
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x1, x2 ∈ X the intersections

ker Φ ∩ ({x1} ×X)

ker Φ ∩ (X × {x2})

are finite, because the maps Φ(x1, ·) and Φ(·, x2) are translates of the isogenies
associated to the ample line bundles L1, L2. Therefore the intersections

ker Φ ∩ (t∗aΘ1 ×X)

ker Φ ∩ (X × t∗aΘ2)

are of dimension n− 1. Thus we see that there is a pair (x1, x2) ∈ ker Φ such that

(x1, x2) 6∈ (t∗aΘ1 ×X) + (X × t∗aΘ2) .

Then we have

x1 6∈ t∗aΘ1 i.e. a 6∈ t∗x1
Θ1

x2 6∈ t∗aΘ2 i.e. a 6∈ t∗x2
Θ2

and
t∗x1
L1 + t∗x2

L2 = L1 + L2 .

Consequently t∗x1
Θ1 + t∗x2

Θ2 is a divisor in |L1 + L2|, which does not contain the
point a.

b) Let L = L1 + L2 + L3 and let ϕL be the map defined by L. By a) ϕL is a
morphism. We have to show that ϕL and the differential dϕL are both injective.

Step I. ϕL is injective.
Let y1, y2 ∈ X such that ϕL(y1) = ϕL(y2). There is a reduced divisor Θ1 ∈

|L1| such that Θ1 coincides with none of its translates ([3], Proposition 4.1.7 and
Lemma 4.1.8). Let x1 be an arbitrary point of t∗y1Θ1. The line bundle L− t∗x1

Θ1 is
algebraically equivalent to L2 + L3, hence globally generated by a). Therefore we
find a divisor

Θ′ ∈ |L− t∗x1
Θ1|

such that y2 6∈ Θ′. The divisor

t∗x1
Θ1 + Θ′ ∈ |L|

contains y1, hence by assumption it also contains y2. By choice of Θ′ we must have
y2 ∈ t∗x1

Θ1, or equivalently x1 ∈ t∗y2Θ1. Since Θ1 is reduced, we conclude

t∗y1Θ1 ⊂ t∗y2Θ1 .

Then we necessarily have
t∗y1−y2Θ1 = Θ1 ,
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hence by choice of Θ1 it follows that y1 = y2.

Step II. dϕL is injective.
Suppose to the contrary that there exists a point a ∈ X and a tangent vector

T such that T is tangent to all the divisors D ∈ |L| containing the point a. Let
Θ1 ∈ |L1| be reduced and let x1 ∈ t∗aΘ1. As before there is a divisor Θ′ ∈ |L− t∗x1

Θ1|
such that a 6∈ Θ′. By assumption T is tangent to Θ′ + t∗x1

Θ1, hence T must be
tangent to t∗x1

Θ1 in a, or equivalently T is tangent to Θ1 in a+ x1. Since this holds
for any x1 ∈ t∗aΘ1, we found that T is tangent to Θ1 in all points of Θ1. But then the
image of the Gauß-map associated to Θ1 is contained in a hyperplane, contradicting
[3], Proposition 4.4.1.

2. Tensor products of two ample line bundles

Now we want to give criteria for a tensor product of two ample line bundles to be
very ample. This is easy in the surface case:

Theorem 2.1 Let X be an abelian surface and let L1, L2 be ample line bundles,
which are not algebraically equivalent. Then L1 + L2 is very ample, unless

L1 ≡alg OX(E1 + k1F )

L2 ≡alg OX(E2 + k2F ) ,

where k1, k2 are positive integers and E1, E2, F ⊂ X are elliptic curves with E1F =
E2F = 1.

Proof. Let L = L1 +L2. We have L1L2 ≥ 3, because otherwise the Hodge inequality
would imply that L1 and L2 are algebraically equivalent. Therefore

L2 = L2
1 + L2

2 + 6 ≥ 10

and we may apply Reider’s theorem [5]. So if L is not very ample, then there is an
effective divisor E on X such that

LE ≤ 2 and E2 = 0 .

