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ABSTRACT
In this paper a novel approach for 3D reconstruction of mid-sized
objects is proposed that combines the advantages of multi-view
stereo and photometric normal estimation. Images of an inspected
object are taken in parallel with multiple synchronized cameras
while the object is placed in an illumination setup that produces
time-varying spherical gradient illumination for normal estimation.
In contrast to existing approaches, the normal information is not
only used to refine the preliminary stereo reconstruction. Instead,
it is shown that the normal information allows to significantly in-
crease the window size for stereo matching, which strongly im-
proves robustness compared to classical window matching in the
image domain. As a consequence, smoothness constraints, which
are typical for stereo reconstructions, are no longer required. Our
proposed method is comparably simple to implement and has a
computation time of a few minutes. The evaluation on real and
synthetic data demonstrates that detailed reconstructions with high
accuracy are obtained.

Categories and Subject Descriptors
I4.5 [Image Processing and Computer Vision]: Reconstruction;
I4.8 [Image Processing and Computer Vision]: Scene Analy-
sis—Shape, Texture

General Terms
Algorithms

1. INTRODUCTION
3D reconstructions of mid-sized real objects are often obtained by
triangulation methods. In this area one can differentiate between
active and passive methods.

Active triangulation methods, such as laser scanning [18] or struc-
tured-light-scanning [23], modify the captured scene by projecting
a high-frequency time-varying illumination pattern onto the object.
The accuracy is typically limited by the resolution of the projected
patterns. These methods are currently used the most in practical

applications, because of their high robustness. However, the cap-
turing speed is limited by the projector and acquisition hardware.
Furthermore, for a complete reconstruction the object must be cap-
tured from multiple viewpoints. Because of interferences of the
illumination patterns, acquisition from multiple viewpoints cannot
be performed in parallel, which makes the overall process slow.

In contrast, passive triangulation methods, such as stereo [25] or
multi-view-stereo [26], rely solely on two or more images taken
from different viewpoints. The robustness of passive stereo strongly
depends on matchable image features. Therefore, a passive stereo
reconstruction requires a surface reconstruction method to obtain a
closed surface. The main advantages of passive triangulation meth-
ods are their reduced hardware effort because no projectors are re-
quired and their speed because multiple viewpoints can be captured
in parallel.

Both, passive and active triangulation methods, can be combined
with photometric stereo. Photometric stereo [29, 20] is a technique
that allows reconstructing high-resolution surface normals by ob-
serving the shading of an object under different lighting conditions
from a single viewpoint. In contrast to active triangulation meth-
ods, the illuminations are not high-frequency patterns but rather
multiple distributed low-frequency illuminations that allow to in-
vert the shading model in order to estimate the surface normal.

In this paper we propose a novel, flexible method that can be clas-
sified as a combination of passive triangulation and photometric
stereo. We generate a time-varying spherical gradient illumina-
tion and observe the scene with multiple cameras. Detailed nor-
mal maps of the inspected object from different viewpoints are ob-
tained using photometric stereo. The normal maps are the input
to our multi-view stereo algorithm which generates a 3D recon-
struction. Then, the normal information is employed to interpolate
between the sparsely sampled stereo estimates in order to obtain a
high-resolution reconstruction.

Contribution. In contrast to most existing approaches, we em-
ploy the normal information not solely to refine the reconstruc-
tion. Instead, the normal information is used in the matching pro-
cess of our multi-view stereo approach. Our approach enables us
to use significantly larger windows during patch matching, which
strongly increases its robustness. As a consequence, smoothness
constraints that are typically required in passive stereo are not nec-
essary. Consequently, without smoothness constraints the surface
can be sparsely evaluated which vastly reduces the computational
effort compared to a densely sampled evaluation. The resulting re-
construction is sparse, but the included estimates are all reliable.



Finally, the sparse reconstruction is interpolated with the normal
information to obtain a dense and detailed reconstruction.

Limitation. Our approach is designed to handle and reconstruct
objects, that are static, smooth and diffuse. The limitation to static
objects results from the limited capturing speed of the employed
consumer digital single lens reflex (DSLR) cameras. We focus
on diffuse objects or objects that are best approximated as diffuse.
However, specular objects can be reconstructed to a certain extent
as presented in the results giving an indication about the robustness
of our method.

2. RELATED WORK
This section reviews related work that also combines passive trian-
gulation with photometric stereo for accurate 3D reconstruction.

