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Commutative C∗-algebras of Toeplitz Operators on the Unit Disk 33
Nikolai Vasilevski

Quantization and Mathematical Physics

Berezin–Toeplitz quantization of the moduli space of flat SU(n) connec-
tions 39

Martin Schlichenmaier

Kontsevich Quantization and Duflo Isomorphism 48
Micha Pevzner

Quantization Restrictions for Diffeomorphism Invariant Gauge Theories 55
Christian Fleischhack

1



2

Geometry of Symmetric and Homogeneous Domains

Orbits of triples in the Shilov boundary of a bounded symmetric domain 64
Jean-Louis Clerc and Karl-Hermann Neeb

On a certain 8-dimensional non-symmetric homogenous convex cone 70
Takaaki Nomura

A characterization of symmetric tube domains by convexity of Cayley
transform images 74

Chifune Kai

Complex and Harmonic Analysis

The asymptotic expansion of Bergman kernels on symplectic manifolds 79
George Marinescu

Hua operators and Poisson transform for non-tube bounded symmetric
domains 90

Khalid Koufany and Genkai Zhang

Unitarizability of holomorphically induced representations of a split solv-
able Lie group 96

Hideyuki Ishi



Preface

Harald Upmeier

As part of the special program “Complex Analysis and Applications”, Fall 2005, at
the Erwin Schrödinger Institute, organized by F. Haslinger, E. Straube and H. Upmeier,
two mini-workshops

Quantization, Complex and Harmonic Analysis

and

Complex Analysis and Operator Theory on Symmetric Spaces

were held during September 22–23, 2005 and on October 12, 2005, resp. These workshops
were devoted to interactions between complex analysis on hermitian symmetric spaces
and other areas of mathematics and mathematical physics, notably harmonic analysis on
semisimple Lie groups and quantization theory on Kähler manifols.

This research area has been developing considerably during the past few years, and
has now reached a certain maturity from where new research directions, such as infi-
nite dimensional Hilbert symmetric manifolds or analysis on vector-valued holomorphic
functions and more general discrete series representations can be actively pursued.

The talks given at the two workshops provide an overall picture of the current status
of the field, and it was agreed to collect short expository articles from the participants as
(informal) Proceedings. In addition, several participants have published separate research
papers in the ESI preprint series.

The financial support by the Erwin Schrödinger Institute is gratefully acknowledged.

Harald Upmeier – Fachbereich Mathematik und Informatik, Philipps-Universität Marburg,
Hans-Meerwein-Straße, 35032 Marburg, Germany

upmeier@mathematik.uni-marburg.de
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Index Theory for Wiener-Hopf Operators on
Convex Cones

Alexander Alldridge

We report on work in progress, conducted jointly with Troels R. Johansen (Paderborn
University, Germany). We study Wiener-Hopf operators associated to �nite-dimensional
convex cones in Euclidean space. We determine a composition series for the C∗-algebra
generated by Wiener-Hopf operators with integrable symbols, and embark on a detailed
study of the index maps induced by its subquotients.

1 Motivation

1.1 The classical Wiener-Hopf equation

1.1.1. The classical Wiener-Hopf equation is of the form (1 +Wf )u = v , where

Wfu(x) =
∫ ∞

0
f(x− y)u(y) dy for all f ∈ L1(R) , u ∈ L2(0,∞) , x ∈ [0,∞[ .

The bounded operator Wf is called the Wiener-Hopf operator of symbol f . The operator
Wf is conjugate, via the Euclidean Fourier transform, to the Toeplitz operator Tf̂ de�ned
on the Hardy space of the upper half plane, and thus has connection to both complex and
harmonic analysis. The one-variable WH equation is well understood, by the following
classical theorem [GK58].

Theorem 1.1.2. Let W(0,∞) be the C∗-algebra generated by Wf , f ∈ L1(R) .
(i). The following sequence is exact

0 //K(L2(0,∞)) //W(0,∞) σ // C0(R) // 0

where σ is the Wiener-Hopf representation, de�ned by σ(Wf ) = f̂ .

(ii). 1 +Wf is Fredholm if and only if 1 + f̂ is everywhere 6= 0 on R+ = S1 .

(iii). In this case, Index(1 +Wf ) is the negative winding number of 1 + f̂ around 0 .
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1.2 Multivariate generalisation

1.2.1. It is quite straightforward to generalise the above setting to several variables.
Indeed, let X be a �nite-dimensional real vector space endowed with some Euclidean
inner product (xy : xy) , and let Ω ⊂ X be a closed, pointed and solid convex cone. I.e.,
Ω contains no line, and has non-void interior. Consider Lebesgue measure on X to de�ne
L1(X) and its restriction to Ω to de�ne L2(Ω) .

Then, Wf is de�ned by

Wfu(x) =
∫

Ω
f(x− y)u(y) dy for all f ∈ L1(X) , u ∈ L2(Ω) , x ∈ Ω .

Moreover, let W(Ω) be the Wiener-Hopf algebra, the C∗-subalgebra of all bounded oper-
ators on L2(Ω) generated by the collection of the Wf , f ∈ L1(Ω) .

The programme we propose to study then is the following:

(1). Determine a composition series of W(Ω) and compute its subquotients.

(2). Find Fredholmness criteria for Wiener-Hopf operators.

(3). Give an index formula which expresses their Fredholm (family) index in terms of
topological data.

These problems have been addressed from di�erent angles in a quite extensive literature.
Pioneering work was done in the series of papers by Coburn-Douglas [CD69, CD71],
partly jointly with Schae�er and Singer [CDSS71, CDS72]. Together with the work of
Douglas-Howe [DH71], this culminated in the solution of problems (1) and (3) for the
example of the (discrete) quarter plane. Berger-Coburn [BC79] were the �rst to address
the structure of the Hardy-Toeplitz algebra (equivalent to the WH algebra for symmetric
tube type domains) for a symmetric domains of rank 2 , the 2× 2 matrix ball (the rank 1
case having been essentially solved by Venugopalkrishna). This led to the paper of Berger-
Coburn-Korányi [BCK80] which treats the case of all Lorentz cones (also corresponding
to rank 2 symmetric domains, the Lie balls).

Major advances were made by Upmeier [Upm84, Upm88b, Upm88a] who solved the
problem (1) for the Hardy-Toeplitz algebras of all bounded symmetric domains (which
properly include the WH algebras for symmetric cones). Moreover, he developed an index
theory, proving index formulae for the all Wiener-Hopf operators associated to symmetric
cones, thus solving problem (3) for this class of cones. A basic tool in his approach is the
Cayley transform, which allows for the transferral to the situation of bounded symmetric
domains.

Another approach was taken by Dynin [Dyn86], who uses an inductive procedure,
based on the local decomposition of the cone Ω into a product relative to a �xed exposed
face, for the construction of the composition series as in (1). This presumes a certain
tameness of the cone Ω , which he calls `complete tangibility'. Due to the weakness of this
assumption, a large class of cones, including polyhedral, almost smooth and homogeneous
cones, are subsumed.
The point of view we will adopt in this note is due to Muhly and Renault [MR82]. They
describe a general procedure to produce a (locally compact, measured) groupoid whose
groupoid C∗-algebra (a generalised group C∗-algebra) is just the WH algebra, and compute
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composition series (1) for the opposite extremes of polyhedral and symmetric cones. Their
construction is based on the speci�cation of a convenient compacti�cation of Ω (in fact,
of X). Nica gives a uniform construction of this WH compacti�cation for all pointed
and solid cones. The main problem is to prove that the corresponding groupoid always
has a Haar system. From the more general perspective of causal homogeneous spaces, in
which X is replaced by a locally compact group and Ω by a submonoid satisfying certain
assumptions, Hilgert-Neeb extended Nica's results, at the same time giving a convenient
alternative description of the WH compacti�cation.

As yet, none of the problems (1)-(3) have been solved in full generality. In fact, there is
not even an index theorem for the simplicial case. We show how the groupoid perspective
allows for a uni�ed treatment of problems (1) and (3), for a very large class of cones
satisfying some global regularity assumption which arises in a natural fashion.

2 Groupoid approach to Wiener-Hopf operators
2.1 Why groupoids?

2.1.1. Viewed at arms length, Wiener-Hopf operators are just a some kind restricted
convolution operators. On the other hand, groupoids are the rigorous formulation of the
vague concept of a group with a partially de�ned group law. Hence, we may suspect that
they provide a domain for Wiener-Hopf operators to grow and thrive. Let us make this
more precise.
2.1.2. A (locally compact, measured) groupoid G is the prescription of the following data:

(G1). The sets G of arrows and G(0) of units, the latter injected into the former by the map
x 7→ idx ; two left inverses r, s : G → G(0) to this map, de�ning range and source
of all arrows; a composition ◦ : G(2) → G , de�ned on the set of composable pairs
(γ1, γ2) where r(γ1) = s(γ2) , such that r(γ2 ◦ γ1) = r(γ2) , s(γ2 ◦ γ1) = s(γ1) , the
units idx are units for ◦ , ◦ is associative, and any arrow is invertible.
Put more succinctly, G is a small category in which all arrows are isomorphisms.

(G2). A locally compact topology for which ◦ and xy−1 are continuous.

(G3). A Haar system, which is a weakly continuous map λ : x 7→ λx from G(0) to the set
of positive Radon measures on G , such that suppλx = r−1(x) for all x ∈ G(0) and
γ(λs(γ)) = λr(γ) for all γ ∈ G .

One should note that the existence of a Haar system does not follow from conditions
(G1) and (G2). Indeed, condition (G3) implies that the maps r and s are open onto
G(0) . Moreover, even if a Haar system exists, it may be far from unique. In fact, if Y is
any locally compact space, then Y × Y is in a unique fashion a groupoid, such that the
projections onto the two factors are source and range. Then, any fully supported Radon
measure α on Y de�nes a Haar system by the prescription λx = δx ⊗ α .

Given a groupoid G with Haar system λ , we may de�ne convolution on the set K(G)
of compactly supported continuous functions on G , as follows

ϕ ∗ ψ(γ) =
∫
ϕ(γτ)ψ(τ−1) dλs(γ)(τ) .
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Together with the natural involution, this makes K(G) into a ∗-algebra. The latter can
be L1 completed to a Banach ∗-algebra L1(G) . Its universal enveloping C∗-algebra C∗(G)
is the groupoid C∗-algebra of G .
2.1.3. Groupoids exist in abundance. The fundamental example is the transformation
groupoid G = Y oG where Y is a locally compact space acted upon from the right by the
locally compact group G . Set theoretically, it is the direct product Y ×G . The groupoid
structure is given by

r(y, g) = y ∈ Y = G(0) , s(y, g) = y.g , (y, g) ◦ (y.g, h) = (y, gh) and λy = δy ⊗ µ

where µ is Haar measure on G . Special cases include G = Y (G = 1) and G = G (Y = pt).
If U ⊂ G(0) is some locally closed subset, then G|U = r−1(U) ∩ s−1(U) , the set of

arrows beginning and ending in U , is a locally compact space satisfying conditions (G1)
and (G2). The circumstances under which condition (G3) holds for the restriction of λ
are quite delicate in general. For the case G = Y oG of a transformation groupoid, is is
necessary and su�cient that the following holds true [Nic87, prop. 1.3]:

(R1). For y−1U = {g ∈ G|y.g ∈ U} we have µ
∣∣ y−1U is fully supported on y−1U for all

y ∈ U .

(R2). The map U → L∞(G) : y 7→ 1y−1U is weakly continuous, 1A denoting the charac-
teristic function of A .

2.1.4. With these de�nitions at hand, let us consider the following example. The vector
space X acts on itself by translations. Let

G = (X oX)|Ω =
{

(x, y) ∈ Ω×X ∣∣ y ∈ Ω− x} .

This is a groupoid with Haar system λx = δx⊗λX |(Ω−x) , λX denoting Lebesgue measure
on X . We can de�ne a ∗-representation of C∗(G) on L2(Ω) by

L(ϕ)u(x) =
∫

Ω
ϕ(x, y − x)u(y) dy for all ϕ ∈ K(G) , u ∈ L2(Ω) , x ∈ Ω .

It is easy to see that the image of L consists only of Wiener-Hopf operators. However,
the L(ϕ) are all compact, so not the entire Wiener-Hopf algebra can be realised in this
fashion. In order to achieve this, a compacti�cation of X has to be constructed which is
equivariant for the action of the Abelian group X .

2.2 Wiener-Hopf compacti�cation

2.2.1. Let F(X) be the set of all closed subsets of X . There exists a unique metric
topology on X such that convergence is characterised by the equality limk Ak = limk Ak

where limk Ak is the set of limits a = limk ak for ak ∈ Ak and limk Ak is the set of
a = limk aα(k) for aα(k) ∈ Aα(k) , α : N → N denoting a subsequence of the identity.
This convergence is called Painlévé-Kuratowski convergence. With this topology, F(X) is
compact and separable.

The group X acts continuously on F(X) , and the map X → F(X) : x 7→ x − Ω is
continuous, injective and equivariant. Identify X and Ω with their images under this
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embedding and denote their respective closures by X and Ω . It is a non-trivial fact due
to Nica [Nic87, ] that the restricted transformation groupoid WΩ = (X o X)|Ω has the
Haar system λA = δA ⊗ λX |(A−1Ω) . We call WΩ the Wiener-Hopf groupoid.

Moreover, we have the following theorem [Nic87, prop. 2.4.1], [HN95, th. III.14,
th. IV.11].
Theorem 2.2.2. Let WΩ be the Wiener-Hopf groupoid.
(i). The groupoid C∗-algebra C∗(WΩ) has a faithful ∗-representation L on L2(Ω) ,

given by

L(ϕ)u(x) =
∫

Ω
ϕ(x− Ω, y − x)u(y) dy for all ϕ ∈ K(WΩ) , u ∈ L2(Ω) , x ∈ Ω .

Then for ϕ̃(A, y) = ϕ(−y) , ϕ ∈ K(X) , we have L(ϕ̃) = Wϕ .

(ii). The image of L is precisely the Wiener-Hopf algebra W(Ω) .