Then we must have L1E = L2E = 1 and E must be an elliptic curve. Considering
the decomposition of divisors in |Li| into irreducible components we see that L1 and
L2 are of the asserted forms.

Next we consider the problem in arbitrary dimension. Let L1, L2 be ample line
bundles on an abelian variety and let

Φ : X ×X −→ Pic0(X)
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be the homomorphism defined in the proof of Theorem 1.1. Let p, q : ker Φ −→ X
be the projections onto the first resp. second factor.

X ×X
∪

ker Φ

p
�

��

@
@@

q

X X

The following theorem was proved in the case L1 = L2 by Ohbuchi [4].

Theorem 2.2 Let X be an abelian variety and let L1, L2 be ample line bundles on
X such that |L1| and |L2| have no base components. Then L1 + L2 is very ample.

Proof. Let L = L1 + L2 and let ϕL be the rational map defined by L. According to
Theorem 1.1 ϕL is a morphism.

Step I. ϕL is injective.
Let y1, y2 ∈ X with ϕL(y1) = ϕL(y2). There is an irreducible divisor Θ1 ∈ |L1|

such that Θ1 coincides with none of its proper translates ([3], Lemma 4.1.8 and
Theorem 4.3.5). We may assume that t∗y1Θ1 and t∗y2Θ1 intersect properly, because
otherwise we would have t∗y1Θ1 = t∗y2Θ1, hence y1 = y2 and we were done.

Let x1 ∈ t∗y1Θ1, x1 6∈ t∗y2Θ1. Then

y1 ∈ t∗x1
Θ1 + t∗x2

Θ2 ∈ |L|

for all Θ2 ∈ |L2| and all x2 ∈ qp−1(x1). By assumption on y1 and y2 we then have

y2 ∈ t∗x1
Θ1 + t∗x2

Θ2

for all these Θ2 and x2. By choice of x1 then

y2 ∈ t∗x2
Θ2 .

Now choose a divisor Θ′1 6= Θ1 ∈ |L1|. Then we have

y2 ∈ t∗x2
Θ2 + t∗x1

Θ′1 ∈ |L| ,

hence
y1 ∈ t∗x2

Θ2 + t∗x1
Θ′1

for all Θ2 ∈ |L2| and all x2 ∈ qp−1(x1). Since Θ′1 6= Θ1, the divisors t∗y1Θ
′
1 and t∗y1Θ1

meet properly. So for x1 ∈ t∗y1Θ1, x1 6∈ t∗y2Θ1, x1 6∈ t∗y1Θ
′
1 we obtain

y1 ∈ t∗x2
Θ2 , thus x2 ∈ t∗y1Θ2
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for all x2 ∈ qp−1(x1) and all Θ2 ∈ |L2|. We conclude that

qp−1(t∗y1Θ1) ⊂ t∗y1Θ2

for all Θ2 ∈ |L2|. But this means that |t∗y1L2| has a base component—a contradiction.

Step II. dϕL is injective.
Suppose to the contrary that there is a point a ∈ X and a tangent vector T such

that T is tangent in a to all divisors in |L| containing a.
Choose Θ1 ∈ |L1| irreducible and let x1 ∈ t∗aΘ1 be a smooth point. Then

a ∈ t∗x1
Θ1 + t∗x2

Θ2 ∈ |L|

for all Θ2 ∈ |L2| and all x2 ∈ qp−1(x1).
Now let M be the subset of t∗aΘ1 consisting of all points x1 such that

x2 ∈ t∗aΘ2

holds for all Θ2 ∈ |L2| and all x2 ∈ qp−1(x1). Thus we have

qp−1(M) ⊂ t∗aΘ2 for all Θ2 ∈ |L2| .

Since |t∗aL2| has no base components, qp−1(M) cannot contain an open set of di-
mension dimX − 1. So t∗aΘ1 \M is a dense subset of t∗aΘ1, because p and q are
finite maps. Now let x1 ∈ t∗aΘ1 \M be a smooth point. The condition x1 6∈ M
implies that T is tangent to t∗x1

Θ1 in a. Equivalently, T is tangent to Θ1 in a+ x1.
Since this holds for a dense subset of points x1 ∈ t∗aΘ1, T is in fact tangent to Θ1

in all of its points. But then the image of the Gauß-map of Θ1 is contained in a
hyperplane—contradicting the fact that L1 is ample.

