// created by Thorsten Thormaehlen for educational purpose #include #include // we use glut here as window manager #define _USE_MATH_DEFINES #include #include #include #include #include #include using namespace std; class Renderer { private: struct Vertex { float position[3]; float texCoord[2]; float normal[3]; }; public: float t; int modeVal; private: enum {Scene, numVAOs}; enum {SceneAll, numVBOs}; GLuint vaoID[numVAOs]; GLuint bufID[numVBOs]; int sceneVertNo; GLuint progID; GLuint vertID; GLuint fragID; GLint vertexLoc; GLint texCoordLoc; GLint normalLoc; GLint projectionLoc; GLint modelviewLoc; GLint normalMatrixLoc; GLint modeLoc; float projection[16]; // projection matrix float modelview[16]; // modelview matrix public: // constructor Renderer() : t(0.0), modeVal(1), sceneVertNo(0), progID(0), vertID(0), fragID(0), vertexLoc(-1), texCoordLoc(-1), normalLoc(-1), projectionLoc(-1), modelviewLoc(-1), normalMatrixLoc(-1), modeLoc(-1) {} //destructor ~Renderer() { glDeleteVertexArrays(numVAOs, vaoID); glDeleteBuffers(numVBOs, bufID); glDeleteProgram(progID); glDeleteShader(vertID); glDeleteShader(fragID); } public: void init() { glEnable(GL_DEPTH_TEST); setupShaders(); // create a Vertex Array Objects (VAO) glGenVertexArrays(numVAOs, vaoID); // generate a Vertex Buffer Object (VBO) glGenBuffers(numVBOs, bufID); // binding the pyramid VAO glBindVertexArray(vaoID[Scene]); std::vector data; int perVertexFloats = (3+2+3); loadVertexData(string("teapot.vbo"), data, perVertexFloats); sceneVertNo = int(data.size() / perVertexFloats); glBindBuffer(GL_ARRAY_BUFFER, bufID[SceneAll]); glBufferData(GL_ARRAY_BUFFER, sceneVertNo*sizeof(Vertex), &data[0], GL_STATIC_DRAW); int stride = sizeof(Vertex); char *offset = (char*)NULL; // position if(vertexLoc != -1) { glVertexAttribPointer(vertexLoc, 3, GL_FLOAT, GL_FALSE, stride, offset); glEnableVertexAttribArray(vertexLoc); } // texCoord if(texCoordLoc != -1) { offset = (char*)NULL + 3*sizeof(float); glVertexAttribPointer(texCoordLoc, 2, GL_FLOAT, GL_FALSE, stride, offset); glEnableVertexAttribArray(texCoordLoc); } // normal if(normalLoc != -1) { offset = (char*)NULL + (3+2)*sizeof(float); glVertexAttribPointer(normalLoc, 3, GL_FLOAT, GL_FALSE, stride, offset); glEnableVertexAttribArray(normalLoc); } } void setupShaders() { // create shader vertID = glCreateShader(GL_VERTEX_SHADER); fragID = glCreateShader(GL_FRAGMENT_SHADER); // load shader source from file std::string vs = loadShaderSrc("./pass.vert"); const char* vss = vs.c_str(); std::string fs = loadShaderSrc("./pass.frag"); const char* fss = fs.c_str(); // specify shader source glShaderSource(vertID, 1, &(vss), NULL); glShaderSource(fragID, 1, &(fss), NULL); // compile the shader glCompileShader(vertID); glCompileShader(fragID); // check for errors printShaderInfoLog(vertID); printShaderInfoLog(fragID); // create program and attach shaders progID = glCreateProgram(); glAttachShader(progID, vertID); glAttachShader(progID, fragID); // "outColor" is a user-provided OUT variable // of the fragment shader. // Its output is bound to the first color buffer // in the framebuffer