(iii). The Wiener-Hopf algebra W(Ω) contains the compact operators K(L2(Ω)) . Un-
der L , this ideal corresponds to the subalgebra C∗(WΩ|Ω) of C∗(WΩ) generated by the
continuous functions ϕ with compact support in WΩ|Ω = (X oX)|Ω .

2.2.3. The theorem contains the basic philosophy of the groupoid approach to the study
of WH operators in a nutshell: The WH algebra is viewed as the set of functions on the
non-commutative space (i.e., the groupoid) obtained by geometric compacti�cation from
Ω ; its ideals correspond to certain reductions of this groupoid.

More precisely, this leads to the notion of invariant subset of the unit space G(0) of a
groupoid G . A locally closed subset U ⊂ G(0) is called (right) invariant, if r(γ) ∈ U implies
s(γ) ∈ U . It is clear that the restriction to G|U of a Haar system on G automatically
satis�es the invariance and support conditions on a Haar system, if U is invariant. If U
is, moreover, open, then this restriction is in fact a Haar system. It follows that in this
case, C∗(G|U) is naturally an ideal of C∗(G) .

In the case of the Wiener-Hopf groupoid, Ω ⊂ Ω = W(0)
Ω is an open invariant subset.

This follows from the non-trivial fact that Ω is a regular compacti�cation of Ω [HN95,
th. II.11]. Moreover, in this framework, the best possible description of a composition
series would be to �nd a suitably �ne �ltration of Ω by open invariant subsets. This
requires a better understanding of the WH compacti�cation.

2.3 Fine structure of the Wiener-Hopf compacti�cation

2.3.1. It is easy to believe (though less easy to prove) that the description of X can be
reduced to that of Ω ; indeed, any non-void element of X lies on the X-orbit of some
element of Ω [HN95, lem. II.18]. Thus, we concentrate on the description of Ω .

Let us consider, as an example, the quarter plane Ω = [0, 1[2⊂ R2 = X . This cone
is self-dual and simplicial. Identifying a point x ∈ Ω with the set x − Ω , we see that
limits of sequences xk can contribute to Ω \ Ω in two distinct fashions. Either, one of
the components of xk remains bounded; in this case, the limit point will be an a�ne half
space not completely containing Ω . Or, both components tend to in�nity; in which case,
the limit shall be the entire space X . This is illustrated below.
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X = 0 − 0∗x − F∗

0

Ω Ω

x − Ωx − Ω

Recall that a face of Ω is a subcone of F such that for any segment [x, y] ⊂ Ω such
that ]x, y[ intersects F , we have [x, y] ⊂ F . Moreover, denote C∗ = {x ∈ X|(x : C) > 0}
for any C ⊂ X . Then any point in Ω is of the form x−F ∗ , where F is some face. This is
illustrated above for F =]0,∞]×0 and F = 0 . The points in Ω lie above F = Ω∗ . Passing
from the example to the general case, we have the following theorem [Nic87, prop. 4.6.2].
Theorem 2.3.2. Let P be the of faces of Ω∗ . Denote by F~ = F ∗ ∩ 〈F 〉 the dual cone
of F relative to its span 〈F 〉 . Then the following map is a well-de�ned injection,

ν :
⋃

F∈P
{F} × F~ → Ω : (F, x) 7→ x− F ∗ .

2.3.3. The point of the theorem is that the range of ν is in fact contained in Ω . The proof
relies on the embedding of faces in chains of relatively exposed faces. Nica himself gives a
counterexample for the surjectivity of ν , namely, the four-dimensional cone Ω∗ with the
following base.

non-extreme point

extreme point

It is evident that the set of extreme rays of Ω∗ is non-compact. However, this is necessary
for the surjectivity of Nica's map, as we shall see presently.
2.3.4. The set P is contained in F(X) , but since the dual cone map C 7→ C∗ is an
homeomorphism on the subset of closed convex cones, P also carries the subspace topology
under the embedding P → Ω : F 7→ −F ∗ . If −F ∗k → x−F ∗ where Fk, F ∈ P and x ∈ F~ ,
then x = 0 . Thus, if ν is surjective, then P is closed, and hence compact.

Let {n0 < · · · < nd} = {dimF |F ∈ P} be the set of face dimensions, ordered in-
creasingly. Moreover, let Pj = {F ∈ P |dimF = nd−j} . The dimension function is easily
seen to be lower semi-continuous, so

⋃d
i=j Pi is closed in P . Thus, it seems reasonable to

assume that all the Pj are compact. In fact, it turns out that this condition is su�cient
for the surjectivity of ν .
Theorem 2.3.5. De�ne π(x− F ∗) = F for F ∈ P and x ∈ F~ .

(i). If Pj is compact, then π : π−1(Pj)→ Pj is continuous.

(ii). If Pj is compact, then it is a �nite-dimensional metric space.

(iii). If all the Pj , j = 0, . . . , d , are compact, then ν is surjective.
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2.3.6. The upshot of the theorem is that we can think of Ω as strati�ed by �bre bundles,
as soon as the sets Pj of faces of �xed dimension are compact.

Part (i) of the theorem is easy, and part (ii) follows by embedding Pj into a suitable
Grassmannian variety. The proof of (iii) is lengthy, the essential step being the follow-
ing technical statement: If xk − F ∗k → C and Fk → F where dimFk = dimF , then
dim domσC < dimF whenever (xk) is unbounded. Here, σC(x) = supy∈C(x : y) is the
support functional of C and domσC is the set where it attains �nite values.

It does not seem to be clear whether the condition that the Pj be compact is necessary
for ν to be surjective. Clearly, the compactness of P does not imply that of the Pj , as
can be seen by considering a three-dimensional cone whose compact base is the convex
hull of the set of points on a circle whose angles belong to a Cantor set. Also, the facial
exposedness of Ω∗ is apparently unrelated to the compactness of the Pj condition. The
usual `parking ramp', which is not facially exposed, has Pj compact for all j .

On the positive side, polyhedral cones have compact Pj . Moreover, so do irreducible
symmetric cones. The class of cones with compact face spaces is closed under �nite
products. Philosophically, all sensible cones, and some others, have compact face spaces
Pj .
In the remainder of this paper, we shall always assume the Pj to be compact.

2.4 Construction of a composition series

2.4.1. The subsets Pj ⊂ P naturally give rise to the open invariant subsets Uj =
π−1

(⋃j−1
i=1

)
, j = 0, . . . , d+ 1 , of W(0)

Ω = Ω . The fact that these subsets are indeed open
follows directly from the lower semi-continuity of dim ◦π . We point out that U0 = ∅ ,
U1 = Ω and Ud+1 = Ω .

Then the groupoids WΩ

∣∣ Uj all have Haar systems. In fact, Ij = C∗(WΩ

∣∣ Uj) can be
considered as a closed ∗-ideal of C∗(WΩ) . We have already noticed that I1 corresponds
to K(L2(Ω)) under the WH representation L from theorem 2.2.2. Let us determine the
other ideals.

Set Yj = Uj+1 \ Uj = π−1(Pj) , a locally closed invariant subset of W(0)
Ω = Ω . Since

Yj is invariant, again WΩ

∣∣ Yj has a Haar system. Moreover, by [Ren80, ch. II, prop. 4.5],
Ij+1/Ij ∼= C∗(WΩ

∣∣ Yj) , where the isomorphism is induced by restriction ϕ 7→ ϕ
∣∣ Yj of

compactly supported continuous functions ϕ on WΩ

∣∣ Uj+1 .
We intend to show that the quotient Ij+1/Ij is stably isomorphic to a commutative

C∗-algebra. In order to do this, we show that the groupoid WΩ

∣∣ Yj is a �bre bundle.
Theorem 2.4.2. Let Σj =

{
(F, v)

∣∣ F ∈ Pj , v ∈ F⊥
}

be the `normal bundle' of Pj .
Then Σj is a vector bundle over Pj , and WΩ|Yj is a locally trivial continuous family of
groupoids over Σj , with local trivialisations given by

WΩ

∣∣ π−1(UE)→ Σj

∣∣ UE ×WE~
∣∣ E~ :

(F, x, y) 7→ (
F, pF⊥(y), ψEF (x), ψEF (pF⊥(y))

)
. (2.1)

Here UE ⊂ Pj is an open neighbourhood of E , and ψEF : 〈F 〉 → 〈E〉 is a bi-Lipschitz
map which satis�es

ψEF (F~) = E~ and detψ′EF (x) = 1 for a.e. x .
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Moreover, C∗(WΩ

∣∣ Yj) is thereby isomorphic to the section algebra K(Ej) of the con-
tinuous �eld of elementary C∗-algebras C∗(WE~

∣∣ E~) = K(L2(E~)) associated to the
continuous �eld of Hilbert spaces Ej =

(
L2(F~)

)
(F,y)∈Σj

.

Proof. The maps ψEF are constructed by deforming equal-dimensional cones into each
other. Such a deformation can be realised by considering the Minkowski gauge functionals
for compact bases of the corresponding cones.

The essential point is to compute the derivatives of these gauge functionals, showing
that they have positive Jacobian. The property detψEF = 1 a.e. is tantamount in proving
that C∗-algebras of the obtained groupoids are isomorphic, since it shows that the Haar
systems correspond. The proof that C∗(WΩ

∣∣ Yj) equals K(Ej) is now standard. ¤
2.4.3. Since Σj is a �nite-dimensional metric space, the �eld Ej is trivial. Hence, K(Ed) =
C0(X) , and K(Ej) = C0(Σj)⊗K if j < d . Thus, we have the following theorem.
Theorem 2.4.4. The Ij form an ascending chain of ideals of C∗(WΩ) . We have

Ij+1/Ij ∼=
{
C0(X) j = d ,

C0(Σj)⊗K 0 6 j < d .

2.4.5. We point out that the above isomorphisms are realised by the following represen-
tation σj = (LF,y)(F,y)∈Σj

of C∗(WΩ) on Ej ,

LF,y(ϕ)h(v) =
∫

F⊥

∫

F ~
ϕ(F, v, w1 + w2 − v)e−i(y:w2)h(w1) dw1 dw2

for all ϕ ∈ K(WΩ) , (F, y) ∈ Σj , h ∈ L2(F~) , v ∈ F~ .

Let us brie�y review our theorem in the case of the quarter plane Ω = Ω∗ = [0,∞[2

considered in 2.3.1. We have d = 2 ,

P0 = {Ω∗} , P1 =
{

[0,∞[×0, 0× [0,∞[
}

and P2 = {0} .

Thus,
Σ0 = pt , Σ1 = 2 · R and Σ2 = X = R2 ,

where 2 · R denotes the topological sum of 2 copies of R . The theorem gives

I0 = 0 , I1 = K , I2/I1 ∼= C0(R)⊗ C2 ⊗K and I3/I2 = C0(R2) .

Here, C2 is the commutative C∗-algebra of functions on 2 points.
More generally, for the simplicial cone Ω = Ω∗ = [0,∞[n , we get

d = n , Σj =
(
n
j

) · Rj and Ij+1/Ij = C0(Rj)⊗ C(n
j) ⊗K for all j < n .

Of course, these results also follow from the work of Muhly-Renault [MR82] on polyhedral
cones.
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3 Index Theory
3.1 Construction of an Analytical Index

3.1.1. The composition series constructed in theorem 2.4.4 gives rise to commutative
diagrams

0 //Ij/Ij−1

σj−1

//Ij+1/Ij−1

σj−1

²²

σj //K(Ej)
τj

²²Â
Â
Â

// 0

0 //K(Ej−1) //L(Ej−1) πj−1

// L/K(Ej−1) // 0

Here, L(Ej−1) = M(K(Ej−1)) is the C∗-algebra of adjointable operators of the Hilbert
C0(Σj−1)-module Ej−1 . We point out that Ij is an essential ideal of Ij+1 , so that Ij+1 in-
jects into M(Ij) , and thus σj−1 , which coincides with the strict extension of its restriction
to Ij , takes values in L(Ej−1) when evaluated on Ij+1 .

The map τj is the Busby invariant of the extension Ij+1/Ij−1 of Ij/Ij−1 by K(Ej) . It
may be computed as πj−1 ◦ σj−1 ◦ %j , whenever %j is a completely positive section of σj .
Such %j exist since Ij+1/Ij−1 is nuclear, being of type I.

Any short exact sequence 0 //J //A
π //B //0 of C∗-algebras de�nes, by the six-

term exact sequence in K-theory, a map ∂ : K1(B) → K0(J) , only depending on π . A
simple description in terms of E-theory can be given as follows, cf. [Con94, II.B.γ, lem. 6].
Let 0 6 ut 6 1 , t ∈ [1,∞[ , be a continuous approximate unit of J , quasi-central for A ,
and % : B → A a section of π (not necessarily completely positive). Then

ϕt(f ⊗ b) = f(ut)%(b) for all f ∈ C0(]0, 1[) , b ∈ B , t ∈ [1,∞[ ,

de�nes an asymptotic ∗-morphism from SB = C0(]0, 1[) ⊗ B to J . The map associated
to (ϕt) in K-theory K1(B) = K0(SB) → K0(J) (given by composition in E-theory)
coincides with ∂ .

Denote the map K1(K(EJ)) → K0(K(Ej−1)) given by this construction by Indj . Be-
cause of the naturality of connecting homomorphisms,

Indj([u]) = ∂[τj(u)] for all [u] ∈ K1(K(Ej)) = π0

(
GL∞(K(Ej)+)

)

where ∂ : K1(L/K(Ej−1))→ K0(K(Ej−1)) is the connecting homomorphism.
3.1.2. Call an element a ∈MN (C∗(WΩ)) j-Fredholm, if there exists some b ∈MN (C∗(WΩ)) ,
such that ab − 1 ≡ ba − 1 ≡ 0 (mod MN (IJ)) . Then any K-theory representative
u ∈ GLN (K(Ej)) lifts to a j-Fredholm element %j(u) . It can be shown that σj−1(%j(u))
is a continuous family of N × N Fredholm matrices on the continuous family Ej−1 of
Hilbert spaces. Using the identi�cation K1(K(Ej)) = K1

c (Σj) (topological K-theory with
compact supports), we can, moreover, prove that the family σj−1(%j(u)) is trivial outside
a compact subset of Σj−1 . Thus, the Atiyah-Jänich family index IndexΣj−1 σj−1(%j(u))
makes sense as an element of K0

c (Σj−1) . We have the following theorem.
Theorem 3.1.3. Let [u] ∈ K1

c (Σj) = K1(K(Ej)) . Then

Indj([u]) = IndexΣj−1 σj−1(%j(u)) ∈ K0
c (Σj−1) = K0(K(Ej−1)) .
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3.2 Construction of a Topological Index
3.2.1. The next step in proving an index theorem is the de�nition of a topological index.
To that end, note that Pj = {(E,F ) ∈ Pj−1 × Pj |E ⊃ F} is a compact space in the
topology induced by Pj−1 × Pj . The projections Pj−1 Pj

ξoo η //Pj turn Pj into a �bre
bundle over their respective compact images (which need not be all of Pj−1 resp. Pj , lest
the face lattice P be modular). Since the natural map η∗Σj → Σj is proper, we get a
map in K-theory,

η∗ : K1
c (Σj)→ K1

c (η∗Σj) = K0
c (η∗Σj × R) .