Photometric Refinement. Many approaches have been pro-
posed using photometric information to improve and refine an ini-
tial geometry or surface. The initial geometry in these approaches
can be obtained either by (multi-view) stereo reconstruction [9, 2,
30, 31, 22], structure-from-motion [33, 19, 16, 24], or triangula-
tion scanning [21, 17]. Other approaches employ 3D models that
are morphed [32] or estimate shadow maps that are then used to
reconstruct the 3D geometry [7].

In contrast to our approach, these methods have in common that
normal information is not an integral part of the 3D position acqui-
sition. Photometric information is used in a refinement step, but it
is not directly employed for the generation of the initial 3D recon-
struction.

Silhouettes-Based Approaches. Silhouette information ex-
tracted from multiple views allows to generate a visual hull of the
object. The 3D positions and normals of the visual hull can be op-
timized to obtain a 3D model [6, 8, 15]. The visual hull can also be
used as a proxy to deform and assemble partial reconstructions to a
complete 3D model [27].

However, our approach does not rely on silhouette information and
also works in situations where the visual hull is not available or is
not very descriptive (for instance, for a frontal view of a relief).

Multi-view Stereo and Normals. Surface normals and posi-
tions can also be conjointly estimated using a set of images cap-
tured under multiple point light illuminations [4] by using a known
example object [1].

In contrast to multi-view stereo methods our approach does not
rely on detectable image features which lead to sparse point clouds
where a surface has to be fitted.

Uncalibrated Photometric Stereo. Furthermore, uncalibrat-
ed photometric stereo refers to the case in which the lightning con-
ditions are not known. Different methods deal with this scenario.
They generate a 3D model of the object and can estimate the light
positions [3, 11] or compensate for varying unknown illumination
conditions [12].

3. ACQUISITION SETUP
In order to perform a 3D reconstruction with our method, the in-
spected object is placed in a special hardware setup that can gen-

erate time-varying illuminations. Images of the object under dif-
ferent illuminations are taken by multiple calibrated and synchro-
nized DSLR cameras. In the following the illumination hardware
and camera setup is presented.

3.1 Illumination Hardware and Photometric
Stereo

Our illumination hardware is similar to the one made popular by
Devebec and colleagues [20]. It is a metal frame in the shape of
a sphere with a diameter of 150 cm. 160 white LEDs are evenly
distributed and attached to the frame. Their brightness can be con-
trolled individually to have full control of the lighting conditions
inside the sphere.

The object is captured under six different gradient illuminations,
which are axis parallel, resulting in a set L of six luminance images

L=
{

Lx,L−x,Ly,L−y,Lz,L−z} . (1)

Given a diffusely reflecting surface of an object that has been cap-
tured under these six illuminations, the normal map N(·) is com-
puted pixel-wise as proposed by Wilson et al. [28]:

N =
(Lx−L−x,Ly−L−y,Lz−L−z)>

||(Lx−L−x,Ly−L−y,Lz−L−z)>||
. (2)

Figure 1 shows the illumination hardware and the generated normal
maps for different viewpoints. The normals are consistent across
the views, which is the requirement to employ the normal informa-
tion as a matching score for multi-view stereo.

3.2 Multi-view Camera Calibration
An accurate (geometric) camera calibration is important, because
calibration errors directly propagate into the 3D reconstruction. The
camera calibration estimates the relation between cameras by esti-
mating the camera parameters. We use an approach similar to [13].

For the calibration we use an object that consists of several planar
calibration patterns (see Figure 1). The calibration object is cap-
tured in different positions and orientations simultaneously by all
cameras. This leads to a better coverage of the sampling volume
and improves the quality of the estimated camera parameters. Ad-
ditionally, one picture is acquired by each camera where the cali-
bration object is aligned to the coordinate frame of the illumination
hardware. This establishes the geometric relation between the illu-
mination hardware and the cameras.

4. PHOTOMETRIC MULTI-VIEW STEREO
In this section, we present our method for multiple view 3D recon-
struction using normal maps obtained from photometric stereo.

Overview. Low frequency noise that is present in the input nor-
mal maps renders direct integration methods unsuitable to accu-
rately reconstruct the true 3D geometry of the object [21], while
high frequency noise leads to wrong reconstructions of local sur-
face features.

Instead, in the first step (detailed in Section 4.1), normal informa-
tion from photometric stereo is used to improve the patch matching
capabilities of multi-view stereo. In this step, 3D patch surfaces
are generated using normal information in a reference view. Reli-
able and accurate depth values are obtained by optimizing the 3D



Figure 1: From left to right: Calibration object; Illumination hardware that generates different illuminations; Example input
images for one viewpoint (all six spherical gradient illumination are shown); Generated normal maps (color-coded as RGB) for three
different viewpoints.

