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Abstract. In joint work with A. Küronya and T. Szemberg we study certain asymptotic
invariants of linear series: the stable base locus and the volume. In particular we are
interested in the question how these invariants behave under small perturbations in the
Néron-Severi space. We show that both invariants lead to a partition of the big cone
into suitable subcones, and that – somewhat surprisingly – these two partitions coincide.
This phenomenon is explained by the fact that both problems are closely related to the
variation of the Zariski decomposition, which is an interesting problem quite on its own.

1. Introduction

We report here on our recent joint work [BKS] with A. Küronya and T. Szemberg on
asymptotic invariants of linear series. Let us start by considering three questions.

Stable base loci. Let X be a smooth projective variety and L a line bundle on X. We
denote by SB(L) the stable base locus of L, i.e., the intersection of the base loci of the
linear series |kL| for all positive integers k. More generally, we will consider the stable
base loci of Q-line bundles L by passing to an integral multiple of L; this is well-defined,
since the stable base locus is invariant under taking multiples (i.e. tensor powers) of the
line bundle.

Stable base loci were recently studied by Nakamaye ([N1], [N2]). He showed in particular
that for a big and nef divisor L, an ample divisor A, and for small ε > 0, the stable base
locus SB(L − εA) is the union of all subvarieties V ⊂ X such that LdimV · V = 0. So
in particular the stable base locus remains constant when a big and nef line bundle is
perturbed in anti-ample directions. We ask quite generally:

Question 1. How does SB(L) vary when L moves in the big cone of X?

One needs to be a bit more precise here: the stable base locus is not invariant under
numerical equivalence, and hence it is not a function on the big cone. Following [ELMNP]
we therefore consider a modified version of the stable base locus, the stabilized base locus,
defined as

B+(L) = SB(L−A) ,

where A is a sufficiently small ample bundle. These stabilized base loci in fact turn out
to be numerical invariants.

Volumes. Consider a line bundle L on a smooth projective variety X of dimension n.
The Riemann–Roch problem is concerned with the study of the behaviour of h0(X, kL) as
a function of k. While the exact determination of these dimensions is difficult in general,
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they grow typically (i.e. for big line bundles) like kn. The volume of L, introduced by
Cutkosky, is then defined as

volX(L) =def lim sup
k

h0(X, kL)

kn/n!
.

This concept readily extends to Q-divisors, and in fact it has recently been established (in
[PAG]) that it defines a continuous function on the Néron-Severi space. It is thus natural
to ask:

Question 2. How does vol(L) vary when L moves in the big cone of X?

Zariski decompositions. Let now X be a smooth projective surface. Recall ([Z], [KMM,
Theorem 7.3.1]) that a (pseudo-)effective R-divisor D on X admits a unique Zariski de-
composition, i.e., there exists a unique effective R-divisor ND =

∑m
i=1 aiNi such that

(i) PD = D −ND ist nef,
(ii) ND is either zero or its intersection matrix (Ni ·Nj) is negative definite,

(iii) PD ·Ni = 0 for i = 1, . . . ,m.

The Zariski decomposition is determined by the numerical equivalence class of D, so it
makes sense to study it as a function on the Néron-Severi space. We ask:

Question 3. How does the Zariski decomposition of L vary when L moves in the big cone
of X?

Each of the three problems leads to a decomposition of the big cone into subsets where
the invariant in question behaves nicely. Our result [BKS] says that, somewhat surpris-
ingly, on surfaces the underlying decompositions in fact agree:

Theorem. Let X be a smooth projective surface over the complex numbers. Then there is
a locally finite decomposition of the big cone of X into rational locally polyhedral subcones
such that the following holds:

(i) In each subcone the support of the negative part of the Zariski decomposition of the
divisors in the subcone is constant.

(ii) On each of the subcones the volume function is given by a single polynomial of
degree two.

(iii) In the interior of each of the subcones the stable base loci are constant.

As Zariski decompositions do not in general exist on higher-dimensional varieties, part (i)
is specific to surfaces. On the other hand, it is natural to ask for higher-dimensional ana-
logues of statements (ii) and (iii). A statement as clean as that of the theorem above,
however, cannot be expected: already in dimension three there are examples where the
volume is not locally polynomial (see [BKS], Section 3.3); and the subsets, where the sta-
ble base locus is constant, need not have rational boundaries (see [BKS], Example 2.11).
Nonetheless it would be interesting to know whether the statements (ii) and (iii) might
have higher-dimensional analogues at least for certain types of varieties.

2. The decomposition

In this section we will focus on explaining the decomposition of the big cone as stated
in the theorem. Our purpose is to convey some feeling for the geometry underlying the
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three problems in question, and to sketch the main ideas. Details and complete proofs can
be found in [BKS].

Consider an R-divisor D on a smooth projective surface X with Zariski decomposition

D = PD +ND .

We consider the set of null curves and the set of negative curves of D, defined as

Null(D) =def {C C irreducible curve with D · C = 0 }

and

Neg(D) =def {C C irreducible component of ND }
respectively. On always has Neg(D) ⊂ Null(PD), but it may well happen that some of the
null curves do not appear as components of ND.

Now we can specify the subcones of the big cone mentioned in the theorem. To this
end, consider for a big and nef R-divisor P the set

ΣP = {D ∈ Big(X) Neg(D) = Null(P ) } .