Each of the �bres ξ−1(E) for E ∈ ξ(Pj) has a natural Euclidean embedding, as follows.
Proposition 3.2.2. Let (E,F ) ∈ Pj . Write E0(F ) = 〈F 〉 , E1(F ) = 〈F⊥ ∩ E~〉 , and

E1/2(F ) = E0(F )⊥ ∩ E1(F )⊥ ∩ 〈E〉 .
We have

(i). E1(F ) = R · eF for a unique eF ∈ E~ , ‖eF ‖ = 1 .
(ii). The set S1(E) = {eF |F ∈ Pj , F ⊂ E} ⊂ is a compact C(1)-submanifold of X , and

its tangent space at eF is E1/2(F ) .
(iii). The map ξ−1(E)→ S1(E) : (E,F ) 7→ eF , is an homeomorphism.

3.2.3. Thus, it is natural to de�ne TPj =
{

(E,F, u)
∣∣ (E,F ) ∈ Pj , u ∈ E1/2(F )

}
, the

tangent space of Pj along the �bres of ξ . Moreover, consider % : Σj−1 → Pj−1 : (E, v) 7→
E . The 1-dimensionality of E1(F ) implies that the map

η∗Σj → %∗TPj : (E,F, y) 7→ (
E, pE⊥(y), F, pE1/2(F )(y)

)

turns η∗Σj to a real line bundle over %∗TPj . Here, we note F⊥ = E⊥⊕E1/2(F )⊕E1(F ) .
Thus, η∗Σj×R is a complex line bundle over %∗TPj , and we get the corresponding Thom
isomorphism β : K0

c (%∗TPj)→ K0
c (η∗Σj × R) = K1

c (η∗Σj) .
3.2.4. In order to construct an index map K0

c (%∗TPj)→ K0
c (Σj−1) , we use the device of

the (�bre-wise) tangent groupoid, due to Connes [Con94, II.5], and a certain C∗-algebraic
deformation quantisation. Let ξ : M → B be a �bre bundle with C1 �bres (the C1

structure depending continuously on the base points), and let TM =
⋃

b∈B{b}×Tξ−1(b) be
the �brewise tangent bundle. Then a groupoid GM , called the �brewise tangent groupoid,
can be constructed in the following manner.

Set-theoretically, let GM = TM × 0 ∪ (M ×B M)×]0, 1] . Endow this space with the
topology generated by (M ×B M)×]0, 1] and the maps φh : GM →M × R× [0, 1] where

φh(x,X, 0) = (x, dhx(X), 0) and φh(x1, x2, ε) =
(
x1,

h(x1)− h(x2)
ε

, ε

)
,

and h : M → R is any continuous map which is C1 along the �bres of ξ . Then GM

becomes a locally compact groupoid with unit space G(0)
M = M × [0, 1] by considering TM

as a `group bundle' overM , and M ×BM as a subgroupoid of the pair groupoidM ×M .
A more delicate matter is the existence of a Haar system on GM .

To that end, it is useful to consider GM as a continuous family groupoid (of class C1,0)
in the sense of Paterson [Pat00, � 3, def. 3]. I.e., we need to show that r, s : GM → G(0)

M
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turn GM into a continuous family of C1 manifolds, and that inversion and composition are
compatible with this structure. We indicate how to de�ne an atlas.

Whenever (α,Uα) is a C1,0 atlas of ξ : M → B , let Vα = GM

∣∣ (Uα× [0, 1]) , and de�ne
a chart ϕα : Vα → Uα× [0, 1]×Rn where n = dim ξ−1(b) , by letting the components of ϕα

in Rn be φα1 , . . . , φαn . A routine proof shows that this de�nes an atlas with the required
properties, and we may apply [Pat00, � 3, th. 1] to see that GM has a Haar system which
is unique up to multiplication with positive C1,0 densities. (Note that although Paterson
states his result for C∞,0 groupoids, only C1,0 structure is needed.)
3.2.5. The construction set forth in the previous paragraph gives rise to a continuous
family of groupoid C∗-algebras, as follows. Let A = C∗(GM ) , and consider p : GM → [0, 1] ,
the projection onto the deformation parameter. Since p is open, factors through G(0)

M , and
its �bres Gt

M = p−1(t) are amenable groupoids, the groupoid GM is amenable, too [ADR00,
prop. 5.3.4]. Moreover, by the work of Landsman-Ramazan [LR01, � 5], At = C∗(Gt

M ) is
a continuous family of C∗-algebras, whose associated C∗-algebra is just A .

We have evaluation maps εt : A → At for all t ∈ [0, 1] , and a standard argument
[Con94, II.5, prop. 5] shows that ε0 induces an isomorphism in K-theory. Thus, we may
de�ne

q-ind = ε1ε
−1
0 : K0

c (TM) = K0(C∗(G0
M ))→ K0(C∗(G1

M )) = K0
c (B) .

Here, the identi�cations with the topological K-groups arise on one hand by applying
the Fourier transform �brewise, and on the other hand by noting that C∗(M ×B M) is
the C∗-algebra associated to a continuous �eld of elementary C∗-algebras on B which is
trivial as soon as B is �nite-dimensional as a topological space. This is the desired index
map.

We point out that there is a standard procedure, also due to to Connes, to compute
such an index map in topological terms, which then allows for a cohomological index
formula by application of the Chern character. We refer the reader to [Con94, II.5,
pp. 104/5], [Lan03, � 5] for details. Generally speaking, the classifying space BGM of GM

has to be computed as the quotient of a principal GM -space EGM with contractible �bres.
In fact, EGM = G(0)

M × R2n where some Euclidean embedding M ↪→ B × Rn is chosen.
Then q-ind is, up to a Thom isomorphism, the Gysin map i! associated to the embedding
i : NM ↪→ B × R2n , where NM is the �brewise normal bundle of M in B × R2n .
3.2.6. We may now consider the C1,0 �bre bundle %∗Pj → ξ(Pj) ⊂ Σj−1 , where % :
Σj−1 → Pj−1 and ξ : Pj → Pj−1 are the natural projections. By the above procedure, we
obtain an index map q-indj : K0

c (%∗TPj) → K0
c (ξ(Pj)) → K0

c (Σj−1) . Our `topological
index map' is thus

q-Indj = q-indj ◦β−1 ◦ η∗ : K1
c (Σj)→ K1

c (Σj−1) .

To complete our programme, we need to prove that Indj = q-Indj . So far, this is open,
although promising. We shall report in detail on our results in this direction to a later
date.
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Qp-spaces on bounded symmetric domains

Miroslav Englǐs

Abstract
Qp spaces on the unit disc were introduced, and their basic properties established,

in 1995 by Aulaskari, Xiao and Zhao. Later some of these results were extended also
to the unit ball or even to strictly pseudoconvex domains in the complex n-space.
We briefly review the theory of bounded symmetric domains, of which the disc and the
ball are the simplest examples, and then discuss the Qp spaces in this setting. It turns
out that some new phenomena appear, most notably concerning the relationships of
these spaces to the various kinds of Bloch spaces on symmetric domains.

1 Introduction

The Qp spaces on the unit disc D were introduced in 1995 by Aulaskari, Xiao and
Zhao [AXZ] by

f ∈ Qp ⇐⇒ sup
a∈D

∫

D
|f ′(z)|2g(z, a)p dz <∞,

the square root of the right-hand side being, by definition, the (semi)norm in Qp. Here
g(z, a) stands for the Green function

g(z, a) = log
∣∣∣∣
z − a
1− az

∣∣∣∣,

and dz denotes the Lebesgue area measure. It is not difficult to see that one gets the same
spaces, with equivalent seminorms, upon replacing the Green function by the function
log | z−a

1−az | which has (for each fixed a) the same boundary behaviour:

f ∈ Qp ⇐⇒ sup
a∈D

∫

D
|f ′(z)|2

(
1−

∣∣∣∣
z − a
1− az

∣∣∣∣
2)p

dz <∞. (1.1)

We will adhere to this latter definition throughout the sequel.
The most notable feature of the Qp spaces is that they are Möbius invariant. Indeed,

any Möbius map (i.e. a biholomorphic self-map of D) is of the form φ(z) = ε
a− z
1− az , with

|ε| = 1 and a ∈ D. Thus the right-hand side of (1.1) can be rewritten as

sup
φ∈Aut(D)

∫

D
|f ′(z)|2 (1− |φ(z)|2)p dz

= sup
φ∈Aut(D)

∫

D
∆|f |2(z) (1− |φ(z)|2)p dz

= sup
φ∈Aut(D)

∫

D
(∆̃|f |2)(z) (1− |φ(z)|2)p dµ(z)

= sup
φ∈Aut(D)

∫

D
∆̃|f ◦ φ(z)|2 (1− |z|2)p dµ(z),

17



18 Miroslav Englǐs

where ∆̃ = (1− |z|2)2
∂2

∂z∂z
and dµ(z) =

dz

(1− |z|2)2
are the invariant Laplacian and the

invariant measure on D, respectively. From the last formula it is apparent that f ∈ Qp

implies f ◦ φ ∈ Qp and f and f ◦ φ have the same norm in Qp, for all φ ∈ Aut(D).
It was shown in [AXZ] that

p > 1 =⇒ Qp = B, the Bloch space,
p = 1 =⇒ Qp = BMOA,

0 ≤ p1 < p2 ≤ 1 =⇒ Qp1 ( Qp2 ,

p = 0 =⇒ Qp = D, the Dirichlet space,
p < 0 =⇒ Qp = {const}.

Thus the Qp spaces provide a whole range of Möbius-invariant function spaces on D lying
strictly between the Dirichlet space on the one hand, and BMOA and the Bloch space
on the other.

The Qp spaces subsequently attracted a lot of attention; see e.g. the book by Xiao [X]
and the references therein. They were generalized to the unit ball Bd ⊂ Cd in 1998 by
Ouyang, Yang and Zhao [OYZ]:

f ∈ Qp ⇐⇒ sup
a∈Bd

∫

Bd

∆̃|f(z)|2 G(z, a)p dµ(z) <∞

⇐⇒ sup
φ∈Aut(Bd)

∫

Bd

∆̃|f ◦ φ|2 G(z, 0)p dµ(z) <∞,

where ∆̃, dµ and G(z, a) denote the invariant Laplacian, the invariant measure and the
Green function of ∆̃ on Bd, respectively. Again, these spaces are Möbius invariant, and

p ≥ d

d− 1
, =⇒ Qp = {const},

1 < p <
d

d− 1
=⇒ Qp = B(Bd), the Bloch space,

p = 1 =⇒ Qp = BMOA(Bd),
d− 1
d

< p1 < p2 ≤ 1 =⇒ Qp1 ( Qp2 ,

p ≤ d− 1
d

=⇒ Qp = {const}.

The cut-off at p = d
d−1 turns out to due to the pole of G(z, a) at z = a, and disappears

if we replace (as we did for the disc) the Green function by (1 − ‖ z−a
1−〈a,z〉‖2)d, i.e. upon

setting

f ∈ Qp ⇐⇒ sup
φ∈Aut(Bd)

∫

Bd

∆̃|f ◦ φ|2(z) (1− ‖z‖2)pd dµ(z) <∞.

Then Qp = B(Bd) ∀p > 1, while the other cases remain unchanged. (We again stick to
this latter definition in the sequel.)

Note that, in contrast to the disc, for d > 1 the Dirichlet space does not turn up as
one of the Qp’s, though in all other cases the situation is the same as for D.
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Other generalizations include Qp spaces on smoothly bounded strictly pseudoconvex
domains [AC] or the F (p, q, s) spaces of Rättyä and Zhao [R],[Z]. In this talk, we will
consider generalization in another direction, suggested by the appearance of the invariant
Laplacians ∆̃, the invariant measures dµ, and the invariance of the spaces under Möbius
maps — namely, the generalization to bounded symmetric domains.

2 Bounded symmetric domains

Recall that a bounded domain Ω ⊂ Cd is called symmetric if ∀x ∈ Ω there exists sx ∈
Aut(Ω) such that sx ◦ sx = id and x is an isolated fixed-point of sx. One calls sx the
geodesic symmetry at x. The motivating example behind this is, of course, the complex
n-space Ω = Cn with sx(z) = 2x−z (except that this is not a bounded domain). Another

example is the unit disc D with s0(z) = −z and sx = φx ◦ s0 ◦ φx, where φx(z) =
x− z
1− xz

is the geodesic symmetry interchanging 0 and x. A more general example is the unit ball
Ir×R of r ×R complex matrices (R, r ≥ 1), again with s0(z) = −z and sx = φx ◦ s0 ◦ φx,
the geodesic symmetry φx interchanging 0 and x being now given by

sx(z) = (Ir − xx∗)−1/2(x− z)(IR − x∗z)−1(IR − x∗x)1/2.

Note that this includes the unit ball Bd ⊂ Cd as the special case I1d.
It turns out that symmetry implies homogeneity: the group Aut(Ω) := G acts tran-

sitively on Ω. (In fact, already the symmetries sx do.) It is a semisimple Lie group.
A bounded symmetric domain is called irreducible if it is not biholomorphic to a

Cartesian product of two other bounded symmetric domains.
Irreducible bounded symmetric domains were completely classified by E. Cartan.

