$$
\begin{aligned}
& Z=U \times V \\
& L^{2}\left(V^{+}\right)=L^{2}\left(S_{r}\right)^{K_{U}} \\
& L^{2}\left(V^{+}\right)=\sum_{\mu}^{\mathbb{N}_{+}^{r}}<{ }^{\zeta} K_{b}^{\mu a} K_{\zeta}^{\mu}> \\
& { }^{\zeta} K_{b}^{\mu \zeta} K_{\beta}^{\nu}={ }^{\zeta} K_{c}^{\sigma} \\
& { }^{a} K_{\zeta}^{\mu \alpha} K_{\zeta}^{\nu}={ }^{\chi} K_{\zeta}^{\tau} \\
& { }^{\zeta} K_{b}^{\mu a} K_{\zeta}^{\mu \zeta} K_{\beta}^{\nu \alpha} K_{\zeta}^{\nu}=\underbrace{{ }^{\zeta} K_{b}^{\mu \zeta} K_{\beta}^{\nu}} \underbrace{a} K_{\zeta}^{\mu \alpha} K_{\zeta}^{\nu}={ }^{\zeta} K_{c}^{\sigma}{ }^{\chi} K_{\zeta}^{\tau} \\
& \mu \neq \nu \Longrightarrow \int_{K_{U}}^{d h} K_{\zeta h}^{\mu}{ }^{a h} K_{b}^{\nu}=0 \\
& \zeta \in S \rightarrow V^{+} \ni U P_{\zeta} \\
& \underset{\sim}{f} \in L^{2}(S) \leftarrow L^{2}\left(V^{+}\right) \ni f \\
& { }^{\zeta} f={ }^{U P_{\zeta}} f \\
& \widetilde{F} \in L^{2}\left(V^{+}\right) \rightarrow L^{2}(S) \ni F \\
& U P_{\zeta} \tilde{F}=\int_{K_{U}}^{d h} \zeta h
\end{aligned}
$$