It is immediate to check – using the properties of the Zariski decomposition – that ΣP

is a convex cone. (It will in general be neither open nor closed.) One shows (see [BKS],
Lemma 1.6) that these cones yield a decomposition of the big cone, i.e.,

(1) Big(X) =
⋃

P big and nef

ΣP ,

where ΣP = ΣP ′ or ΣP ∩ΣP ′ = ∅ for any two big and nef R-divisors P and P ′. The main
point in proving (1) is that, given a big divisor D, one is able to find a big and nef divisor
P such that Neg(D) = Null(P ).

As far as part (i) of the theorem is concerned, two things remain to be shown.

Proposition 1. (a) The cone ΣP is locally polyhedral.
(b) The decomposition (1) is locally finite.

(See [BKS], Proposition 1.10 and Proposition 1.15.) In order to prove assertion (a), we
provide an explicit description of ΣP as follows:

(2) ΣP ∩ Big(X) = (Big(X) ∩ Face(P )) + V >0(Null(P )) .

Here

Face(P ) =def Null(P )⊥ ∩Nef(X)

is the smallest face of the nef cone that contains P , and V >0(Null(P )) denotes the cone
generated by the null curves of P . As the part of the nef cone that is contained in the big
cone is locally polyhedral ([BKS], Corollary 1.4), statement (a) follows.

The description of the chambers in (2) is particularly instructive as it shows that each
chamber ΣP corresponds to a face of the nef cone. This fact is also illustrated in the
example that we provide in Section 3.

Turning to assertion (b), suffice it to say that it is essentially a consequence of the

Main Lemma ([BKS], Lemma 1.14). If D is a big R-divisor and A an ample R-divisor,
then

Neg(D + λA) ⊂ Neg(D) for all λ > 0 .
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The nice fact about the main lemma is that it admits a pleasant elementary proof,
which shows exactly how Zariski decompositions behave when a divisor moves in ample
directions.

Sketch of Proof. Let D = P +
∑r

i=1 aiNi be the Zariski decomposition of D. We show:

(∗) There is a real number λ0 > 0 and there are decreasing affine-linear functions fi
on R such that for 0 6 λ 6 λ0 the Zariski decomposition of D + λA is given as

D + λA =

(
P + λA+

r∑
i=1

(ai − fi(λ))Ni

)
+

r∑
i=1

fi(λ)Ni ,

and such that λ0 is a zero of one of the functions fi.

From this statement our lemma follows by induction on r. Turning to the proof of (∗), let
us for real numbers x1, . . . , xr consider the divisor

P ′ =def P + λA+

r∑
i=1

(ai − xi)Ni .

The Zariski decomposition of D + λA is P ′ +
∑r

i=1 xiNi if and only if the following
conditions are satisfied:

0 6 xi 6 ai for i = 1, . . . , r,(3)

P ′ ·Ni = 0 for i = 1, . . . , r,(4)

P ′ is nef.(5)

As P +λA is ample, condition (5) follows from (3) and (4). Condition (4) is equivalent to
a system of linear equations in the indeterminates xi, whose coefficient matrix is just the
intersection matrix S =def (Ni · Nj). As S is invertible, there is certainly no problem in
solving for the xi, but the whole point is whether the solutions xi satisfy (3), i.e., whether
xi 6 ai for all i. Luckily, this is a consequence of the following statement:

(∗∗) Let S = (sij) be a negative definite r × r-matrix over the reals such that sij > 0
for i 6= j. Then all entries of the inverse matrix S−1 are 6 0.

Finally, the proof of (∗∗) is a nice exercise in linear algebra. (To be honest, the argument
that we found is slightly tricky. In case of doubt see [BKS, Lemma 4.1].) �

Note that the proof of the main lemma in fact shows exactly how the Zariski decom-
position of D+ λA varies as a function of λ: The coefficients of the negative part ND+λA

are decreasing affine-linear functions of λ, and as soon as one of these functions reaches
zero, the component in question disappears from the negative part.

Let us conclude this section by briefly commenting on parts (ii) and (iii) of the theorem.
For (iii) we show in [BKS] that for every rational divisor class D in the interior of a
chamber the stable base locus SB(D) is given by the support of the negative part ND of
the Zariski decomposition, and that the stable base locus agrees with the stabilized base
locus B+(D). The essential point for (ii) is that the growth of h0(X, kD) is determined
by the positive part in the Zariski decomposition of D.
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Figure 1. Two-point blow-up of the projective plane. The big cone con-
sists of five chambers: ΣA, ΣQ1 , ΣQ2 , ΣQ3 , ΣL.

3. Example: Two-point blow-up of the plane

Consider the blow-up X → P2 of the projective plane in two points. On X there are
exactly three irreducible curves with negative self-intersection: the exceptional divisors E1

and E2, and the proper transform E3 of the line through the two blown-up points, whose
class is L− E1 − E2. These three curves generate the closure of the big cone.

Figure 1 shows a cross-section of the (closure of the) big cone. The nef cone has five
faces that contain big divisors, leading to five chambers:

• the chamber ΣA of an ample class A (so that ΣA is just the ample cone),
• chambers ΣQ1 ,ΣQ2 ,ΣQ3 associated to divisors Q1, Q2, Q3 on the boundary of the

nef cone as indicated in Figure 1,
• the chamber ΣL.

Note that – in accordance with (2) – the dimension of a face and the number of the
corresponding null curves add up to the dimension of the chamber, i.e., the Picard number
of X:

divisor dimension of face null curves

A 3 0
Qi 2 1
L 1 2

More information about the general situation on del Pezzo surfaces, as well as on K3
surfaces, can be found in Sections 3.1 and 3.2 of [BKS].
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