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0. Introduction

In recent years several concepts of higher order embeddings have been introduced
and studied by Beltrametti, Francia, Sommese and others: k-spannedness, k-very
ampleness and k-jet ampleness (see [BFS], [BeSol], [BeSo2], [BeSo3]).

First recall the definitions:

Definition. Let X be a smooth projective variety and L a line bundle on X.

(a) L is called k-very ample (resp. k-spanned), if for any zero-dimensional sub-
scheme (Z,0z) of X of length k 4+ 1 (resp. for any curvilinear zero-dimensional
subscheme (Z, Oyz) of X of length k + 1) the restriction map

H(L) — H° (L ® Oy)

is surjective. Here a subscheme is called curvilinear, if it is locally contained in a
smooth curve.
(b) L is called k-jet ample, if the restriction map

H(L) — H° (L® Ox/ (mh ©...0mk))

is surjective for any choice of distinct points ¥q,...,y, in X and positive integers
kl,...7l€7« with Zkl :k+1

The strongest notion is k-jet ampleness; it implies k-very ampleness (cf. [BeSo2,
Proposition 2.2]) which of course implies k-spannedness. For k& = 0 or k = 1 all
the three notions are equivalent and correspond to global generation resp. very
ampleness.

In this note we give criteria for k-jet ampleness of line bundles on abelian va-
rieties. A naive way to obtain such a criterion is as follows: According to [BeSo2,
Corollary 2.1] a tensor product of k very ample line bundles is always k-jet ample.
Now on an abelian variety, by the generalization of Lefschetz’ classical theorem [LB,
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Theorem 4.5.1] given in [BaSz, Theorem 1.1], one knows that a tensor product of
three ample line bundles is already very ample. So the conclusion is that a tensor
product of 3k ample line bundles on an abelian variety is k-jet ample. In this note
we show that actually the following considerably stronger statement holds:

Theorem 1. Let A be an abelian variety and let Ly, . .., Liio be ample line bundles
on A, k>0. Then Ly + ...+ Lio is k-jet ample.

This result is sharp in the sense that in general a tensor product of only k + 1
ample line bundles on an abelian variety is not k-spanned, thus not k-very ample or
k-jet ample (see Proposition 2.4). However, it is an interesting problem to specify
additional assumptions on k + 1 ample line bundles, which ensure that their tensor
product is k-jet ample.

Here we show:

Theorem 2. Let A be an abelian variety and let Ly, ..., Liy1 be ample line bundles
on A, k> 1. Assume that L1 has no fived components. Then Ly + ...+ Ly is
k-jet ample.

Actually Theorem 1 is a corollary of Theorem 2, due to the fact that a tensor
product of two ample line bundles on an abelian varieties is always globally generated

([BaSz)).

Notation and Conventions. We work throughout over the field C of complex
numbers.

For a point z on an abelian variety A we denote by ¢, : A — A the translation
map a — a + x. A divisor © on A is called translation-free, if t7© = © implies
x=0.

If L is a line bundle on A, x € A a point and £ > 0 an integer, the map
HY(L) — H°(L ® O4/mi*!) mapping a global section of L to its k-jet at z is
denoted by j fl, or simply by jF.

For a reduced divisor D we denote by (D), its smooth part.

1. Higher order Gaufl maps

Let A be an abelian variety and let D be a reduced divisor on A defined by a section

s € H*(O4(D)). The Gauf map of D is defined as

vp:(D)s — 1P (mo/mg)
x — C-ay (];(s))

where
a, : P (O4(D) @ m,/m?) — P (m,/m2) — P (my/m2)



is the canonical isomorphism (0 being the zero point on A). Identifying my/mZ with
the dual of the universal covering space of A, the map vp coincides with the Gaufl
map of D defined in [LB, Section 4.4].

Next, let Dq,..., D, be reduced divisors on A, defined by sections si,...,s,
respectively. We define the n-th order Gauf$ map of D1, ..., D, to be

VD1,0n + (D1)s X ... X (Dy)s — TP (m§/mg™")

(T1,...,2n) +— C-J5 <®t;f52> :
i=1

We will need the following

Lemma 1.1 If Dy,...,D,, are ample reduced divisors, then the image of Yp,... b,
1s not contained in a hyperplane.