Figure 2: Overview of the different steps of the algorithm. From left to right: Initial sparse reconstruction after nearest neighbor
interpolation; reconstruction obtained after 1 iteration of nonlinear least squares minimization; after 20 iterations of minimization;
after 20 filtering iterations.

patch matching costs. However, computing the depth values for all
pixels is computationally very expensive. Hence, we reconstruct
the depths of a small number of points resulting in a sparse recon-
struction. This reduces the computation time to a few minutes on
standard PC hardware.

In the second step (detailed in Section 4.2), we use the normal
map of the reference view to interpolate the sparse reconstruction
keeping the sparse points fixed. This resulting reconstruction is
dense and has high accuracy, however, there are some tiny disturb-
ing peaks at the positions of the sparse 3D points because of the
quantization along the line of sight.

In a third step (detailed in Section 4.3) those peaks are removed
by a normal map driven filtering. Figure 2 shows the output of
the individual steps of our algorithm for a face. The next section
explains each step in more detail.

It should be stressed that the normal map driven filtering is differ-
ent from introducing a smoothness term in the dense reconstruction
step. In the reconstruction step we want to compute a dense surface
that approximates the measured normal maps the best. Introducing
a smoothness term results in smoothing the overall reconstructed
surface, which is not desirable. In contrast, the normal map driven
filtering is able to smooth areas where normal map and surface con-
tradict each other, while enhancing areas, where normal map and
reconstructed surface agree.

4.1 Sparse reconstruction
In this first step an initial point cloud of the object is reconstructed
that consists of reliable and accurate 3D points. For the initializa-
tion a reference view vref is set. The 3D points of the initial point

cloud I correspond to 2D points lying on an equidistant grid in the
reference view and their depths. For each grid point we use the
normals given in a window of size w×w to reconstruct the local
3D geometry of that patch surface as follows.

Patch Reconstruction. Given the lines of sight li and l j of pix-
els i and j, the normal ni and the candidate depth di of pixel i. We
compute the depth d j of pixel j as the intersection of the ray with
direction l j and the plane with normal ni located at di · li by

d j =
li •ni

l j •ni
·di, (3)

where • denotes the scalar product (see Figure 3). Rewriting this
equation yields the constraint

l j •ni ·d j− li •ni ·di = 0. (4)

Stacking up equations for all neighbors in a 4-neighborhood of ev-
ery pixel in the considered window leads to a linear system of equa-
tions A′ ·d = 0, where d is the vector of unknown depths. Addition-
ally, every equation (i.e., row of matrix A′) is weighted according to
a standard distribution with standard deviation σ depending on the
distance of the considered pixel to the center pixel of the window.

In order to avoid the trivial solution we set the depth of the center
pixel to 1 leading to the extended linear system of equations:

(
A′

e>
)
·

d =
(0

1
)
, where e is the canonical unit vector corresponding to the

position of the center pixel in vector d. Choosing a different depth
di for the center pixel i will lead to di ·d as solution for the over-
determined linear system of equations. Writing the extended linear
system of equations as

A ·d = b, (5)
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Figure 3: Computation of depths. Given the normal ni of pixel
i with corresponding line of sight li, which is at depth di. The
depth d j of the neighbor pixel j with corresponding line of sight
l j is computed as ray-plane intersection as given in Eq. 3.

we compute a least squares solution by solving A> · A · d = A> ·
b. The point cloud Pi representing the local 3D surface of that
patch for pixel i is obtained by multiplying the depths with their
corresponding line of sights:

Pi :=
{

X j|X j = l j ·d j,1 6 j 6 w2
}
. (6)

Line of Sight Sampling. In order to find the 3D point Xi for
each 2D grid pixel i, we sample depths di on the line of sight. We
can simply transform the reconstructed patch Pi using di ·d. This
is a crucial advantage of our formulation because re-solving Eq. 5
is not required for each depth candidate. Otherwise, the sampling
along the line of sight would be computationally too expensive for
large patch size.

We project the reconstructed patch Pi from Eq. 6 at depth di into
the other views v 6= vref. We then compute the 3D patch matching
cost c(di) for depth di by comparing the projections of the normals
in the window around the grid point with the normals at the points
of projection in the other views v:

c(di) = ∑
v6=vref

∑
X j∈Pi

d(Nvref(Pvref X j ·di),Nv(PvX j ·di))
2, (7)

where X j is the j-th 3D point obtained from patch reconstruction,
Pv is the projection matrix of camera v, and Nv(·) denotes the nor-
mal map of view v, returning the interpolated value at the given
point. We then choose the depth di that has the lowest cost among
all depths.