There are four infinite series of such domains plus two exceptional domains in C16 and
C27:

Domain Description

IrR Z ∈ Cr×R: ‖Z‖CR→Cr < 1 R ≥ r ≥ 1
IIr Z ∈ Irr, Z = Zt r ≥ 2
IIIm Z ∈ Imm, Z = −Zt m ≥ 5
IVn Z ∈ Cn×1, |ZtZ| < 1, 1 + |ZtZ|2 − 2Z∗Z > 0 n ≥ 5
V Z ∈ O1×2, ‖Z‖ < 1
VI Z ∈ O3×3, Z = Z∗, ‖Z‖ < 1

The restrictions on R, r,m, n stem from a few isomorphisms in low dimensions:

IV1
∼= III2 ∼= II1 ∼= I1,1(∼= D), IV3

∼= II2, IV2
∼= D×D,

IV4
∼= I2,2, III3 ∼= I1,3, III4 ∼= IV6, IrR

∼= IRr.

Up to biholomorphic equivalence, any irreducible bounded symmetric domain is uniquely
determined by three integers, namely its rank r and its characteristic multiplicities a, b.
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domain r a b d p

IrR (r ≤ R) r 2 R− r rR r +R
IIr r 1 0 1

2r(r + 1) r + 1
III2r+ε, ε ∈ {0, 1} r 4 2ε r(2r + 2ε− 1) 4r + 2ε− 2
IVn 2 n− 2 0 n n
V 2 6 4 16 12
VI 3 8 0 27 18

The two other important quantities given in the table, the genus p and the dimension d
are related to a, b and r by

p = (r − 1)a+ b+ 2, d =
r(r − 1)

2
a+ rb+ r.

The domains with b = 0 are in some respects “simpler” than others and are called tube
domains. Thus, for instance, IrR is tube⇐⇒ r = R.

The unit balls Bd = I1d are the only bounded symmetric domains of rank 1, and the
only bounded symmetric domains with smooth boundary.

The domains in the list above are called Cartan domains. Clearly, any Cartan domain
is convex, contains the origin, and is circular with respect to it.

From now on, we will suppose (unless explicitly stated otherwise) that Ω is a Cartan
domain, and for each x ∈ Ω we denote by φx the (unique) geodesic symmetry interchang-
ing 0 and x. We further denote by K the stabilizer of the origin in G,

K := {k ∈ G : k0 = 0}.

It is a consequence of one of Cartan’s theorems that any k ∈ K is automatically a unitary
linear map on Cd.

Note that from the definition of K it is immediate that any φ ∈ G is of the form
φ = φxk, where k ∈ K, x ∈ Ω. (In fact x = φ(0).)

Having recalled the definition of bounded symmetric domains, we can turn to the Qp

spaces on them. We have seen in the Introduction that their definition involves three
ingredients — namely, the invariant Laplacian ∆̃, the invariant measure dµ, and powers
of the function 1 − |z|2 (or, for the ball, 1 − ‖z‖2). Let us now clarify what are the
counterparts of these on a general Cartan domain.

3 Invariant differential operators

A differential operator L on a Cartan domain Ω is called invariant if

L(f ◦ φ) = (Lf) ◦ φ ∀φ ∈ G = Aut(Ω).

It is well known that on the unit disc, invariant operators are precisely the polynomials of
the invariant Laplacian ∆̃ = (1−|z|2)2∆. The same is true for Bd. For a general bounded
symmetric domain, the situation is more complicated: namely, the algebra of all invariant
differential operators consists of all polynomials in r commuting differential operators
∆1, . . . ,∆r, of orders 2, 4, . . . , 2r, respectively, where r is the rank. In particular, the
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monomials ∆n1
1 . . .∆nr

r form a linear basis of all invariant differential operators. However,
often it is much more convenient to use another basis, the construction of which we now
describe.

For any invariant differential operator L, let L0 be the (non-invariant) linear differ-
ential operator obtain upon freezing the coefficients of L at the origin, that is, Lf(0) =:
L0f(0). From the invariance of L it follows that

k ∈ G, k0 = 0 =⇒ L0(f ◦ k) = (L0f) ◦ k
(i.e. L0 is K-invariant) and

Lf(z) = L0(f ◦ φz)(0). (3.1)

Conversely, if L0 is a K-invariant constant-coefficient differential operator, then the recipe
(3.1) clearly defines an invariant differential operator L on Ω. Thus there is a 1-to-1
correspondence between (G-)invariant linear differential operators on Ω and K-invariant
linear constant-coefficients differential operators on Cd.

Further, any constant-coefficient linear differential operator L0 can be written in the
form L0 = p(∂, ∂) for some polynomial p on Cd ×Cd. It is not difficult to see that such
operator is K-invariant if and only if the polynomial p is K-invariant in the sense that
p(x, y) = p(kx, ky) ∀x, y ∈ Cd ∀k ∈ K.

Combining this with the observation in the preceding paragraph, we thus see that
invariant differential operators are in 1-to-1 correspondence withK-invariant polynomials.

Example. Since K consists of unitary maps, the simplest K-invariant polynomial (apart
from the constants) is p(x, y) = 〈x, y〉. The corresponding invariant differential operator is

Lf(a) = ∆(f ◦ φa)(0).

This operator is called the invariant Laplacian of Ω; it coincides with the Laplace-Beltrami
operator with respect to the Bergman metric on Ω. Note that for f holomorphic,

L|f |2(a) =
d∑

j=1

∣∣∣∂(f ◦ φa)(0)
∂zj

∣∣∣
2

= ‖∂(f ◦ φa)(0)‖2

is what we might call the invariant holomorphic gradient of f .

In a moment, we will see that there exists a very natural basis for K-invariant poly-
nomials (which will thus yield the sought basis for invariant differential operators). Prior
to that, however, we review some facts about Bergman kernels on Cartan domains.

4 Bergman spaces and kernels

The function h(x, y) := 1 − xy on D is noteworthy in a number of ways. First of all,

h−2 is, up to a constant factor, the Bergman kernel K(x, y) =
1

π(1− xy)2
. Second,

dµ(z) =
dz

h(z, z)2
is the invariant measure on D. Finally, for any α > −1, the Bergman

kernel of L2
hol(D, h(z, z)α dz) is given by

Kα(x, y) =
const

h(x, y)α+2
.
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The same properties are also possessed by the function h(x, y) = 1 − 〈x, y〉 on the
ball, only in all three formulas 2 must be replaced by d+ 1.

It is a notable fact that the same phenomenon persists for a general Cartan domain.
Namely, the Bergman kernel of a Cartan domain has the form

K(x, y) =
1

vol Ω
h(x, y)−p,

where h(x, y) is an irreducible polynomial, analytic in x and y, and such that h(0, z) =
h(z, 0) = 1 ≥ h(z, z) ≥ 0 ∀z ∈ Ω. The degree of h is equal to the rank, r, and p is the
genus (this is always an integer ≥ 2). Finally, the Bergman kernel of L2

hol(Ω, h(z, z)α dz)
equals

Kα(x, y) =
const

h(x, y)α+p
,

for any α > −1, and

dµ(z) :=
dz

h(z, z)p

is an invariant volume element on Ω.
For the domains I and II in Cartan’s list, h is given by h(X,Y ) = det(I −XY ∗); for

domains of type III, the determinant gets replaced by the Pfaffian. Explicit formulas
are known also for the types IV–VI.

Comparing all the facts above with the situations for the disc and the ball, we see
that we should define the Qp spaces on a Cartan domain for any ν ∈ R and any invariant
differential operator L as follows:

f ∈ Qν,L ⇐⇒ sup
φ∈G

∫

Ω
L|f ◦ φ|2(z) h(z, z)ν dµ(z) <∞. (4.1)

(Here we have started using the subscript ν instead of p since the letter p is already
reserved for the genus.) Clearly, this reduces to the original definitions for Ω = D
(or Bd) and L the invariant Laplacian.

A small catch here is, however, that in order to have the square-root of the right-hand
side for a seminorm, we need this right-hand side to be nonnegative for all holomorphic
functions f . It is precisely at this point that the promised linear basis for invariant
differential operators comes to the rescue; so let us exhibit it without further delay.

5 Peter-Weyl decomposition

Let P denote the vector space of all (holomorphic) polynomials on Cd. We endow P with
the Fock inner product

〈f, g〉F : = f(∂) g∗ (0), where g∗(z) := g(z),

= π−d

∫

Cd

f(z)g(z) e−‖z‖
2
dz.

This makes P into a pre-Hilbert space, and the action

f 7→ f ◦ k, k ∈ K,
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is a unitary representation of K on P. It is a deep result of W. Schmidt that this
representation has a multiplicity-free decomposition into irreducibles

P =
∑
m

⊕ Pm

where m ranges over all signatures, i.e. r-tuples m = (m1,m2, . . . ,mr) ∈ Zr satisfying
m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. Polynomials in Pm are homogeneous of degree |m| :=
m1 +m2 + · · ·+mr; in particular, P(0) are the constants and P(1) the linear polynomials.
Any holomorphic function thus has a decomposition f =

∑
m fm, fm ∈ Pm, which refines

the usual homogeneous expansion.
Since the spaces Pm are finite dimensional, they automatically possess a reproducing

kernel: there exist functions Km(x, y) on Cd×Cd such that for each f ∈ Pm and y ∈ Cd,
f(y) = 〈f,K(·, y)〉F . Explicitly, for any orthonormal basis {ψj}dimPm

j=1 of Pm, Km is
given by

Km(x, y) =
dimPm∑

j=1

ψj(x)ψj(y). (5.1)

It follows from the definition of the Pm spaces that the kernels Km(x, y) are K-
invariant. By the discussion in the penultimate section, we therefore know that each Km

defines an invariant differential operator

∆mf(a) := Km(∂, ∂)(f ◦ φa)(0), a ∈ Ω. (5.2)

Further, one can show that Km are actually a basis of all K-invariant polynomials, and,
consequently, ∆m are a linear basis for invariant differential operators. Further, from (5.1)
and (5.2) we see that for any f holomorphic,

∆m|f |2(a) =
∑

j

|ψj(∂)(f ◦ φa)(0)|2 ≥ 0.

What makes the basis ∆m important for our applications to the Qν-spaces is the
following converse to the last inequality.

Theorem. An invariant differential operator

L =
∑
m

lm∆m

satisfies L|f |2 ≥ 0 ∀f holomorphic if and only if

lm ≥ 0 ∀m.

6 Bloch spaces and Qν spaces on bounded symmetric do-
mains

Thus we see that the invariant differential operators L that can be used in (4.1) are pre-
cisely those which are linear combinations of ∆m with nonnegative coefficients. The most
basic among such L are evidently the operators ∆m themselves. We are thus lead to the
following definitions.
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Definition. For each signature m, the m-Bloch space is defined by

Bm = {f holomorphic on Ω : ‖∆m|f |2‖∞ <∞}.

Definition. For each signature m and ν ∈ R, the space Qν,m is defined by requiring
that, for f holomorphic,

f ∈ Qν,m ⇐⇒ sup
φ∈G

∫

Ω
∆m|f ◦ φ|2 hν dµ <∞

⇐⇒ sup
a∈Ω

∫

Ω
∆m|f ◦ φa|2 hν dµ <∞

⇐⇒ sup
a∈Ω

∫

Ω
∆m|f |2 (h ◦ φa)ν dµ <∞.

Here h(z) ≡ h(z, z). (All the three conditions above are equivalent owing to the invariance
of ∆m and dµ.)

Clearly, the above definitions reduce to the usual definitions for Ω = D or Bd and
m = (1) (so that ∆m is the invariant Laplacian). In particular, the case of m 6= (1) gives
something new even for the unit disc.

Let us work out the simplest special cases of Bloch spaces.

Example. For m = (0) we have ∆m = I, so B(0) = H∞. Also,

Qν,(0) =

{
H∞ ν > p− 1,
{0} ν ≤ p− 1.

Example. For m = (1) we have ∆(1) = ∆̃, so that

B(1) = {f : sup
a
‖∂(f ◦ φa)(0)‖2 <∞}.

This is known as the Timoney Bloch space [T].

Example. Assume that Ω is of tube type and s := d/r ∈ Z. Let m = (s, s, . . . , s) ≡ (sr).
It is known that in that case the space P(sr) = CN s is one-dimensional (for the unit
disc, N(z) = z; for Irr, N(Z) = detZ), the kernel Km is given (up to a constant
factor) by Km(∂, ∂) = N(∂)sN(∂)s, and the so-called Bol’s lemma says that for any
f holomorphic, N(∂)s(f ◦ φa)(0) = const · h(a)sN(∂)sf(a). (For the disc, this reads
(f ◦ φa)′(0) = −(1− |a|2) f ′(a).) Hence,

∆(sr)|f |2 = hp|N(∂)sf |2 (6.1)

and
B(sr) = {f holomorphic: hp|N(∂)sf |2 is bounded}.

We might call this the Arazy Bloch space [A].
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7 Example: the polydisc

For clarity, let us also see what is the situation for the bidisc Ω = D2. This is definitely
NOT a Cartan domain (it is not irreducible), but in many respects it behaves like a Cartan
domain with the rank, dimension and genus r = p = d = 2, multiplicities a = b = 0, and
h(x, y) = (1−x1y1)(1−x2y2). Namely, the invariant measure is h(z, z)−2 dz; the invariant
differential operators are precisely the symmetric polynomials in ∆̃1, ∆̃2, where ∆̃j :=
(1−|zj |2)2∂j∂j ; the Peter-Weyl spaces are given by Pm = Czm1

1 zm2
2 +Czm2

1 zm1
2 , for m =

(m1,m2); and, up to a constant factor, Km(x, y) = (x1y1)m1(x2y2)m2+(x1y1)m2(x2y2)m1 .
It follows that

∆(1,0) = ∆̃1 + ∆̃2, ∆(1,1) = ∆̃1∆̃2.

Thus the Timoney Bloch space B(1,0) consists of all f holomorphic on D2 for which

(1− |z1|2)2
∣∣∣ ∂f
∂z1

∣∣∣
2

+ (1− |z2|2)2
∣∣∣ ∂f
∂z2

∣∣∣
2

is bounded,

while the Arazy Bloch space B(1,1) consists of all f holomorphic on D2 for which

(1− |z1|2)2(1− |z2|2)2
∣∣∣ ∂2f

∂z1∂z2

∣∣∣
2

is bounded.