Finally we consider tensor products of principal polarizations generalizing results
for abelian surfaces and abelian threefolds obtained in [2] resp. [1] by the Comessatti-
method.

Theorem 2.3 Let L1 and L2 be principal polarizations on an abelian variety X
such that L1 is an irreducible polarization. Then L1 + L2 is very ample unless L1

and L2 are algebraically equivalent.

Proof. If L1 and L2 are algebraically equivalent, then L1 + L2 is the Kummer
polarization, hence certainly not very ample. So assume that L1 and L2 are not
algebraically equivalent.

Step I. Let Θ1,Θ2 be the divisors in |L1| resp. |L2|. First we show that

t∗y1Θ1 6⊂ pq−1t∗y2Θ2 (∗)

for all y1, y2 ∈ X. Suppose the contrary. Since the homomorphism Φ only depends
on the algebraic equivalence classes of L1 and L2, we may assume y1 = y2 = 0. L1
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and L2 being principal polarizations the projections p and q are morphisms of degree
1. By Zariski’s main theorem p and q are even isomorphisms. So the composed map
f := pq−1 : X −→ X is an isomorphism. Since Θ1 is irreducible, we have the
equality pq−1Θ2 = Θ1, i.e. Θ2 = f ∗Θ1. We have f(0) = 0, so f is a homomorphism
of abelian varieties. Thus we have for any x1 ∈ X

f ∗(Θ1 − t∗x1
Θ1) = f ∗Θ1 − f ∗t∗x1

Θ1 = f ∗Θ1 − t∗f−1(x1)
f ∗Θ1 ,

which by assumption equals
Θ2 − t∗f−1(x1)

Θ2 .

By definition of f this divisor is linearly equivalent to

−(Θ1 − t∗x1
Θ1) .

So we found that the dual morphism f̂ : Pic0(X) −→ Pic0(X) is just the map
M −→ −M . Denoting the involution X −→ X, x 7−→ −x by ι this means

f̂ = ι̂ ,

hence f = ι and we conclude L2 = ι∗L1. But then L1 and L2 are algebraically
equivalent—contradicting our assumption.

Now let L = L1 +L2 and let ϕL be the rational map defined by L. According to
Theorem 1.1 ϕL is a morphism.

Step II. ϕL is injective.
Let y1, y2 ∈ X with ϕL(y1) = ϕL(y2). Let x1 ∈ t∗y1Θ1 be an arbitrary point.

Then
y1 ∈ t∗x1

Θ1 + t∗x2
Θ2 ∈ |L|

for x2 = qp−1(x1). By assumption on y1 and y2 this implies

y2 ∈ t∗x1
Θ1 + t∗x2

Θ2 .

If y2 ∈ t∗x2
Θ2, then x2 ∈ t∗y2Θ2, hence x1 ∈ pq−1t∗y2Θ2. So we found

t∗y1Θ1 ⊂ t∗y2Θ1 + pq−1t∗y2Θ2 ,

which implies t∗y1Θ1 ⊂ t∗y2Θ1 because of (∗). But then we have t∗y1−y2Θ1 = Θ1, hence
y1 = y2.

Step III. dϕL is injective.
Suppose that there is a point a ∈ X and a tangent vector T which is tangent

in a to all divisors in |L| containing a. Let x1 ∈ t∗aΘ1 be a smooth point with
x1 6∈ pq−1t∗aΘ2. Then

a ∈ t∗x1
Θ1 + t∗x2

Θ2 ∈ |L|
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for x2 = qp−1(x1). The point a cannot be contained in t∗x2
Θ2, because otherwise

we would have x2 ∈ t∗aΘ2, hence x1 ∈ pq−1t∗aΘ2. By assumption T is then tangent
to t∗x1

Θ1 in a. Now we can proceed as in the proof of Theorem 2.2 to obtain a
contradiction.
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