Proof. The ampleness of D; implies that the image of yp, is not contained in a
hyperplane in IP (mg/m2) (see [LB, Proposition 4.4.1]). The assertion then follows
from the commutative diagram

YDq,...,Dn

(D1)s X ... x (D), P (m{'/m{+t)

7D1X~~-XVD\ /

where p is induced by the product map. ]

2. The main result

Theorem 2.1 Let A be an abelian variety and let Ly, . .., Ly 1 be ample line bundles
on A, k> 1. Assume that Lyy1 has no fized components. Then L = L1+ ...+ Lgi1q
15 k—7jet ample.

Proof. Let yy,...,y. € A and integers kq,..., k. > 0 with Y k; = k4 1 be given.
We have to show that the restriction map

HO(L)—)HO(L@)OA/(m];@'“@ka))

Yr
is surjective.
First we assume that one of the integers, say ki, satisfies k; > 2.

Claim 1. It is enough to show that the restriction map
H (Lemeoml ™) — H (Lom ' /m) (%)

is surjective, where m := @;_, m.



In fact, by induction and [BaSz, Theorem 1.1] we may assume that H°(L) —
H® (L ® 04/ (m @ mb 1)) is surjective; so Claim 1 follows from the following exact
diagram:

0—H (Lem@mi ) — H°(L) —H (L® 04/ (me@mp~1)) =0

| |

0= H (Lomi~/ml) 5 HO (L 04/ (me@mi)) = H° (L® 04/ (m@mb=1)) =0

0

It remains to prove the surjectivity of (x). Suppose the contrary. Then there is
a hyperplane H C IP (L ®m§;_1/m§}) such that for all sections s € H°(L) the
conditions

gt (s) =0for 2 <i<rand i ?(s) =0 (1)

imply C - jkl I(s) € H. The idea now is to construct sections satisfying (1) and
to use Lemma 1.1 to get a contradiction. It is convenient to renumber the bundles
Ly, ..., L by double subscripts in the following way:

1;171, cee l;l,kl——17 1;271, ceey 1;2,k27 ey 1;T71, cey l;r,kr .

This is possible since (k; — 1)+ ks +. ..+ k. = k. Let Q be the set of subscripts (i,1),
ie. Q={G,)|1<i<r 1<I<kfor2<i<randl1<I<k —1fori=1}.
Now for every (i,1) € Q let ©;; € |L;;| be a reduced translation-free divisor. Such
divisors exist according to [LB, Proposition 4.1.7 and Lemma 4.1.8], since all bundles
L;, are ample. For every (i,0) € Q with ¢ > 2 we choose a point

z;) € t,,0; such that x;; ¢ ¢ 0, . (2)

This is possible, since otherwise we would have t;@“ = t;;l ©,,; implying a contra-
diction with y; # y; for i # 1.
Let s1;, € H° (L) be a section defining ©1; for [ = 1,...,k; — 1. Then for any
choice of points x;; € t;@l,l the section
Spi=tr S11Q...Qt S1,k1—1

1,1 T1,ky—1
satisfies ji17(s1) = 0.

Claim 2. There is a nowhere dense subset S of t;l@m such that for all 1, €
ty ©1 1\ S the following condition holds: there is a divisor Oy € |Liy1| and a point
ka such that y; ¢ t&  Opy1 and

Tr+1

$11@11 +. +t;r’m@rk + @k+1 € |L|

Tk41



Proof of Claim 2. Consider the homomorphism
p:Ax A — Pic’(A)
(al, CLQ) — LLQ — LLQ 4+ ...+ t;r,kr L’r‘,kr - LT,k:r

x1,2

+ty Ly — Ly +t,, Ly — Ly

Let 1, m be the projections of the kernel of ¢ onto the first resp. the second factor.
They are surjective and finite, because L; ; and Ly, are ample (compare also [BaSz,
Proof of Theorem 1.1]).