A typical window size for local patch reconstruction is 160× 160
pixels, which is much larger than patch sizes used by standard
multi-view stereo in the image domain (which is typically 16×16
pixels or less). Increasing the patch size in the image domain is not
possible because the true surface can no longer be approximated
by a fronto-parallel plane as assumed by standard 2D patch match-
ing. Fig 4 shows a comparison of standard 2D patch matching and
our matching via local 3D patch surfaces. Because a large patch
can contain much information, the cost function in Eq. 7 typically
has a single distinct minimum. However, if this is not the case,
we discard estimates that have only small variations among similar
depths:

Var [c(di−DVar,di +DVar)]< tVar. (8)

As a consequence, our approach is highly robust. In our experi-
ments, we observed that the reconstructed depths contain no out-
liers if the threshold tVar was chosen correctly. As a result of this
initialization step we obtain a set I of grid points in the reference
view vref with corresponding depths.

4.2 Dense Reconstruction by Nonlinear Opti-
mization

In the second step, the set of points I with depths di from the multi-
view stereo approach and the normal map Nvref is used to recon-
struct the dense surface of the object. This is done by minimizing
the cost function

c̄(d) =∑
k

∑
j∈N (k)

(
l j •ni ·d j− lk •nk ·dk

)2

subject to dk = di, ∀i ∈ I, (9)

where N (k) denotes the 4-neighborhood of pixel k. Again, d is the
vector of unknown depth, now containing all depths dk. This cost
function penalizes deviations from Eq. 4, while fixing the set of 3D
points I. This is done to prevent the normals from pulling the re-
construction towards the unconstrained solution, which is known to
exhibit low-frequency errors [21] on one hand and to avoid heading
towards the trivial solution on the other hand. A user-defined binary
mask is used to determine the region of interest which determines
the set of pixels k used in the reconstruction process.

The cost function Eq. 9 is minimized using non-linear least squares:
As initial solution we use the 3D point cloud I of the grid points
with depths from the first step. Values in between the grid are in-
terpolated by nearest neighbor. The cost function is assumed to be
locally linear and is iteratively minimized. In each iteration a linear
least squares problem similar to Eq. 5 is solved. In all experiments
20 iterations have been performed.

4.3 Filtering
In the last step, we filter the depth values obtained from minimizing
Eq. 9. This is because the depths di of the set of initial 3D points
I have not been optimized in order to avoid the trivial solution.
Filtering the depth values is done iteratively. Rewriting Eq. 4 we
obtain

d j =
li •ni

l j •ni
·di, (10)

which is used to propagate the four depth values of the four neigh-
bors (left, right, top, and bottom neighbor) to pixel i.The average
depth of the four propagated depth values is computed and updates
the depth of pixel i. These depth values geometrically correspond
to line-plane-intersections. For numerical stability, a propagated
depth value is only used for the update, if the angle between the
line of sight li and the normal n j is greater than arccos(tangle) with
threshold parameter tangle. In our experiments we use tangle = 0.173
corresponding to an angle of approximately 80◦. This update is per-
formed iteratively for all pixels. In all experiments we performed
20 iterations.

5. RESULTS
In this section we evaluate our method on synthetic data, demon-
strate 3D reconstructions of real objects, compare it to laser scan-
ning.



Figure 4: Comparison of patch matching with synthetic head model from three views, patches of size 32×32 pixels used. From left to
right: ground truth depth map; depth map obtained from 2D patch matching; difference between ground truth and obtained depth
map (gray values adjusted for better visibility); depth map obtained from 3D patch matching; difference between ground truth and
obtained depth map (gray values adjusted).

5.1 Synthetic Data
Our method is evaluated on synthetic data. We generate a series
of synthetic images of a 3D model of a human head as ground
truth. We compute the normal maps for all three views. The three
normal maps and the positions of the cameras are used to recon-
struct the human head. We align the ground truth head model and
our reconstructions with the iterative closest point (ICP, [5]) algo-
rithm. The average distance between the mesh of the head model
and the one of our reconstruction is used as quality measure. We
test our method in settings with different material properties: Lam-
bertian reflectance without shadows; Lambertian reflectance with
shadows and different levels of Gaussian noise added to the input
images; Lambertian reflectance with shadows, specular reflections,
and different levels of Gaussian noise. The results are shown in
Table 1: The best reconstruction is obtained in the ideal setting.
With increasing level of noise the quality of the reconstruction de-
creases, while in general the head is reconstructed better in the ab-
sence of specular reflections (because specular reflections violate
the assumption of a perfectly Lambertian surface).

