
Vision, Modeling, and Visualization (2019)
H.-J. Schulz, M. Teschner, and M. Wimmer (Eds.)

Normal Map Bias Reduction for Many-Lights Multi-View
Photometric Stereo

J. Gan1 and P. Bergen1 and T. Thormählen1 and P. Drescher2 and R. Hagens2

1Philipps-Universität Marburg, Germany
2Beiersdorf AG, Germany

Abstract
In this paper, we improve upon an existing many-lights multi-view photometric stereo approach. Firstly, we show how to detect
continuous regions for normal integration, which leads to a fully automatic reconstruction pipeline. Secondly, we compute per-
pixel light source visibilities using an initial biased reconstruction in order to update the estimated normal map to a solution
with reduced bias. Thirdly, to further improve the normal accuracy, we compensate for interreflections of light between surface
locations. Our approach is evaluated on both synthetic and real-world data and it is shown that the normal accuracy is improved
by around 50 percent.

CCS Concepts
• Computing methodologies → Reconstruction;

1. Introduction

Photometric stereo [Woo80] is a well-established technique in com-
puter vision and is able to recover high-resolution normal maps of
the object from multiple images taken under changing lighting con-
ditions. Especially, many-lights approaches, such as the Light Stage
approach by Debevec [Deb12], are commonly used in practice be-
cause the computation of the normal map is mathematically simple
and fast, and produces visually convincing results.

On the other hand, low-frequency bias has been a well-
known drawback of normal integration and approaches have
been proposed to address the problem by combining photomet-
ric stereo with other triangulation techniques, such as multi-view
stereo [NRDR05, EVC08].

While such hybrid approaches can achieve detailed normal maps
and reconstructions of high visual quality, it is often overlooked that
the normal estimates are not very accurate compared to the ground
truth. Some research has focused on bias-reduction in photomet-
ric stereo in order to estimate accurate normal maps [WGS∗10,
IWMA14, QDW∗18], but typically setups with few lights are con-
sidered.

In this paper, we propose an approach to reduce the bias of nor-
mal maps in the presence of many lights by considering occlusion
and interreflections in an iterative process. We first estimate an ini-
tial biased normal map and then automatically select continuous
regions for normal integration in the camera view, which results in
an initial 3D model. Based on the initial 3D model, we compute
per-pixel light source visibilities for our many-lights illumination
setup (consisting of 2200 LEDs). Furthermore, we compensate for

1-bounce interreflections of light between different locations on the
model. Once a refined solution is obtained, the process is repeated
for a few times. Figure 1 gives an overview of our system, which
extends the deformation-based approach adopted from [GWT∗18].

The main contributions of this paper are:

• An approach to detect large discontinuities by normal integration
and residual analysis
• An approach to reduce normal map bias in the presence of many

light sources by taking per-pixel light visibilities into account
• An approach to reduce normal map bias by compensating for

surface interreflections in a many-lights setup

2. Related Work

Discontinuities Detection In order to recover the underlying
surface from the normal map, the integrability constraint must be
satisfied. However, the constraint is typically violated for disconti-
nuities, such as occlusion boundaries. Therefore, integrable regions
are usually marked manually in most systems.

Some approaches are proposed to automatically find depth
discontinuities. Raskar et al. [RTF∗04] look for shape bound-
aries by using a camera that is flashed in different arranged po-
sitions. In [WBL∗12], Wang et al. first apply edge detection
on an intensity image and then identify discontinuities by two
SVM classifiers, which are trained from hundreds of manually-
labelled continuous and discontinuous edges. Other approaches try
to compensate the defect of discontinuities by normal integration.
Karaçali et al. [KS02] use a minimum norm solution to incorporate
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Figure 1: The reconstruction pipeline of the proposed multi-view photometric stereo system. The steps marked in gray are main contributions
of this paper.

depth discontinuities. Wu et al. [WT06] present an EM algorithm
to enforce discontinuity-preserving integrability for surface recon-
struction. Quéau et al. [QDA18] give a thorough review of normal
integration in the presence of discontinuities.