Suppose now that the assertion of Claim 2 is false. This means that there is
an open subset D C t; ©;; such that for all z;; € D and all 74, € Tomy * (11)
the point y; is a base point of U L1 e 41 € tr,.,© for all © € |Lg+1], or
equivalently zy,, € 5 O for all © € [Ly4]. It follows that T (D) C ty, © for all
© € |Ljy1|- But this means that gy Lks1 has a fixed component, a contradiction.
This proves Claim 2.

Now let 1, € 75;:1@1,1 \ S and let x4 and Oy, be chosen as in Claim 2. Further,
let sy be a section defining the divisor

tf Ora+...+ t;r,/w@r,kr Oyt -

2,1 Th+1

Then s := s; @ s € H°(L) satisfies conditions (1). Therefore we conclude that
C-ji1~'(s) € H. Since sy(y1) # 0 it follows that C - j}1~'(sy) € H', where H' is the
image of H in IP (m’gr1 / mlgl) via the canonical isomorphism. Since this holds for
arbitrary points z1,...,Z1x, 1 of t; O12,...,t; O14, 1 and all 1, € t; ©11\ S,
we thus have shown that the image of the restriction of the map

ki1—1
H (tr ©10), — IP(mf~"/mg")
=1

(xl,la"'wxl,/ﬂ—l) — C'jg]jll_l(sl)

to a dense subset is contained in a hyperplane. But then the image of the map itself
is contained in this hyperplane, a contradiction with Lemma 1.1.

It remains to deal with the case ky = ... = kxyqy = 1. By symmetry and by Claim
1 it is enough to show that there is a section s € H°(L) vanishing at yi,...,ys
and not vanishing at yr,1. Such a section may be constructed directly as follows.
Let O, ..., 0y be reduced translation-free divisors in | L4, ..., |Lx| respectively. For
1 <4 < k there are points x; € ¢50;\ ty..,©i This means that y; € ¢,,0;
and ygr1 ¢ t2,0;. According to [LB, Lemma 4.1.8 and Theorem 4.3.5] there is a
reduced, irreducible translation-free divisor Oy1 € |Lgi1|. Exactly as in Claim 2
we can choose the point z; in such a way that there is a point z;.; € A such that
Yrt1 € t5,,,Or1 and

01 +... +t

Tr+1

Okt+1 € |L|

Evidently a section s € H°(L) defining the above divisor satisfies all the require-
ments. This completes the proof of the theorem. ]



Corollary 2.2 Let A be an abelian variety and let Ly, ..., Lyio be ample line bun-
dles on A, k> 0. Then Ly + ...+ Ligio is k—jet ample.

Proof. This follows immediately from Theorem 2.1 because L;g 41 = Lig1 + Lpyo is
globally generated ([BaSz, Theorem 1.1al). O

In particular, we have

Corollary 2.3 Let A be an abelian variety and let L be an ample line bundle on A
of type (di,....dy). If dy > k + 2, then L is k-jet ample.

Now we show that in general a tensor product of only k41 ample line bundles on
an abelian variety is not k-jet ample, even that it is not k-very ample or k-spanned.

Proposition 2.4 Let Ey, ..., E, be elliptic curves, g > 1, andlet A = Ey x...x E,
with the canonical principal polarization

g
L=0y, (ZElx...in_lx{O}xEZ-Hx...ng)
=1

Then for any k > 0 the line bundle (k + 1)L is not k-spanned.

Proof. Consider the elliptic curve E = E; x {0} x ... x {0} on A. It is enough to
show:

() The restricted bundle (k + 1)L| is not k-very ample.

For this note that the notions of k-very ampleness and k-spannedness coincide on
curves.

To prove (%), we can invoke Proposition 2.1 of [BeSo3] which states that for a
k-very ample line bundle M on a curve C one always has h°(M) > k + 1 with
equality only in case C' is a smooth rational curve.

As for another way to verify (x), it is easy to see that one can choose k+ 1 points
on E such that any divisor in the system |(k + 1)L|;|, which contains & of these
points, also contains the remaining point because of Abel’s theorem. L]
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