We thus see that the Timoney Bloch space is contained in the Arazy Bloch space, and is
a proper subset thereof: any holomorphic function of the form f(z1, z2) = g(z1) belongs
to B(1,1), but does not belong to B(1,0) unless g belongs to the Bloch space on the disc.
We also see that the Timoney-Bloch norm vanishes precisely on the constants, while the
Arazy-Bloch norm vanishes precisely on functions of the form f(z1) + g(z2).

Similar situation can be seen to prevail for a general polydisc Dn: there are n Bloch
spaces, of which Timoney is the smallest, and Arazy the largest.

Remark. The big Hankel operator Hf is compact⇐⇒ f belongs to the Timoney Bloch
space.

8 Composition series

The phenomenon that we have observed for the polydiscs is connected with the existence
of the composition series. Let us explain this concept on the example of the unit disc D.
There the following assertion holds.

Claim. Let E be any topological vector space of holomorphic functions on D which is
Möbius invariant and on which the group of rotations acts strongly-continuously. Then
either E = {0}, or E = {constants}, or E contains all polynomials.

Proof. Let E 3 f =
∑∞

k=0 fkz
k; then by rotation invariance,

∫ 2π

0
f(eiθz) e−miθ dθ

2π
= fmz

m ∈ E. (8.1)

Thus if fm 6= 0 for some m, then zm ∈ E; hence, by invariance, ( a−z
1−az )m ∈ E ∀a ∈ D.

Taking this for the f in (8.1) and 0 for the m in (8.1), we get am1 ∈ E; thus the constants
are in E.
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If even fm 6= 0 for some m ≥ 1, then, applying (8.1) to the same function again but
this time taking 1 for the m in (8.1) and noting that ( a−z

1−az )m = am−m(1−|a|2)z+O(z2),
we see that z ∈ E; thus by invariance a−z

1−az = a − (1 − |a|2)z
∑∞

j=1 a
jzj belongs to E,

for any a ∈ D. Taking the last function for the f in (8.1) shows that zj ∈ E ∀j, i.e. all
polynomials are in E. This completes the proof.

The last theorem admits the following reformulation. DenoteM1 = {all holomorphic
functions}, M0 = {constants}, M−1 = {0}. Then

E \Mj−1 6= ∅ =⇒ P ∩Mj ⊂ E.
It turns out that, in a sense, precisely the same thing holds for a general Cartan

domain.
Namely, let

(x)k := x(x+ 1) . . . (x+ k − 1)

denote the familiar Pochhammer symbol, and for a signature m = (m1,m2, . . . ,mr),
consider the function

x 7→ (x)m1(x− a

2
)m2(x− a)m3 . . . (x−

r − 1
2

a)mr , x ∈ C.

Let q(m) be the multiplicity of zero of this function at x = 0:

q(m) := card{j : mj >
j − 1

2
a ∈ Z}.

Also denote by q the maximum possible value of q(m), i.e.

q =




r a even,[r + 1

2

]
a odd.

For −1 ≤ j ≤ q, let

Mj = {f =
∑
m

fm holomorphic : fm = 0 if q(m) > j}.

Thus, in particular,

M−1 ⊂M0 ⊂M1 ⊂ · · · ⊂ Mq,

M−1 = {0}, M0 = {constants}, Mq = {all holomorphic}.
The following deep result is due to Orsted, Faraut and Koranyi.

Theorem. (1) Each Mj is G-invariant;
(2) for any G-invariant space E of holomorphic functions on which the action of K

is strongly continuous,

E \Mj−1 6= ∅ =⇒ P ∩Mj ⊂ E.
Example. For the bidisc D2, q = 2 and

M−1 = {0}, M0 = {constants},
M1 = f(z1) + g(z2), f, g holomorphic on D,

M2 = {all holomorphic}.
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9 Results

After all the preparations, we can finally give our results.

Theorem. If j < q(m), then the Qν,m-norm vanishes on Mj; thus Mj is contained
in Qν,m in a trivial way.

The same is true also for the Bloch space Bm.

Theorem. If ν > p− 1, then Bm ⊂ Qν,m continuously.

Theorem. If q(m) ≤ q(n), then Qν,m ⊂ Bn continuously.

Corollary. ν > p− 1 =⇒ Qν,m = Bm, with equivalent norms.
q(m) ≤ q(n) =⇒ Bm ⊂ Bn continuously.
q(m) = q(n) =⇒ Bm = Bn, with equivalent norms.
q(m) = q(n), ν > p− 1 =⇒ Qν,m = Qν,m, with equivalent norms.

The last corollary exhausts the case ν > p− 1 completely. What about ν ≤ p− 1?

Theorem. If ν < 0, then Qν,m =Mq(m)−1.

Theorem. For r > 1 and m = (1, 0, . . . , 0), that is,

f ∈ Qν,(1) ⇐⇒ sup
a∈Ω

∫

Ω
∆̃|f ◦ φa|2 hν dµ,

we have

Qν,(1) =

{
B(1), the Timoney Bloch space ν > p− 1,
{constants} ν ≤ p− 1.

Note that the last theorem means that the situation for r > 1 differs radically from
the one for r = 1 (disc, ball): there Qν is nontrivial also for p − 2 < ν ≤ p − 1 (for the
disc, even for p− 2 ≤ ν ≤ p− 1).

Theorem. For a tube domain with s = d
r ∈ Z, and m = (sr),

Qν,(sr) =





B(sr), the Arazy Bloch space ν > p− 1
D ν = 0
Mq−1 ν < 0.

Here D is the Dirichlet space

D = {f holomorphic: N(∂)sf ∈ L2(Ω, dz)}.
At the moment, we do not know what are the spaces Qν,m for ν between 0 and p− 1

and |m| > 1 — for instance, whether they are properly increasing with ν. We can offer
somewhat more complete information only for the polydisc:

Theorem. For the polydisc Dr (so that p = 2, q(m) = #{j : mj > 0}, and q = r),

q(m) < r =⇒ Qν,(m) =

{
Bm ν > 1,
Mq(m)−1 ν ≤ 1;

q(m) = r =⇒ Qν,(m) =





Arazy-Bloch ν > 1,
D ν = 0,
Mq(m)−1 ν < 0.
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All this suggests the following conjecture about the nontriviality of the spaces Qν,m.

Conjecture. For tube domains with s = d
r ∈ Z and q(m) = q,

Qν,m ⇐⇒ ν ≥ 0;

in all other cases,
Qν,m ⇐⇒ ν > p− 1.

10 Some proofs

We proceed to give some hints about the proofs of the theorems.

Theorem. j < q(m) =⇒ Mj ⊂ Qν,m and the norm vanishes. Similarly for Bm.

Proof. Recall that

f ∈ Qν,m ⇐⇒ sup
a

∫

Ω
∆m|f |2 (h ◦ φa)ν dµ <∞,

f ∈ Bm ⇐⇒ ∆m|f |2 ∈ L∞.

Now

∆m|f |2(z) = Km(∂, ∂)|f ◦ φz|2(0)

=
∑

j

ψj(∂)ψj(∂)|f ◦ φz|2(0)

=
∑

j

|ψj(∂)(f ◦ φz)(0)|2

=
∑

j

|〈f ◦ φz, ψj〉F |2

= ‖Pm(f ◦ φz)‖2F ,

where Pm denotes the projection onto Pm.
Thus f ∈Mj =⇒ f ◦ φz ∈Mj =⇒ Pm(f ◦ φz) = 0 =⇒ ∆m|f |2 = 0 =⇒ f ∈ Bm

and f ∈ Qν,m.

Theorem. ν > p− 1 =⇒ Bm ⊂ Qν,m continuously.

Proof. It is known that for ν > p− 1, the measure hν dµ is finite. Thus ∀a ∈ Ω,
∫

Ω
(∆m|f |2) ◦ φa h

ν dµ ≤ cν ‖∆m|f |2‖∞
= cν‖f‖2Bm

.

Theorem. q(m) ≤ q(n) =⇒ Qν,m ⊂ Bn continuously.
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Proof. By the K-invariance of ∆m and h, the integral
∫

Ω
∆m(fg)hν dµ

is a K-invariant bilinear form of f, g ∈ P. It follows from the Peter-Weyl decomposition
of P into the Pm that any such bilinear functional must be of the form

∑

k

cmk 〈fk, gk〉F ,

for some coefficients cmk ≥ 0. Suppose we can show that

cmn > 0. (10.1)

Since ∆n|f |2(0) = ‖Pnf‖2F = ‖fn‖2F , it will follow that

∆n|f |2(0) ≤ 1
cmn

∫

Ω
∆m|f |2 hν dµ.

Replacing f by f ◦ φa, this becomes

∆n|f |2(a) ≤ 1
cmn

∫

Ω
∆m|f ◦ φa|2 hν dµ.

Taking suprema over all a ∈ Ω gives the assertion.
It remains to prove (10.1). But by the properties of the composition series,

cmn = 0 ⇐⇒
∫

Ω
∆m|fn|2 hν dµ = 0 ∀fn ∈ Pn

⇐⇒ ∆m|fn|2(z) = 0 ∀z ∀fn
⇐⇒ ‖Pm(fn ◦ φz)‖2F = 0 ∀z ∀fn
⇐⇒ Pm(fn ◦ φz) = 0 ∀z ∀fn
⇐⇒ PmMq(n) = 0

⇐⇒ q(m) > q(n).

Theorem. ν < 0 =⇒ Qν,m =Mq(m)−1.

Proof. From the composition series we know that

Mq(m)−1 ( Qν,m =⇒ P ∩Mq(m) ⊂ Qν,m

=⇒ Pm ⊂ Qν,m

=⇒ sup
a

∫

Ω
∆m|f |2 (h ◦ φa)ν dµ <∞ ∀f ∈ Pm.

Since Km(z, z) =
∑

j |ψj(z)|2 for any basis {ψj} of Pm, we can continue by

=⇒ sup
a

∫

Ω
∆mKm · (h ◦ φa)ν dµ <∞
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where Km = Km(z, z). It can be shown that

∃mÀ 0 : ∆mKm ≥ c hm.

Thus we can continue by

=⇒ sup
a

∫

Ω
hm (h ◦ φa)ν dµ <∞. (10.2)

Forelli-Rudin inequalities show that this happens iff ν ≥ 0.

Theorem. For rank r > 1 and m = (1, 0, . . . , 0),

Qν,(1) =

{
B(1), the Timoney Bloch space ν > p− 1,
{constants} ν ≤ p− 1.

Proof. As above,

{constants} ( Qν,(1) ⇐⇒ sup
a

∫

Ω
∆̃‖z‖2 (h ◦ φa)ν dµ <∞.

The fact that

∆̃‖z‖2 ≈





h2 Ω = D,
h Ω = Bd,

1 r > 1

and (10.2) again yield the conclusion.

Theorem. For a tube domain with s = d
r ∈ Z, and m = (sr),

Qν,(sr) =





B(sr), the Arazy Bloch space ν > p− 1
D ν = 0
Mq−1 ν < 0.

Proof. As mentioned before, in this case

∆m = hpN(∂)sN(∂)s

for a certain polynomial N (the Jordan norm). Hence

f ∈ Qν,m ⇐⇒ sup
a

∫

Ω
hp |N(∂)sf |2 (h ◦ φa)ν dµ <∞

⇐⇒ sup
a

∫

Ω
|N(∂)sf |2 (h ◦ φa)ν dz <∞.

Thus for ν ≥ 0, all polynomials belong to Qν,m.
For ν = 0, this coincides with the definition of the Dirichlet space.
The case ν < 0 was settled by the previous theorem.
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Theorem. For the polydisc Dr (so that p = 2, q(m) = #{j : mj > 0}, and q = r),

q(m) < r =⇒ Qν,(m) =

{
Bm ν > 1,
Mq(m)−1 ν ≤ 1;

q(m) = r =⇒ Qν,(m) =





Arazy-Bloch ν > 1,
D ν = 0,
Mq(m)−1 ν < 0.

Proof. Using explicit formulas for Km, ∆m etc. given in one of the preceding sections,
this is easily reduced to explicit calculations on the disc.

11 Open problems

We conclude the paper by a list of open problems.
(1) The first of them is, of course, to determine when Qν,m is nontrivial — we repeat

here the conjecture stated above:

Conjecture. Qν,m nontrivial iff
ν ≥ 0 (for tube domain with d

r ∈ Z and q(m) = q)
ν > p− 1 (otherwise).

(2) If q(m) = q(n), is Qν,m = Qν,n? (We have seen that this holds for the Bloch
spaces, hence also for ν > p− 1; the case of ν ≤ p− 1 remains unresolved.)

(3) If ν1 < ν2 and Qν1,m, Qν2,m are nontrivial, is Qν1,m ( Qν2,m? (For D, this was
proved in [AXZ], and for Bd in [AC].)

(4) In principle, one can define Qν,L and BL for any invariant differential operator L,
even when the right-hand side in (3) is not nonnegative, by

f ∈ BL ⇐⇒ L|f |2 is bounded,

f ∈ Qν,L ⇐⇒ sup
a

∫

Ω

∣∣∣L|f ◦ φa|2
∣∣∣ hν dµ <∞.

If L is such that L|f |2 ≥ 0 for all f holomorphic f , i.e. if

L =
∑
m

lm ∆m, lm ≥ 0, (11.1)

then it is easy to see that

Qν,L =
⋂

m: lm>0

Qν,m,

BL = Bm where q(m) = min{q(k) : lk > 0}.
What happens for operators L not satisfying (11.1)?

For instance, does the space of all holomorphic f on D for which

sup
a∈D

∫

D

∣∣∣∆̃2|f(φa(z)|2
∣∣∣ (1− |z|2)ν−2 dz <∞

coincide with the Bloch space for ν > 1?
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Commutative C∗-algebras of Toeplitz Operators

on the Unit Disk

Nikolai Vasilevski

We give a complete characterization of commutative C∗-algebras of Toeplitz operators
acting on weighted Bergman spaces over the unit disk. This note is a short version of the
paper [7], where all proofs and details can be found.