In contrast to the above work, our approach automatically avoids
large discontinuities by performing region-based segmentation on
the residual of the initial normal map integration and later either
reconstructs each region separately or keeps only the largest region.

Occlusions and interreflections Dealing with occlusions and
global illumination effects, such as interreflections, is a key chal-
lenge in photometric stereo. In order to address the problem,
various approaches have been proposed. In [CAK07], Chan-
draker et al. propose a graph cut-based approach to remove shad-
ows. They assume every pixel is visible to at least three light
sources in order to achieve an initial shadow labelling. Instead,
we use ray tracing to find the initial per-pixel visibilities for every
light source using the initial (biased) reconstruction. In [EVC08],
Hernández et al. use a RANSAC scheme to identify outliers as
shadows. RANSAC is also used in [SZP10] by Sunkavalli et al.,
but visibility subspaces are estimated instead of per-pixel measure-
ments to detect both attached and cast shadows in uncalibrated pho-
tometric stereo. Different from explicitly handling deviations, some
other work by Wu et al. [WGS∗10] and Ikehata et al. [IWMA14] fo-
cus on trying to detect any type of deviation of a Lambertian model
and then apply photometric stereo only to the remaining intensi-
ties. Recently, deep learning based approaches [Ike18,TM18] have
been introduced to photometric stereo that assume known direc-
tional lighting, but require pre-processing for the light calibration.
In [CHS∗19], Chen et al. handle the problem of uncalibrated pho-
tometric stereo by explicitly learning to estimate light directions.

However, all approaches above assume that each light source is
turned on separately, which is not applicable for many-lights sys-
tems because far too many images would need to be captured. Typ-
ically, many-lights systems turn on a few lights at the same time
and generate a certain illumination pattern, e.g., spherical gradient
illumination patterns as proposed by Ma et al. [MHP∗07]. Our ap-
proach can deal with the presence of many lights because it uses
ray tracing to find per-pixel visibilities for every light source based
on the initial mesh generated from normal integration.

3. Normal Map Bias Reduction

In this section, we present our algorithm for discontinuities detec-
tion as well as occlusions and interreflections bias reduction. Our
many-lights illumination setup is a lighting sphere, which consists
of 2200 LEDs. Objects are illuminated under six spherical gradient
illumination patterns, which are axis parallel and complementary
in pairs, and are captured synchronously by six calibrated digital
SLR cameras from multiple viewpoints.

3.1. Discontinuities Detection

Figure 2: Discontinuities detection for the dataset Dwarf. From left
to right: intensity image, color-coded normal map, residual map,
and watershed segmentation for the residual map.

Input to our algorithm is a set of six gradient illumination images
for each camera, which are denoted by {Lx,L−x,Ly,L−y,Lz,L−z}.
Based on the input images, we estimate photometric normals n fol-
lowing the approach by Wilson et al. [WGP∗10]:

n =
(Lx−L−x,Ly−L−y,Lz−L−z)>

‖(Lx−L−x,Ly−L−y,Lz−L−z)>‖
. (1)

Given the normal map, we then integrate an initial depth
map by the linear approach proposed by Grochulla and Thor-
mählen [GT15]. Starting from an arbitrary point i on the normal
map, the relation between the depth di at point i and the depth d j at
adjacent points j should be given by

d j =
li ·ni

l j ·ni
di (2)

where l ∈ R3 is the line of sight from the camera and ni is the
normal at point i.
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Since effects such as image noise, depth discontinuities, shad-
ows, interreflections, etc., are not accounted for in Eq. (1), the con-
dition in Eq. (2) is typically not perfectly fulfilled. To quantitatively
analyze the residual of Eq. (2), we formulate an deviation energy
over the four neighbors of a point i:

ei = ∑
j
(l j ·n j d j− li ·ni di)

2 (3)