5.2 Real-World Data
For demonstrating the applicability of our method we show sev-
eral reconstructions of real-world objects. We use three digital sin-
gle lens reflex (DSLR) cameras. Six images of the objects under
the gradient illuminations and one additional image with uniform
illumination are acquired. The resolution of the input images is
2592× 1728 pixels. Figure 5 shows results of our reconstruction
method for five objects: Relief, Purse, Shoe, Santa, and Vase. Ad-
ditional close-up views of the 3D geometry with and without tex-
ture of Relief, Shoe, and Vase examples are shown in Figure 6.
Although the Vase has a glossy surface, strong errors in the re-
construction are mainly visible at grazing angles, while other parts
are reconstructed fairly well. This demonstrates that our approach
is able to handle deviations from the assumptions to some extent.
Figure 7 shows the results of reconstructing three faces. For all re-
constructions we used a window size of 160× 160 pixels, 20 itera-
tions for minimizing Eq. 9, and 20 additional iterations for filtering
as described in Section 4.3. tVar has been set to 30.0. On standard
PC hardware using unoptimized C++ code, the computation times
are between 10 and 15 minutes depending on the model.

5.3 Comparison to Laser Scanning
We compare our method to 3D reconstructions of a laser scanner.
Figure 8 shows a qualitative comparison between the scanned ob-

jects and our results. Our method is able to reconstruct finer details
of the objects’ surfaces. We align our 3D reconstructions and the
ones obtained from laser scanning with the ICP method for a quan-
titative comparison. The distance between the two aligned meshes
is used as a measure of quality. We obtain an average alignment
error of 0.539% for the object Relief, 0.775% for the object Shoe,
and 0.544% for the object Santa. The error is given relative to the
size of the scanned object.

6. CONCLUSION AND FUTURE WORK
We have presented a novel approach that uses photometric normals
in a multi-view stereo approach. The generated reconstructions are
detailed and of high accuracy.

Currently, our results are obtained only from the perspective of a
single reference view. Hence, they can be parametrized in the im-
age domain and are in fact only 2.5D (2D plus depth). Augment-
ing our reconstructions to more complex topologies is possible by
merging multiple 2.5D reconstructions. To do that, the number of
cameras must be increased in order to capture multiple 2.5D re-
constructions in parallel from different view points for increased
surface coverage. Merging multiple 2.5D reconstructions to build
a 3D mesh is out of the scope of this paper but a body of existing
methods is available, such as the volumetric method of the volu-
metric range image processing package (VRIP, [10]).

Also, we do not handle cases in which the normal maps contain sig-
nificant errors, for example, at depth discontinuities, in shadowed
regions, or when the material is not diffuse and deviates from our
assumption. This may lead to wrong reconstructions in the dense
reconstruction step. This effect can be reduced by increasing the
sampling density of the grid, having no disadvantage except for a
larger computational effort. Furthermore, once a 3D mesh is re-
covered, shadowed regions can be detected (compare with [14])
and used to improve the generated normal maps.

In theory, our approach is capable of capturing dynamic scenes.
However, the cameras are capable of only capturing approximately
4 images per second. This is rather low, considering that one data
set in our approach consists of 7 images. Furthermore, the em-
ployed consumer DSLR cameras are difficult to synchronize, if op-
erated at their maximum speed. In future, we would like to aug-
ment our capturing setup with more professional high-speed high-
resolution cameras to obtain dynamic reconstructions.



diffuse diffuse with shadows

Gaussian noise level [%] 0 0 1 2 3 4

AAE [%] 0.242 0.315 0.374 0.436 0.477 0.516

diffuse and specular with shadows

Gaussian noise level [%] 0 1 2 3 4

AAE [%] 0.402 0.434 0.468 0.528 0.544

Table 1: Average alignment error (AAE) of reconstructions to ground truth. The noise level is given as percentage of the range of
pixel values of the input images. The error is given relative to the size of the ground truth model.

Figure 5: 3D Reconstructions of several objects. From top to bottom: Relief, Purse, Shoe, Santa, Vase. From left to right: Image
from the reference camera; resulting 3D reconstruction shown from two different views with and without texture.



Figure 6: Details of the reconstructions. Top row; Reconstructed 3D geometry. Bottow row: Reconstructed 3D geometry with
texture. From left to right: Relief, Shoe, Vase.

Figure 7: Reconstructions of three faces. From left to right:
Reconstructed 3D geometry, rendered 3D reconstruction with
texture, close-up view.

Figure 8: Comparison to laser scanning: Relief, Shoe, Santa.
Left: results from laser scanner. Right: our reconstruction re-
sult.
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