1 Commutative algebras and hyperbolic geometry

We introduce the following Möbius invariant normalized measure on the unit disk D

dµ(z) =
1
π

dx ∧ dy
(1− (x2 + y2))2

=
1

2πi
dz ∧ dz

(1− |z|2)2
.

For h ∈ (0, 1), the weighted Bergman space A2
h(D) on the unit disk (see, for example, [3])

is the space of analytic functions in L2(D, dµh), where

dµh(z) = (
1
h
− 1)(1− |z|2)

1
h dµ(z),

and

‖f‖h =
(∫

D
|f(z)|2 dµh(z)

) 1
2

.

Note, that for h = 1
2 we have the classical weightless Bergman space A2(D) (with nor-

malized measure).
The orthogonal Bergman projection from L2(D, dµh) onto the weighted Bergman

space has the form (see, for example, [3]):

(B(h)
D f)(z) =

∫

D

f(ζ)

(1− zζ)
1
h

dµh(ζ) = (
1
h
− 1)

∫

D
f(ζ)

(
1− ζζ
1− zζ

) 1
h

dµ(ζ).

Given a function a(z) ∈ L∞(D), the Toeplitz operator T (h)
a with symbol a is defined

on A2
h(D) as follows

T (h)
a : ϕ ∈ A2

h(D) 7−→ B
(h)
D (aϕ) ∈ A2

h(D).

It was recently shown ([11, 12]) that apart from the known case of radial symbols in the
classical (weightless) Bergman space A2(D) there exists a rich family of commutative C∗-
algebras of Toeplitz operators. Moreover, surprisingly it turns out that these commutative
properties of Toeplitz operators do not depend at all on smoothness properties of the
symbols: the corresponding symbols can be merely measurable. Furthermore it turns out
([4, 5, 6]) that the above classes of symbols generate commutative C∗-algebras of Toeplitz
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operators on each weighted Bergman space A2
h(D). The prime cause here appears to be

the geometric configuration of level lines of symbols.
In this context it is useful to consider the unit disk D as the hyperbolic plane equipped

with the standard hyperbolic metric

ds2 =
1
π

dx2 + dy2

(1− (x2 + y2))2
.

Recall that a geodesic, or a hyperbolic straight line, on D is a part of an Euclidean circle
or of a straight line orthogonal to the boundary of D.

Each pair of geodesics, say L1 and L2, determines (see, for example, [1]) a geomet-
rically defined object, a one-parameter family P of geodesics, which is called the pencil
defined by L1 and L2. Each pencil has an associated family C of lines, called cycles, which
are the orthogonal trajectories to geodesics forming the pencil.

The pencil P defined by L1 and L2 is called

1. parabolic if L1 and L2 are parallel (and tend to the same point z0 ∈ ∂D), in this
case P is the set of all geodesics parallel to L1 and L2, and the cycles are called
horocycles;

2. elliptic if L1 and L2 are intersecting (at a point z0 ∈ D), in this case P is the set of
all geodesics passing through the common point of L1 and L2;

3. hyperbolic if L1 and L2 are disjoint, in this case P is the set of all geodesics orthog-
onal to the unique common orthogonal geodesic (with endpoints z1, z2 ∈ ∂D) of L1

and L2, and the cycles are called hypercycles.

Figure 1. Parabolic, elliptic and hyperbolic pencils.

In Figure 1, illustrating possible pencils, the cycles are drawn in bold lines.
The following main theorem has been proved in [11, 12] for the classical (weightless)

Bergman space, and in [4, 5, 6] for all weighted Bergman spaces.

Theorem 1.1. Given a pencil P of geodesics, consider the set of L∞-symbols which are
constant on corresponding cycles. The C∗-algebra generated by Toeplitz operators with
such symbols is commutative on each weighted Bergman space A2

h(D).
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2 Three-term asymptotic expansion formula

To get an inverse statement to Theorem 1.1 we will use the familiar Berezin quantization
procedure on the unit disk (see, for example, [2, 3]).

For each function a = a(z) ∈ C∞(D) consider the family of Toeplitz operators T (h)
a

with (anti-Wick) symbol a acting on A2
h(D), for h ∈ (0, 1). The Wick symbols of the

Toeplitz operator T (h)
a has the form

ãh(z, z) = (
1
h
− 1)

∫

D
a(ζ)

(
(1− |z|2)(1− |ζ|2)
(1− zζ)(1− ζz)

) 1
h

dµ(ζ),

and the star product of Wick symbols is defined as follows

(ãh ? b̃h)(z, z) = (
1
h
− 1)

∫

D
ãh(z, ζ) b̃h(ζ, z)

(
(1− |z|2)(1− |ζ|2)
(1− zζ)(1− ζz)

) 1
h

dµ(ζ).

To achieve our goal we need the three-term asymptotic expansion formula of the
commutator of two Wick symbols.

Theorem 2.1. For any pair a = a(z, z) and b = b(z, z) of six times continuously differ-
entiable functions the following three-term asymptotic expansion formula holds

ãh ? b̃h − b̃h ? ãh = i~ {a, b}+ i
~2

4
(∆{a, b}+ {a,∆b}+ {∆a, b}+ 8π{a, b})

+i
~3

24
[{∆a,∆b}+ {a,∆2b}+ {∆2a, b}+ ∆2{a, b}

+∆{a,∆b}+ ∆{∆a, b}+ 28π (∆{a, b}+ {a,∆b}+ {∆a, b})
+ 96π2{a, b}] + o(~3),

where ~ = h
2π , and the Poisson bracket and the Laplace-Beltrami operator are given by

{a, b} = 2πi(1− zz)2
(
∂a

∂z

∂b

∂z
− ∂a

∂z

∂b

∂z

)
,

∆ = 4π(1− zz)2
∂2

∂z∂z
.

Corollary 2.2. Let A(D) be a subalgebra of C∞(D) such that for each h ∈ (0, 1) the
Toeplitz operator algebra Th(A(D)) is commutative. Then for all a, b ∈ A(D) we have

{a, b} = 0, (2.1)
{a,∆b}+ {∆a, b} = 0, (2.2)

{∆a,∆b}+ {a,∆2b}+ {∆2a, b} = 0. (2.3)

3 Consequences of (2.1), (2.2), and (2.3)

Discussing commutative C∗-algebras of Toeplitz operators we will always assume that the
corresponding generating class of symbols is a linear space. To underline the geometric
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nature of symbol classes which generate the commutative C∗-algebras of Toeplitz opera-
tors we have considered bounded measurable symbols in Theorem 1.1. This also agrees
with the desire for such (commutative) algebras to be, in a sense, maximal. Note that the
arguments used in the proof do not require any assumption on smoothness properties of
symbols. The same result (commutativity of Toeplitz operator C∗-algebra) remains valid
for any linear subspace of L∞-symbols (constant on cycles). Moreover, we can start with
a much more restricted set of symbols (say, smooth symbols only) and extend them fur-
thermore to all L∞-symbols by means of uniform and strong operator limits of sequences
of Toeplitz operators.

As we consider the C∗-algebra generated by Toeplitz operators, we can always assume,
without loss of generality, that our set of symbols is closed under complex conjugation
and contains the function e(z) ≡ 1.

Let A(D) be a linear space of (smooth) functions. Denote by T (A(D)) = {Th(A(D))}h
the family of C∗-algebras Th(A(D)) generated by Toeplitz operators with symbols from
A(D) and acting on the weighted Bergman spaces A2

h(D).
To introduce our symbol classes we need the notion of the jet of a function (see,

for example, [9, 10]). Given two complex valued smooth functions f and g defined in a
neighborhood of a point z ∈ D, we say that they have the same jet of order k at z if their
real partial derivatives at z up to order k are equal. It is easy to see that such relation
does not depend on the coordinate system and that it defines an equivalence relation.
The corresponding equivalence class of a function f at z is denoted by jk

z (f) and is called
the k-th order jet of f at z. Furthermore, given a complex vector space A(D) of smooth
functions, we denote with Jk

z (A(D)) the space of k-jets at z of the elements in A(D). We
observe that Jk

z (A(D)) is a finite dimensional complex vector space.
In what follows, for a differentiable function f : D → C we will say that z ∈ D is a

nonsingular point of f if dfz 6= 0.
The symbol classes that we are considering are given in the next definition.

Definition 3.1. Let A(D) be a complex vector space of smooth functions. We will say
that A(D) is k-rich if it is closed under complex conjugation and the following conditions
are satisfied:

(i) there is a finite set S such that for every z ∈ D \ S at least one element of A(D) is
nonsingular at z,

(ii) for every point z ∈ D \ S and l = 0, . . . , k, the space of jets J l
z(A(D)) has complex

dimension at least l + 1.

As the set A(D) is closed under the complex conjugation, it is sufficient to consider
the conditions (2.1), (2.2), and (2.3) for real valued functions only. Recall that each real
valued function a ∈ A(D), nonsingular in some open set, has in this set two systems of
mutually orthogonal smooth lines, the system of level lines and the system of gradient
lines.

The geometric information contained in the first term of asymptotic expansion of a
commutator, or equivalently in the condition (2.1), is given by the next lemma.

Lemma 3.2. Let A(D) be a 2-rich space of smooth functions which generates for each
h ∈ (0, 1) the commutative C∗-algebra Th(A(D)) of Toeplitz operators. Then all real
valued functions in A(D) have (globally) the same set of level lines and the same set of
gradient lines.
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Vanishing of the second term of asymptotic in a commutator, or equivalently the
condition (2.2), leads to the following theorem.

Theorem 3.3. Let A(D) be a 2-rich space of smooth functions which generates for each
h ∈ (0, 1) the commutative C∗-algebra Th(A(D)) of Toeplitz operators. Then the common
gradient lines of all real valued functions in A(D) are geodesics in the hyperbolic geometry
of the unit disk D.

Vanishing of the third term of asymptotic in a commutator, or equivalently the con-
dition (2.3), implies the following theorem.

Theorem 3.4. Let A(D) be a 3-rich vector space of smooth functions A(D) which gener-
ates for each h ∈ (0, 1) the commutative C∗-algebra Th(A(D)) of Toeplitz operators. Then
the common level lines of all real valued functions in A(D) are cycles.

The next theorem provides a geometric characterization of the real valued functions
on D whose gradient lines define a pencil of geodesics.

Theorem 3.5. A nonconstant C3 real valued function a in D defines a pencil if and only
if the following two conditions are satisfied:

(i) The gradient lines of a are geodesics.

(ii) Each level line of a is a cycle.

Lemma 3.2, Theorem, 3.3, Corollary 3.4, and Theorem 3.5 lead directly to the follow-
ing result.

Corollary 3.6. Let A(D) be a 3-rich vector space of smooth functions such that Th(A(D))
is commutative for each h ∈ (0, 1). Then there exists a pencil P of geodesics in D such
that all functions in A(D) are constant on the cycles of P.

Now the main result of the paper reads as follows.

Corollary 3.7. Let A(D) be a 3-rich vector space of smooth functions. Then the following
three statements are equivalent:

(i) there is a pencil P of geodesics in D such that all functions in A(D) are constant
on the cycles of P;

(ii) the C∗-algebra generated by Toeplitz operators with A(D)-symbols is commutative
on each weighted Bergman space A2

h(D), h ∈ (0, 1).

References

[1] A. F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, Berlin etc., 1983.

[2] F. A. Berezin. General concept of quantization. Commun. Math. Phys., 40:135–174,
1975.

[3] F. A. Berezin. Method of Second Quantization. “Nauka”, Moscow, 1988.



38 Nikolai Vasilevski

[4] S. Grudsky, A. Karapetyants, and N. Vasilevski. Dynamics of properties of Toeplitz
operators on the upper half-plane: Hyperbolic case. Bol. Soc. Mat. Mexicana,
10:119–138, 2004.

[5] S. Grudsky, A. Karapetyants, and N. Vasilevski. Dynamics of properties of Toeplitz
operators on the upper half-plane: Parabolic case. J. Operator Theory, 52(1):185–
204, 2004.

[6] S. Grudsky, A. Karapetyants, and N. Vasilevski. Dynamics of properties of Toeplitz
operators with radial symbols. Integr. Equat. Oper. Th., 20(2):217–253, 2004.

[7] S. Grudsky, R. Quiroga-Barranco, N. Vasilevski. Commutative C*-algebras of
Toeplitz Operators and Quantization on the Unit Disk. Reporte Interno # 361,
Departamento de Matematicas, CINVESTAV del I.P.N., Mexico, 2005, 50 p. (to
appear in J. Func. Analysis)

[8] S. Grudsky and N. Vasilevski. Bergman-Toeplitz operators: Radial component in-
fluence. Integr. Equat. Oper. Th., 40(1):16–33, 2001.
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Berezin–Toeplitz quantization of the moduli

space of flat SU(n) connections

Martin Schlichenmaier

1 Introduction

This is a condensed write-up of a talk presented at the program “Complex Analysis,
Operator Theory, and Applications to Mathematical Physics” organized by F. Haslinger,
E. Straube, and H. Upmeier at the Erwin-Schrödinger-Institute in Vienna in September
2005, and at the “Conference on Poisson Geometry”, organized by T. Ratiu, A. Weinstein,
and N.T. Zung at the ICTP, Trieste, in 2005.

First, we recall the basics of the Berezin-Toeplitz quantization (operator and formal
deformation quantization). Then we discuss the moduli space of flat SU(n) connections
on a fixed Riemann surface in its different guises. Finally, we present recent results
obtained by Jørgen Andersen showing the asymptotic faithfulness of the representations
of the mapping class group (MCG, Teichmüller group) on the covariantly constant sections
of the projectivized Verlinde bundle. In his approach he uses the Toeplitz operators and
results on their correct semiclassical behavior as they will be presented in the first part.

As far as the Berezin-Toeplitz quantization is concerned the results are results ob-
tained partly in joint works with E. Meinrenken, and M. Bordemann resp. with A.
Karabegov [3], [9], [10], [11], [8].

Quite a number of mathematician (and physicists) were involved in the study of the
moduli space of connections and the mapping class group. Instead giving references here,
let me refer to the recent overviews by L. Jeffrey [5] and G. Masbaum [6]. The beautiful
results on the asymptotic faithfulness presented are entirely due to Andersen [1]. For
similar results for the U(1) obtained by him see also [2].