Using Eq. (3), we are able to compute a residual value for each
pixel of the normal map. The residual is then used to heuristically
determine reconstruction regions for the scene by applying water-
shed segmentation. Figure 2 shows the detection results for the
Dwarf object. The far right image in Figure 2 shows the result of
watershed segmentation for the residual map. When using the nor-
mal information directly, it is difficult to detect some large disconti-
nuities such as occlusions (see Figure 5). This is because occlusions
that cause a discontinuity in depth might not have a discontinuity
in the normal map. In contrast, with the residual map generated
by our approach, we are able to detect discontinuities and segment
the scene into several large integrable regions. In our experiments,
the maximum region is always selected for further processing. Fur-
thermore, different integrable regions from multiple views can be
merged into a complete reconstruction. The details of the region
merging algorithm are beyond the scope of this paper.

3.2. Occlusions Bias Reduction

In most many-lights systems, the visibilities of light sources are not
considered. For Eq. (1) it is assumed in [WGP∗10] that the point
on the surface has a hemispherical field of view but in reality this
requirement is only met for very special objects, such as a perfect
sphere. For more complex objects, self-shadowing typically occurs
with respect to certain light sources. As shown in Figure 3, the vis-
ibility range for a surface point in a concavity is much less than a
hemisphere.

n

Figure 3: True light source visibilities for a surface point in a con-
cavity (light gray) vs. assumed full visibility of the hemisphere (dark
gray).

Given a surface point (x,y) in the input intensity image, for each
light source with index k we denote the light direction as dk and
light intensity as Lk. The light visibility Vk is either 0 or 1. The ob-
served intensity can be indicated as I(x,y). We compute the initial
per-pixel visibility of each light source by shooting shadow rays

to all light sources from the surface point of the initial 3D model.
Given the above information and the normal n from the normal
map, we can formulate

I(x,y) = ρ∑
k

nT dkLkVk, (4)

where ρ is the unknown surface albedo and the radiometric re-
sponse function of the camera is assumed to be linear. Furthermore,
we can extract the normal from the sum:

I(x,y) = ρnT
∑
k

dkLkVk︸ ︷︷ ︸
D

, (5)

where D is a 3× 1 column vector and we get a different Dg for
each gradient illumination g. With a total of six gradient illumina-
tions we get an overdetermined system of linear equations, which
can be solved for the three unknowns ρn = (ρnx,ρny,ρnz)

T =
(ux,uy,uz)

T . Afterwards, we can use the non-linear constraint that
the length of the normal n is 1.0 to eliminate the unknown albedo ρ:

n =
(ux,uy,uz)

T

||(ux,uy,uz)||
. (6)

Solving the overdetermined system of linear equations for each
pixel gives us an updated normal map, which in turn can be used to
compute updated light visibilities.

3.3. Interreflections Bias Reduction

dj, Lj
ij

Ii(x,y)
Ij(x,y)

cj

ninj

Figure 4: Interreflections between two surface points.

When light interacts with matter it can be absorbed, transmitted
or reflected. In this section, we compensate for the reflected light
between surface points, i.e. interreflections. Given two pixels i and
j, where j is the emitting pixel, the geometric setup we are dealing
with is shown in Figure 4. When considering interreflections, the
observed intensity I(x,y) for a pixel now not only depends on the
reflected part of the sum of the direct light from all light sources k,
but additionally on the sum of the reflected light that is received
from all other surface locations j. Thus, Eq. (4) becomes

I(x,y) = ρ∑
k

nT dkLkVk +ρ∑
j

nT d jL jV j, (7)
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where d j is the 3D direction between the two interacting 3D points
(see Figure 4) and V j is the visibility, which is either 0 or 1, and
encodes if the two points i and j see each other (i.e., they are not
occluded by other geometry). When modelling the patch at loca-
tion j as a small Lambertian emitter, the light intensity L j reaching
location i from j depends on the normal n j at location j and the
distance rd j between surface points j and i. It can be approximated
by:

L j ≈
−nT

j d j

r2
d j

Ln j , (8)

where Ln j is the light intensity in direction n j. Because a Lamber-
tian emitter has a constant luminance, the light intensity Ln j is pro-
portional to the intensity I j observed in the input image at pixel j.
Introducing a global constant of proportionality α, Eq. (7) can be
rewritten as follows:

I(x,y) = ρnT
(
∑
k

dkLkVk +α∑
j

d j
(−nT

j d j)

r2
d j

I jV j︸ ︷︷ ︸
D

)
. (9)

Similar as before, we solve for the normal n using the overdeter-
mined system of linear equations. Normalization of n eliminates
the unknown albedo ρ. All visibilities Vk and V j, normals n j, di-
rections d j, and distances rd j are determined using the previous
reconstruction. These input values are kept constant during each it-
eration and the solution is independently computed in parallel for
each normal map pixel i.

4. Results

In this section, we first present the results of the proposed discon-
tinuities detection approach for two real-world objects: Dwarf and
Face1, then evaluate our approach for normal map bias reduction
on both synthetic and real-world image data. In order to quantita-
tively evaluate the approach, we use two synthetic objects, Ref1
and Face2, in the experiments. We also test our approach on two
real-world objects: Ref2 and Budda. All objects are recovered by
our approach and the one by Wilson et al. [WGP∗10] (referred to
as baseline approach in the following), which neglects the com-
pensation of occlusions and interreflections. In all experiments we
use six digital SLR cameras and each camera generates six images
with a resolution of 5496× 3670 pixels taken under gradient illu-
minations. For each object we perform 3 iterations to find a refined
solution.

4.1. Discontinuities Detection

The results of the proposed discontinuities detection approach are
shown in Figure 5. For comparison, Canny edge detection and wa-
tershed segmentation are applied on the intensity image, the nor-
mal map, and the residual map. The results show that for the in-
tensity image and the normal map, fewer depth discontinuities are
detected, e.g., the nose in the Face1 example occludes parts of the
right side of the face. In contrast, if the residual map is used as
input, all large occlusions are found.

Table 1: Comparison of the estimated to the ground truth normal
map (RMSE)

Methods Face2 Ref1 Ref2
baseline 0.048 0.046 0.074
occlusion comp. 0.044 0.041 0.065
proposed 0.027 0.021 0.034

4.2. Bias Reduction on Synthetic Data

In this section, we generate six synthetic images of an object under
simulated gradient illuminations and apply our approach and the
baseline approach on the synthetic data to estimate normal maps of
the object. The ground truth normal maps are known exactly for the
synthetic objects, thus, we can quantitatively verify the accuracy
of both approaches by computing the normal errors between the
estimated normal map and the ground truth.

Figure 6 shows the ground truth normal map and the nor-
mal maps recovered by the different approaches. For the dataset
Ref1 the magnifications of three grooves with different shapes are
shown. The normal map estimated by the baseline approach shows
a bias that is significantly reduced by our approach. Similarly, for
the synthetic Face2 example the normals around the nose also show
obvious bias for the baseline approach, which is reduced by our ap-
proach. For both approaches, the errors inside the nostrils are still
present because almost complete shadowing occurs.

Table 1 shows the pixel-wise root-mean-square error (RMSE)
of the estimated normal maps. The results show that the normal
map errors are reduced by around 50% compared to the baseline
approach.

4.3. Bias Reduction on Real-World Data

In this section, we test our approach on two real-world objects:
Ref2 and Budda. Dataset Ref2 is an aluminum cuboid with two
concave 45 degree grooves on the surface with a depth of 5.0 and
2.5 millimeters, which were cut with high accuracy by a CNC ma-
chine. The aluminum cuboid is covered with white chalk spray to
achieve a diffuse surface. The results are shown in Figure 7. The
RMSE of the recovered normal map of Ref2 is given in Table 1. It
shows that the normal bias is reduced by 54% with our approach
compared to the baseline approach. For the Budda dataset, the
ground truth of the normal map is unknown. We demonstrate the
difference between the two models reconstructed by the baseline
and our approach in Figure 8. The pseudo-color map (where blue
corresponds to no difference and red to a difference of 0.29 mm)
shows plausible refinements of the reconstruction by our approach,
especially for the grooves.