glBindFragDataLocation(progID, 0, "outputColor"); // link the program glLinkProgram(progID); // output error messages printProgramInfoLog(progID); // retrieve the location of the IN variables of the vertex shader. vertexLoc = glGetAttribLocation(progID,"inputPosition"); texCoordLoc = glGetAttribLocation(progID,"inputTexCoord"); normalLoc = glGetAttribLocation(progID, "inputNormal"); // retrieve the location of the UNIFORM variables of the vertex shader. projectionLoc = glGetUniformLocation(progID, "projection"); modelviewLoc = glGetUniformLocation(progID, "modelview"); normalMatrixLoc = glGetUniformLocation(progID, "normalMat"); modeLoc = glGetUniformLocation(progID, "mode"); } void resize(int w, int h) { glViewport(0, 0, w, h); // this function replaces gluPerspective mat4Perspective(projection, 30.0f, (float)w/(float)h, 0.5f, 4.0f); // mat4Print(projection); } void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // camera orbits in the z=2 plane // and looks at the origin // mat4LookAt replaces gluLookAt double rad = M_PI / 180.0f * t; mat4LookAt(modelview, 1.5f*(float)cos(rad), 1.5f*(float)sin(rad), 1.5f, // eye 0.0f, 0.0f, 0.0f, // look at 0.0f, 0.0f, 1.0f); // up float modelviewInv[16], normalmatrix[16]; mat4Invert(modelview, modelviewInv); mat4Transpose(modelviewInv, normalmatrix); glUseProgram(progID); // load the current projection and modelview matrix into the // corresponding UNIFORM variables of the shader glUniformMatrix4fv(projectionLoc, 1, false, projection); glUniformMatrix4fv(modelviewLoc, 1, false, modelview); glUniformMatrix4fv(normalMatrixLoc, 1, false, normalmatrix); glUniform1i(modeLoc, modeVal); // bind Triangle VAO glBindVertexArray(vaoID[Scene]); // render data glDrawArrays(GL_TRIANGLES, 0, sceneVertNo); } private: void printShaderInfoLog(GLuint obj) { int infoLogLength = 0; int returnLength = 0; char *infoLog; glGetShaderiv(obj, GL_INFO_LOG_LENGTH,&infoLogLength); if (infoLogLength > 0) { infoLog = (char *)malloc(infoLogLength); glGetShaderInfoLog(obj, infoLogLength, &returnLength, infoLog); printf("%s\n",infoLog); free(infoLog); } } void printProgramInfoLog(GLuint obj) { int infoLogLength = 0; int returnLength = 0; char *infoLog; glGetProgramiv(obj, GL_INFO_LOG_LENGTH,&infoLogLength); if (infoLogLength > 0) { infoLog = (char *)malloc(infoLogLength); glGetProgramInfoLog(obj, infoLogLength, &returnLength, infoLog); printf("%s\n",infoLog); free(infoLog); } } std::string loadShaderSrc(const std::string& filename) { std::ifstream is(filename); if (is.is_open()) { std::stringstream buffer; buffer << is.rdbuf(); return buffer.str(); } cerr << "Unable to open file " << filename << endl; exit(1); } bool loadVertexData(std::string &filename, std::vector &data, unsigned perVertexFloats) { // read vertex data from vbo file in plain text format ifstream input(filename.c_str()); if(!input) { // cast istream to bool to see if something went wrong cerr << "Can not find vertex data file " << filename << endl; return false; } int numFloats; double vertData; if(input >> numFloats) { if(numFloats > 0) { data.resize(numFloats); int i = 0; while(input >> vertData && i < numFloats) { // store it in the vector data[i] = float(vertData); i++; } if(i != numFloats || numFloats % perVertexFloats) return false; } }else{ return false; } return true; } // the following functions are some matrix and vector helpers, // which work for this demo but in general it is recommended // to use more advanced matrix libraries, // e.g. OpenGL Mathematics (GLM) float vec3Dot( float *a, float *b) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; } void vec3Cross( float *a, float *b, float *res) { res[0] = a[1] * b[2] - b[1] * a[2]; res[1] = a[2] * b[0] - b[2] * a[0]; res[2] = a[0] * b[1] - b[0] * a[1]; } void vec3Normalize(float *a) { float mag = sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); a[0] /= mag; a[1] /= mag; a[2] /= mag; } void mat4Identity( float *a) { for (int i = 0; i < 16; ++i) a[i] = 0.0f; for (int i = 0; i < 4; ++i) a[i + i * 4] = 1.0f; } void mat4Multiply(float *a, float *b, float *res) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { res[j*4 + i] = 0.0f; for (int k = 0; k < 4; ++k) { res[j*4 + i] += a[k*4 + i] * b[j*4 + k]; } } } } void mat4Perspective(float *a, float fov, float aspect, float zNear, float zFar) { float f = 1.0f / float(tan (fov/2.0f * (M_PI / 180.0f))); mat4Identity(a); a[0] = f / aspect; a[1 * 4 + 1] = f; a[2 * 4 + 2] = (zFar + zNear) / (zNear - zFar); a[3 * 4 + 2] = (2.0f * zFar * zNear) / (zNear - zFar); a[2 * 4 + 3] = -1.0f; a[3 * 4 + 3] = 0.0f; } void mat4LookAt(float *viewMatrix, float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { float dir[3], right[3], up[3], eye[3]; up[0]=upX; up[1]=upY; up[2]=upZ; eye[0]=eyeX; eye[1]=eyeY; eye[2]=eyeZ; dir[0]=centerX-eyeX; dir[1]=centerY-eyeY; dir[2]=centerZ-eyeZ; vec3Normalize(dir); vec3Cross(dir,up,right); vec3Normalize(right); vec3Cross(right,dir,up); vec3Normalize(up); // first row viewMatrix[0] = right[0]; viewMatrix[4] = right[1]; viewMatrix[8] = right[2]; viewMatrix[12] = -vec3Dot(right, eye); // second row viewMatrix[1] = up[0]; viewMatrix[5] = up[1]; viewMatrix[9] = up[2]; viewMatrix[13] = -vec3Dot(up, eye); // third row viewMatrix[2] = -dir[0]; viewMatrix[6] = -dir[1]; viewMatrix[10] = -dir[2]; viewMatrix[14] = vec3Dot(dir, eye); // forth row viewMatrix[3] = 0.0f; viewMatrix[7] = 0.0f; viewMatrix[11] = 0.0f; viewMatrix[15] = 1.0f; } void mat4Print(float* a) { // opengl uses column major order for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { cout << a[j * 4 + i] << " "; } cout << endl; } } void mat4Transpose(float* a, float *transposed) { int t = 0; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { transposed[t++] = a[j * 4 + i]; } } } bool mat4Invert(float* m, float *inverse) { float inv[16]; inv[0] = m[5]*m[10]*m[15]-m[5]*m[11]*m[14]-m[9]*m[6]*m[15]+ m[9]*m[7]*m[14]+m[13]*m[6]*m[11]-m[13]*m[7]*m[10]; inv[4] = -m[4]*m[10]*m[15]+m[4]*m[11]*m[14]+m[8]*m[6]*m[15]- m[8]*m[7]*m[14]-m[12]*m[6]*m[11]+m[12]*m[7]*m[10]; inv[8] = m[4]*m[9]*m[15]-m[4]*m[11]*m[13]-m[8]*m[5]*m[15]+ m[8]*m[7]*m[13]+m[12]*m[5]*m[11]-m[12]*m[7]*m[9]; inv[12]= -m[4]*m[9]*m[14]+m[4]*m[10]*m[13]+m[8]*m[5]*m[14]- m[8]*m[6]*m[13]-m[12]*m[5]*m[10]+m[12]*m[6]*m[9]; inv[1] = -m[1]*m[10]*m[15]+m[1]*m[11]*m[14]+m[9]*m[2]*m[15]- m[9]*m[3]*m[14]-m[13]*m[2]*m[11]+m[13]*m[3]*m[10]; inv[5] = m[0]*m[10]*m[15]-m[0]*m[11]*m[14]-m[8]*m[2]*m[15]+ m[8]*m[3]*m[14]+m[12]*m[2]*m[11]-m[12]*m[3]*m[10]; inv[9] = -m[0]*m[9]*m[15]+m[0]*m[11]*m[13]+m[8]*m[1]*m[15]- m[8]*m[3]*m[13]-m[12]*m[1]*m[11]+m[12]*m[3]*m[9]; inv[13]= m[0]*m[9]*m[14]-m[0]*m[10]*m[13]-m[8]*m[1]*m[14]+ m[8]*m[2]*m[13]+m[12]*m[1]*m[10]-m[12]*m[2]*m[9]; inv[2] = m[1]*m[6]*m[15]-m[1]*m[7]*m[14]-m[5]*m[2]*m[15]+ m[5]*m[3]*m[14]+m[13]*m[2]*m[7]-m[13]*m[3]*m[6]; inv[6] = -m[0]*m[6]*m[15]+m[0]*m[7]*m[14]+m[4]*m[2]*m[15]- m[4]*m[3]*m[14]-m[12]*m[2]*m[7]+m[12]*m[3]*m[6]; inv[10]= m[0]*m[5]*m[15]-m[0]*m[7]*m[13]-m[4]*m[1]*m[15]+ m[4]*m[3]*m[13]+m[12]*m[1]*m[7]-m[12]*m[3]*m[5]; inv[14]= -m[0]*m[5]*m[14]+m[0]*m[6]*m[13]+m[4]*m[1]*m[14]- m[4]*m[2]*m[13]-m[12]*m[1]*m[6]+m[12]*m[2]*m[5]; inv[3] = -m[1]*m[6]*m[11]+m[1]*m[7]*m[10]+m[5]*m[2]*m[11]- m[5]*m[3]*m[10]-m[9]*m[2]*m[7]+m[9]*m[3]*m[6]; inv[7] = m[0]*m[6]*m[11]-m[0]*m[7]*m[10]-m[4]*m[2]*m[11]+ m[4]*m[3]*m[10]+m[8]*m[2]*m[7]-m[8]*m[3]*m[6]; inv[11]= -m[0]*m[5]*m[11]+m[0]*m[7]*m[9]+m[4]*m[1]*m[11]- m[4]*m[3]*m[9]-m[8]*m[1]*m[7]+m[8]*m[3]*m[5]; inv[15]= m[0]*m[5]*m[10]-m[0]*m[6]*m[9]-m[4]*m[1]*m[10]+ m[4]*m[2]*m[9]+m[8]*m[1]*m[6]-m[8]*m[2]*m[5]; float det = m[0]*inv[0]+m[1]*inv[4]+m[2]*inv[8]+m[3]*inv[12]; if (det == 0) return false; det = 1.0f / det; for (int i = 0; i < 16; i++) inverse[i] = inv[i] * det; return true; } }; //this is a static pointer to a Renderer used in the glut callback functions static Renderer *renderer; //glut static callbacks start static void glutResize(int w, int h) { renderer->resize(w,h); } static void glutDisplay() { renderer->display(); glutSwapBuffers(); } static void timer(int v) { float offset = 1.0f; renderer->t += offset; glutDisplay(); glutTimerFunc(unsigned(20), timer, ++v); } static void glutKeyboard(unsigned char key, int x, int y) { bool redraw = false; std::string modeStr; std::stringstream ss; switch(key) { case '1': renderer->modeVal = 1; redraw = true; modeStr = string("Global Normals"); break; case '2': renderer->modeVal = 2; redraw = true; modeStr = string("Local Normals"); break; case '3': renderer->modeVal = 3; redraw = true; modeStr = string("Global Vertex Positions"); break; case '4': renderer->modeVal = 4; redraw = true; modeStr = string("Local Vertex Positions"); break; case '5': renderer->modeVal = 5; redraw = true; modeStr = string("Texture Coordinates"); break; } if(redraw) { glutDisplay(); cout << modeStr << endl; glutSetWindowTitle(modeStr.c_str()); } } int main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA); glutInitWindowPosition(100,100); glutInitWindowSize(320, 320); glutCreateWindow("Transforming normals"); GLenum err = glewInit(); if (GLEW_OK != err) { fprintf(stderr, "Glew error: %s\n", glewGetErrorString(err)); } glutDisplayFunc(glutDisplay); //glutIdleFunc(glutDisplay); glutReshapeFunc(glutResize); glutKeyboardFunc(glutKeyboard); renderer = new Renderer; renderer->init(); glutTimerFunc(unsigned(20), timer, 0); glutMainLoop(); }