2 BT quantization of compact Kähler manifolds

2.1 Kähler manifolds

Let (M,ω) be a Kähler manifold, i.e. M a complex manifold, and ω a a closed (1, 1)-form
on M which is positive (a Kähler form).
Examples:

1. Cn, ω = i
∑n

i=1 dzi ∧ dz̄i,
2. P1, ω = i

(1+zz̄)2
dz ∧ dz̄,

3. every Riemann surface carries a Kähler form,
4. every (complex) torus of arbitrary dimension with the standard Kähler form on

Cn (see 1.),
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5. every (quasi-)projective manifold, i.e. every non-empty open subset of a projective
variety without singularities, with the restriction of the Fubini-Study Kähler form of the
projective space,

6. very often moduli spaces in the algebraic or analytic context carry a natural Kähler
structure coming from their construction.

2.2 Quantizable Kähler manifolds

Definition 2.1. ( Quantization condition) A Kähler manifold (M,ω) is called quantiz-
able, if there exists an associated quantum line bundle (L, h,∇), i.e. a holomorphic line
bundle L over M , with hermitian metric h on L, and compatible connection ∇, fulfilling

curvL,∇ = −i ω.

Note: Not all Kähler manifolds are quantizable. For example only such tori are quan-
tizable which have enough theta functions, i.e. which can be embedded holomorphically
into projective space. They are called abelian varieties.

For the rest of this write-up we assume that M is a compact Kähler manifold. We fix
a quantum line bundle L and consider Lm := L⊗m, with metric h(m), and take

Γ∞(M,Lm) the space of smooth global sections, and

Γhol(M,Lm) = H0(M,Lm) the subspace of global holomorphic sections.
Due to the compactness of M , the latter is finite-dimensional. On these spaces a

scalar product is defined via

〈ϕ,ψ〉 :=
∫

M
h(m)(ϕ,ψ) Ω, Ω :=

1
n!
ω ∧ ω · · · ∧ ω︸ ︷︷ ︸

n

.

We will need the projector

Π(m) : L2(M,Lm) −→ Γhol(M,Lm).

2.3 Berezin-Toeplitz operator quantization

Fix f ∈ C∞(M), and let s ∈ Γhol(M,Lm) then the following map

s 7→ T
(m)
f (s) := Π(m)(f · s)

defines the Toeplitz operator of level m

T
(m)
f : Γhol(M,Lm)→ Γhol(M,Lm).

The Berezin-Toeplitz (BT) operator quantization is the map

f 7→
(
T

(m)
f

)
m∈N0

.

The reason to call it a quantization is, that it has the correct semi-classical behavior
as expressed in the following theorem.
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Theorem 2.1. (Bordemann, Meinrenken, and Schlichenmaier (BMS) [3])
(a)

lim
m→∞ ||T

(m)
f || = |f |∞, (2.1)

(b)

||mi [T (m)
f , T (m)

g ]− T (m)
{f,g}|| = O(1/m), (2.2)

(c)

||T (m)
f T (m)

g − T (m)
f ·g || = O(1/m). (2.3)

The proofs of (b) and (c) are based on the symbol calculus of generalized Toeplitz
operators developed by Boutet de Monvel and Guillemin [4].

2.4 Deformation quantization

Theorem 2.1. (BMS, Schl., Karabegov and Schl.) [3], [9], [10], [11], [8].
There exists a unique differential star product, the BT star product,

f ?BT g =
∑

νkCk(f, g), (2.4)

such that

T
(m)
f T (m)

g ∼
∞∑

k=0

(
1
m

)k

T
(m)
Ck(f,g), (m→∞). (2.5)

This star product is of “separation of variables” type, and has classifying Deligne-Fedosov
class

1
i
(
1
λ

[ω]− ε

2
), (2.6)

and Karabegov form
−1
λ
ω + ωcan, (2.7)

A star product is a differential star product if the Ck(., .) are bidifferential operators
in their function arguments. Such a differential star product is of “separation of variables
type” if the first argument is only differentiated in holomorphic directions and the second
argument only in anti-holomorphic directions (resp. the opposite directions depending on
the convention chosen). This notion is due to Karabegov [7], and corresponds to the fact
that the star product respects the complex structure. Such star products are classified
by their formal Karabegov form. Above λ is used as formal variable for the forms and
the formal forms are formal power series in λ if we ignore 1/λ which comes with the
fixed ω. In particular, for the BT star product no higher formal powers of λ occur. The
Deligne-Fedosov class is a formal H2

deRahm class which classifies the star product up to
equivalence. The form ωcan is the curvature form of the canonical (holomorphic) line
bundle with fibre metric coming from the Liouville form.

Note also that the asymptotic formula (2.5) is a short-hand notation for a very precise
and strong asymptotic behaviour of the norms of the involved operators. See the cited
references for the precise statement.
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3 The moduli space of flat SU(n) connections

3.1 Its symplectic structure

Let X be an oriented compact surface, and p ∈ X a fixed point. We denote by G the
group SU(n).

Let AF,ξ be the set of flat SU(n) connections over X \ {p} with holonomy ξ of finite
order d around p. We fix for the center of SU(n) a generator and identify it with Z/nZ.
Then ξ corresponds to d mod n.

The group of maps X → G from the surface X to the group G with pointwise multi-
plication in G, is the gauge group G. It acts on the connection via gauge transformations

Ag := g−1dg + g−1Ag. (3.1)

The moduli space of connections is the quotient of the set of connections modulo these
gauge transformations

M := AF,ξ/G ∼= Homd(π̃1(X), G)/G (3.2)

The latter equivalence is the fact that this moduli space can be identified with the space
of those group homomorphisms of the central extension π̃1(X) of the fundamental group
π1(X) defined by

0 −→ Z −→ π̃1(X) −→ π1(X) −→ 0

with values in G, for which the generator 1 ∈ Z in the central extension is mapped to
d mod n in the center of G, where the homomorphism are identified modulo conjugation
in G.

Let Ms be the moduli space of irreducible flat connections (this corresponds to irre-
ducible representations). It is a manifold, carries a natural symplectic structure ω, and
an associated hermitian line bundle L which is a quantum line bundle with respect to
the symplectic structure. It is constructed from the WZW cocycle of the Chern-Simons
action. See the appendix for more details and [5] for references and further information.

3.2 Its complex structure

We choose a complex structure σ on X. This structure will induce complex structures
on all introduced objects.

1. X =⇒ Xσ is now a (compact) Riemann surface,

2. (Ms, ω) =⇒ (Mσ
s , ω

σ) is now a Kähler manifold,

3. L =⇒ Lσ becomes a hermitian holomorphic line bundle, in fact, it is a quantum
line bundle with respect to ωσ.

Hence,Mσ
s is a quantizable Kähler manifold with quantum line bundle Lσ. But what

is the geometry of Mσ
s ? Is it compact? To study these questions we discuss another

description of the moduli space.
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4 Holomorphic rank n bundles E over smooth projective
curves

4.1 The moduli space

Recall that the compact Riemann surface Xσ can be identified with a smooth projective
curve C over C. In the following we consider holomorphic vector bundles over C. First
we define for every rank n holomorphic vector bundle E, its determinant line bundle as
detE :=

∧nE, and its degree as deg(E) := deg(detE). The question is: Does there exist
a moduli space of isomorphy classes of such bundles? The answer is: In generally not!
We need to restrict our considerations to the subset of isomorphy classes of (Mumford)
stable bundles, resp. S-equivalence classes of semi-stable bundles. A bundle E is stable
(resp. semi-stable) iff for every non-trivial subbundle F of E one has deg(F )/rk(F ) <
deg(E)/rk(E) (resp. ≤). For the S-equivalence relation two semi-stable (but not stable)
bundles are identified if certain associated graded objects are isomorphic.

Let T be a line bundle and n ∈ N. We use the following notation for the moduli space of
bundles

Us(n, d), rk (E) = n, deg(E) = d, E stable,
Us(n, T ), rk (E) = n, det(E) = T , E stable,
U(n, d), rk (E) = n, deg(E) = d, E semi-stable,
U(n, T ), rk (E) = n, det(E) = T , E semi-stable.

In the following let [p] be the line bundle corresponding to the divisor p, i.e. the line
bundle which has a non-trivial section with exactly a zero of order one at p and which
is non-vanishing elsewhere. Furthermore let d[p] be its d-tensor power. In particular,
deg d[p] = d.

We have the following properties:

1. M := U(n, d[p]) is always projective algebraic (hence compact),

2. Ms := Us(n, d[p]) is Zariski open and smooth in M , hence a smooth manifold,

3. if gcd(n, d) = 1 then M = Ms, and hence Ms is a compact Kähler manifold,

4. the singularities of M are rather mild,

5. for the Picard group of isomorphy classes of line bundles we have Pic(Ms) =
Pic(M) = Z · [L], where L is a special ample line bundle,

6. Γhol(Ms, L
m
| ) = Γhol(M,Lm),

7. if g = 2 and n = 2 then M is always smooth.

The fundamental result is
Mσ

s
∼= Us(n, d[p]) = Ms

as complex manifold and as Kähler manifolds, and

Lσ ∼= L

as holomorphic line bundles.
A few names of people involved are Narasimhan, Seshadri, Weil, Mumford, .....



44 Martin Schlichenmaier

4.2 The Verlinde bundle

The Verlinde spaces are the vector spaces H0(M,Lm) =Γhol(M,Lm) and the dimension
formula (as function of m) is called the Verlinde formula.

These Verlinde spaces are the quantum spaces, and the BT operators

T
(m)
f : H0(M,Lm)→ H0(M,Lm)

are the quantum operators. We can apply Theorem 2.1 (BMS) und use the natural
deformation quantization ?BT of Theorem 2.1 (at least without modification, if M = Ms,
resp. if M is smooth).

We have to go one step further. If we consider the following diagram we see that the
first line does not depend on the complex structure σ, but the second does.

X −−−−→ (Ms,Lm) −−−−→ Γ∞(Ms,Lm)ychoose σ

y
yΠσ,(m)

Xσ −−−−→ (Mσ
s = Ms, (Lσ)m = Lm) −−−−→ Γhol(Ms, L

m)

If we vary our σ over the Teichmüller space T , (i.e. the space of all complex structures on
X modulo a certain equivalence relation) the first line will give trivial families of objects,
the second line nontrivial families over T .

In particular, over T there is the trivial (infinite dimensional) bundle with fibre
Γ∞(Ms,Lm) which contains the subbundle Vm with fibre Γhol(Ms, L

m). The bundle
Vm is the called the Verlinde bundle over T

Given f ∈ C∞(Ms) its Toeplitz operator depends on the complex structure. Hence,
(
T

(m)
f,σ

)
σ∈T

is a family of operators on the Verlinde bundle. In other words T (m)
f, . is a section of

End(Vm).

5 The mapping class group (MCG) action

Over Teichmüller space T we have the bundles Vm and End(Vm). We will discuss the
following points:

1. There exists a naturally defined projectively flat connection ∇ on Vm, it is the
Axelrod, della Pietra, Witten – Hitchin connection.

2. The MCG operates on the covariantly constant sections of P(Vm).

3. J. Andersen showed that this action of the MCG is asymptotically faithful (i.e. given
an element of the MCG, there is an m such that the element operates non-trivially).

Recall that the mapping class group(MCG) is defined as

Γ := MCG := Diff+(X)/Diff0(X),

here X is the surface of genus g, Diff+(X) the group of orientation preserving dif-
feomorphisms and Diff0(X) the subgroup of diffeomorphisms which are isotop to the
identity.



BT quantization of the moduli space of flat SU(n) connections 45

1. By definition Γ operates on the surface X.

2. It operates on the Teichmüller space. In fact the moduli spaceMg of isomorphism
classes of compact genus g Riemann surfaces (resp. smooth projective curves of
genus g) is the quotient T /Γ.

3. It operates on the fundamental group π1(X), and on Homd(π̃1(X), G)/G.

4. And furthermore it operates on Mσ
s
∼= Ms, the moduli spaces of irreducible con-

nections, resp. stable bundles.

5.1 Andersen’s result

Let ∇ be the Axelrod-della Pietra-Witten – Hitchin (AdPW-H) connection on Vm which
is projectively flat. It induces a flat connection ∇end on End(Vm). We denote by P(Wm),
the space of covariantly constant sections of P(Vm) with respect to ∇. Then the MCG
operates also on P(Wm):

ρm : Γ→ Aut(P(Wm)).

Theorem 5.1. (Andersen, [1]) For g ≥ 3 the map ρm is asymptotically faithful.
More precisely,

∞⋂

m=1

ker(ρm) =





1, g > 2, or g = 2, n > 2, or
g = 2, n = 2, d odd,

{1,H}, g = 2, n = 2, d even,

(5.1)

where H is the hyperelliptic involution.

5.2 Importance

The assignment
X −→ V (X) = H0(Ms, L

m)

corresponds to a Topological Quantum Field Theory (TQFT). It should be independent
of the complex structure chosen. The projectively flat connection gives locally a natural
identification. Globally the choice reduces to on action of the mapping class group Γ —
(which is also a topological invariant). Hence, this action gives invariants of the TQFT
in question.

5.3 The relation to BT

Note in the following that f ∈ C∞(Ms), i.e. f is a smooth function on the moduli space
of connections, resp. bundles.

Proposition 5.1. (Andersen, [1]) For σ0, σ1 ∈ T , denote by P end
σ0,σ1

the parallel transport
from σ0 to σ1 in End(Vm), then

||P end
σ0,σ1

T
(m)
f,σ0
− T (m)

f,σ1
|| = O(1/m). (5.2)
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He uses Theorem 2.1 (BMS), the deformation quantization of Theorem 2.1 and carries
out further ingenious hard work.

Proposition 5.2. (Andersen, [1]) Let φ ∈ Γ, such that φ ∈ kerρm, then

T
(m)
f,σ = P end

φ(σ),σT
(m)
f◦φ,φ(σ) (5.3)

Theorem 5.3. (Andersen, [1]) Let φ ∈ Γ, such that φ ∈ ⋂
m∈N ker ρm, then φ induces

the identity on Ms.