4.4. Limitation

In our approach, we use ray tracing techniques to find per-pixel
light source and surface-surface visibilities. This leads to a large
computational effort. Using a custom CUDA ray-tracing imple-
mentation that employs a bounding volume hierarchy (BVH) as
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Figure 5: Discontinuities detection for the datasets Dwarf and Face1. From left to right: intensity image, color-coded normal map, residual
map, Canny edge detection and watershed segmentation for the three different input images, and 3D reconstruction of the largest region
detected by our proposed discontinuities detection approach.

Figure 6: Normal maps recovery and comparison for the datasets Ref1 and Face2. From left to right: intensity image, ground truth normal
map, normal map estimated by our approach, normal map estimated by the baseline approach, difference between the baseline approach and
ground truth, and difference between our approach and ground truth.

an acceleration structure to compute ray-surface intersections, the
computation time for the shown examples is reduced to approxi-
mately 2 to 5 hours depending on the target area and the graphics
card. These large computation times make the approach less ap-
plicable in practice. Furthermore, as can be best observed in the
Ref1 example in Figure 6, our bias reduction approach produces a
smaller RMSE compared to the baseline approach, but this comes
at the price of an increased noise level (that is introduced by the
employed ray tracing techniques).

We use an initial biased reconstruction to update the normals
to a solution with less bias. We also have tested our data using the
ground truth geometry as the reference to improve the normal maps
and observed that similar RMSE improvements and noise amplifi-
cations occur. This indicates that using a biased initialization does
not influence the output strongly. In general, there is no formal
guarantee that our iterative process will converge. However, we en-
countered not a single convergence problem in our experiments.

Our approach assumes a surface of diffuse material. Handling
of more complex material properties (specular components, sub-
surface scattering, etc.) is not considered in this work.

Futhermore, the proposed solution for the reduction of normal
map bias is partly specific to systems that employ many-light illu-
mination patterns (such as [WGP∗10,GT15]). For other approaches
(e.g., learning-based methods [MHP∗19] or shape-from-shading
approaches [LSHG16]) different model violations can be observed
and must be addressed specifically.

The residual in the discontinuities detection might be caused by
discontinuities and additional model violations (such as non-diffuse
surface reflections or interreflections). Therefore, the approach is
only applicable if the effect of the additional violations is below
the threshold parameter of the segmentation algorithm.
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Figure 7: Normal map recovery for the dataset Ref2. From left to right: intensity image, normal map estimated by the baseline approach,
normal map estimated by our approach, and the difference between the two normal maps.

Figure 8: Normal map recovery for the dataset Budda. From left to right: intensity image, initial reconstruction estimated by the baseline
approach, detail magnifications of the 3D model estimated by the baseline approach and our approach, and difference between the two
models in pseudo-color. Our approach especially improves the reconstruction in areas with concavities.

4.5. Conclusion

This paper presents a multi-view photometric stereo approach for
reducing normal map bias in many-lights systems. Known ap-
proaches for few lights are not applicable for many-lights systems
because they typically require to capture a separate image for each
light source, which is not feasible for a many-lights setup (e.g.,
our illumination hardware has 2200 lights). Compared with other
many-lights approaches, we automatically detect continuous re-
gions and take the occlusions and interreflections into account. Our
approach is evaluated on both synthetic and real-world data and
compared to a baseline approach. The RMSE is reduced by ap-
proximately 50%. The results on real-world data also show similar
improvements in accuracy and plausible refinements, especially for
areas with concavities.

Many-lights systems are commonly used in practice to generate
3D reconstructions for movies and games but when occlusions and
interreflections are not considered the results might look visually
plausible but are not close to the ground truth. Reducing the esti-
mation bias is possible (as shown in this paper) but our approach
requires a large computational effort of several hours even on mod-
ern GPUs. Thus, an interesting approach for future research would
be to develop a many-lights acquisition setup that allows producing
accurate results with less computation.
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