Proof. By Proposition 5.2 and the linearity in the function argument of the Toeplitz
operators we have

T
(m)
f−f◦φ,σ = T

(m)
f,σ − T (m)

f◦φ,σ = P end
φ(σ),σT

(m)
f◦φ,φ(σ) − T

(m)
f◦φ,σ.

We take the norm of this expression and use Proposition 5.1:

||T (m)
f−f◦φ,σ|| = O(1/m).

Or,
lim

m→∞ ||T
(m)
f−f◦φ,σ|| = 0.

This implies |f − f ◦ φ|∞ = 0 by Theorem 2.1, Part a, for all f , hence φ = id considered
as element acting on the moduli space.

Theorem 5.1 follows from known results which elements of the mapping class group
act trivially on the moduli space of connections.

6 Appendix: Symplectic form on M
Let AF be the affine space of all flat SU(n) connections, and g = su(n). The tangent
vectors at A ∈ AF can be given as α, β ∈ Ω1(X)⊗ g. On this space

ΩA(α, β) =
i

2π

∫

X
Tr(α ∧ β)

is a skew-symmetric form which is invariant under the gauge group and hence descends to
M = AF /G. If we restrict the situation to the irreducible connections, then the quotient
Ms = As

F /G is a manifold and Ω descends to a symplectic form on Ms

To define the bundle one uses the Chern-Simons(CS) action. Let N be a 3-manifold
with boundary ∂N = X. For any connection Ã on N

CS(Ã) :=
1

4π

∫

N
Tr(Ã ∧ dÃ+

2
3
Ã ∧ Ã ∧ Ã).

For a connection on X we take any extension Ã to N . Also for a gauge transformation
g ∈ G we take any extension g̃ : N → G. Then

θ(A, g) := exp(i(CS(Ãg̃)− CS(Ã))

is a U(1)-valued well-defined cocycle (the WZW cocycle). It is used to construct the
bundle L over Ms as quotient

L := (As
F × C)/ ∼ → As

F /G =Ms

where (A, z) ∼ (Ag, θ(A, g)z) . The one form η(α) = 1
4π

∫
X Tr(A ∧ α) on AF induces a

unitary connection on L, whose curvature is essentially equal to the symplectic form.
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Kontsevich Quantization and Duflo Isomorphism

Micha Pevzner

The aim of this expository note is to explain the relationship between the Kontse-
vich’s Formality theorem and the problem of local solvability of bi-invariant differen-
tial operators on finite-dimensional real Lie groups. Main references to this subject are
[5, 1, 2, 3, 6, 7].

Let G be a connected real finite dimensional Lie group and g be its Lie algebra. The
symmetric algebra S(g) of g can be seen as the algebra of differential operators with
constant coefficients on g as well as the algebra (with respect to the convolution on the
vector space g) of distributions on g supported at the origin, it is always commutative.
On the other hand side the universal enveloping algebra U(g) of g can be seen as the
algebra of left-invariant differential operators on G as well as the algebra (with respect
to the convolution on G) of distributions on G supported at the identity element. The
algebra U(g) is neither commutative (except when g is commutative) nor graded. However
U(g) is filtered by the order of differential operators and the Poincaré-Birkhoff-Witt
theorem ensures that its associated graded algebra grU(g) is isomorphic to S(g). This
isomorphism, called symmetrization, is given by β(X1...Xn) = 1

n!

∑
σ∈Sn

Xσ(1)...Xσ(n).
Obviously S(g) and U(g) are not isomorphic as algebras so one cannot ”transform” the
convolution of distributions on the Lie algebra into the convolution of distributions on
the corresponding Lie group and thus to reduce the solvability of left-invariant differential
operators on G to the solvability of differential operators with constant coefficients on g.
However, it turns out that the set of ad(g)-invariants in S(g) is isomorphic as an algebra to
the center Z(g) of U(g). This remarkable fact was described for reductive Lie algebras by
Harish-Chandra and for nilpotent ones by Dixmier. The validity of this fact for arbitrary
real finite-dimensional Lie algebras was established by Duflo [4] in 1979. A highly non
trivial proof of this result was based on the orbit method that relates coadjoint orbits of
G (parametrized by invariant symmetric tensors) with irreducible representations of G
(whose infinitesimal characters are elements of Z(g)). More precisely, let

q(x) = det
g

(
sinh(adx

2 )
adx
2

) 1
2

, (0.1)

be a formal power series on g∗ and ∂q be the differential operator of infinite order on g

with symbol q. Then, the so-called Duflo map β ◦ ∂q : S(g) → U(g) is a vector space
isomorphism that becomes algebra isomorphism when restricted to invariants. Therefore
the convolution of invariant distributions on G can be recovered form the convolution of
their invariant pull-backs on g and thus every non-zero bi-invariant differential operator
on G admits a local fundamental solution.

We shall explain how does this theorem follow from the formality theorem and how
can it be extended in cohomology.

48
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1 Formality theorem and its consequences

Let X be a smooth manifold. One associates to X two graded differential Lie algebras
(GDLA). The first GDLA g1 = Tpoly(X) is the graded algebra of poly-vector fields on X:
Tn

poly(X) := Γ(X,Λn+1TX), n ≥ −1, equipped with the Schouten-Nijenhuis bracket
[ , ]SN and the differential d := 0.

Recall that the Schouten-Nijenhuis bracket is given for all k, l ≥ 0 , ξi, ηj ∈ Γ(X,TX)
by:

[ξ0 ∧ · · · ∧ ξk, η0 ∧ · · · ∧ ηl]SN =
k∑

i=0

l∑

j=0

(−1)i+j [ξi, ηj ]∧

ξ0 ∧ · · · ∧ ξi−1 ∧ ξi+1 ∧ . . . ∧ ξk ∧ η0 ∧ · · · ∧ ηj−1 ∧ ηj+1 ∧ · · · ∧ ηl

And for k ≥ 0 and h ∈ Γ(X,OX), ξi ∈ Γ(X,TX):

[ξ0 ∧ · · · ∧ ξk, h]SN =
k∑

i=0

(−1)iξi(h) · (ξ0 ∧ · · · ∧ ξi−1 ∧ ξi+1 ∧ . . . ∧ ξk) .

Where [ξi, ηj ] is the usal vector fields bracket i.e. the Lie derivative Lξi(ηj).

The second GDLA associated to X is the algebra of poly-differential operators g2 =
Dpoly(X) seen as a sub-algebra of the shifted Hochschild complex of functions algebra
of X. The grading on Dpoly(X) is given by |A| = m − 1 where A ∈ Dpoly(X) is a
m−differential operator. The composition of two operators A1 ∈ Dm1

poly(X) and A2 ∈
Dm2

poly(X) is given for fi ∈ OX by:

(A1 ◦A2)(f1, . . . , fm1+m2−1) =
m1∑

j=1

(−1)(m2−1)(j−1)A1(f1, . . . , fj−1,

A2(fj , . . . , fj+m2−1), fj+m2 , . . . , fm1+m2−1).

One defines the Gerstenhaber bracket: [A1, A2]G := A1 ◦ A2 − (−1)|A1||A2|A2 ◦ A1. Thus
the differential on Dpoly(X) is given by dA = −[µ,A]G, where µ is the bi-differential
operator of multiplication: µ(f1, f2) = f1f2.

Certainly these GDLA are not isomorphic, however the map U (0)
1 : Tpoly 7→ Dpoly

given by

U (0)
1 : (ξ0 ∧ · · · ∧ ξn) 7→


f0 ⊗ · · · ⊗ fn →

∑

σ∈Sn+1

sgn(σ)
(n+ 1)!

n∏

i=0

ξσ(i)(fi)


 (1.1)

for n ≥ 0 and by f 7→ (1 → f) for f ∈ Γ(X,OX) is a quasi-isomorphism of complexes.
This statement is a version of the Kostant-Hochschild-Rosenberg theorem. It turns out,
see [5], that one can extend this map to an application that is a GDLA-morphism up to
homotopy.

Consider shifted algebras g1[1] and g2[1] and the coalgebras without unit

S+
(
gi[1]

)
=

⊕

n≥0

Sn
(
gi[1]

)
, i = 1, 2

Both of them have co-derivations Qi of degree 1 defined by the GDLA structure.
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Theorem 1. There exists a L∞-quasi-isomorphism between shifted GDLA g1[1] and g2[1],
i.e. a co-algebra morphism

U : S+
(
g1[1]

)→ S+
(
g2[1]

)

such that
U ◦Q1 = Q2 ◦ U

and such that the restriction U to g1[1] ' S1(g1[1]) is the quasi-isomorphism of co-chain
complex U (0)

1 given by (1.1).

This construction is based on an explicit realization of the L∞-quasi-isomorphism U
in the flat case. We shall now recall it, see [5].

Let X be the vector space Rd. Then one shows that such a L∞-quasi-isomorphism
U is determined by its ”Taylor coefficients” Uk : Sk(g1[1]) → g2[1], with k ≥ 1 that one
gets composing U with the canonical projection π : S+(g2) → g2. One denotes U this
composition.

Coefficients Un are described in terms of graphs and their weights.
Let Gn,m be the set of labeled oriented graphs with n verices of the first kind and m

vertices of the second kind such that:

1. All edges start from vertices of the first kind.
2. There are no loops.
3. There are no double edges.

One says that such a graph is admissible. By labeling an admissible graph Γ one under-
stands a total order on the set EΓ of edges of Γ compatible with the order on the set of
vertices.

Consider Γ ∈ Gn,m and denote by sk the number of edges starting from the vertex of
the first kind with label k. To any n-uplet (α1, . . . , αn) of poly-vector fields on X such
that for all k = 1, . . . , n the element αk is a sk-vector field, one associates, a m-differential
operator BΓ(α1 ⊗ · · · ⊗ αn), given by the following construction : let {e1k, . . . , esk

k } be an
ordered sub-set of EΓ of edges starting from the vertex of the first kind k. To every map
I : EΓ → {1, . . . , d} and every vertex x of Γ one associates the differential operator with
constant coefficients : DI(x) =

∏
e=(−,x) ∂I(e), where for all i ∈ {1, . . . , d} one denotes by

∂i the partial derivative with respect to the i-th coordinate. The product is taken for all
edges ending at x. Let αI

k be the coefficient :

αI
k = α

I(e1
k)···I(e

sk
k )

k = 〈αk, dxI(e1
k) ∧ · · · ∧ dxI(e

sk
k )〉 = 〈αk, dxI(e1

k) ⊗ · · · ⊗ dxI(e
sk
k )〉.

One set :

BΓ(α1 ⊗ · · · ⊗ αn)(f1 ⊗ · · · ⊗ fm) =
∑

I:EΓ→{1,...,d}

n∏

k=1

DI(k)α
I
k

m∏

l=1

DI(l)fl.

The Taylor coefficient Un is given then by :

Un(α1, . . . , αn) =
∑

Γ∈Gn,m

wΓBΓ(α1 ⊗ · · · ⊗ αn), (1.2)
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where the sum is taken over all admissible graphs Γ such that the corresponding operator
BΓ(α1 ⊗ · · · ⊗ αn) is well defined and the integer m is defined by m− 2 =

∑n
k=1 sk − 2n.

The coefficient wΓ is a certain weight associated to every graph Γ. Then Un(α1, . . . , αn)
is a m−differential operator.

The weight wΓ is zero unless the number of edges |EΓ| of Γ is equal to 2n + m − 2.
It is given by integration of a closed form ΩΓ of degree |EΓ| on a connected component
of the Fulton-McPherson compactification of a configuration space whose dimension is
precisely 2n+m− 2, see [5]. This weight does depend on the order chosen on the set of
edges, but the product wΓ ·BΓ does not.

More precisely one denotes Confn,m the set of (p1, . . . , pn, q1, . . . , qm) where the pj

are distinct points in the Poincaré upper half-plane : H+ = {z ∈ C, Imz > 0}, and qj
are distinct points in R seen as the boundary of H+. The group : G = {z 7→ az +
b with (a, b) ∈ R and a > 0} acts freely on Confn,m. The coset : Cn,m = Confn,m/G is a
2n+m− 2-dimensional manifold. Kontsevich described compactifications Cn,m of these
configuration manifolds. They are 2n + m − 2-dimensional manifolds with corners such
that the boundary components in Cn,m \Cn,m correspond to various degenerations of the
configurations of points.

Consider, for example, the space

C2,0 = {(p1, p2) ∈ H2
+ |p1 6= p2}/G1.

For each point c ∈ C2,0 we can choose a unique representative of the form (
√−1, z) ∈

Conf2,0. Thus C2,0 is homeomorphic to H+ \ {
√−1}.

Similarly, it is easy to see that

C2 ' S1, C1,1 ' (0, 1), C0,2 ' {0, 1}.
and

C2 = C2, C1,1 = C1,1 t C0,2 = [0, 1].

Of particular interest is the space C2,0 = C2,0 t (C0,2 t C1,1 t C1,1 t C2), which can be
drawn as “the Eye”.

..

Figure 1: C2,0 (the Eye)

The circle C2 represents two points coming close together in the interior of H+, and
two arcs C1,1tC1,1 represent the first point (or the second point) coming close to the real
line. Finally, the two corners C0,2 correspond to both points approaching the real line.

For every graph Γ ∈ Gn,m one defines an angular function : ΦΓ : Cn,m −→ (R/2πZ)|EΓ|

in the following way : one draws the graph in H+ joining vertices by geodesics with re-
spect to the hyperbolic metric, and to every edge e = (p, q) one associates the angle
ϕe = Arg

(
q−p
q−p̄

)
formed by the vertical line passing through p and the edge e (see [2]).
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ϕe

Figure 2: Angular function

Choosing an order on edges this defines ΦΓ on Cn,m and one checks that this map
can be extended to the compactification. Let ΩΓ be the differential form Φ∗Γ(dv) on Cn,m

where dv is the normalized volume form on (R/2πZ)|EΓ|. Let C+
n,m be the connected

component of Cn,m. The set C+
n,mhas natural orientation and one defines the weight wΓ

by :

wΓ =
∫

C
+
n,m

ΩΓ. (1.3)

1.1 Tangent quasi-isomorphism and homotopy

Let γ ∈ Tpoly(Rd)[1] be a 2−vector field such that γ[−1] satisfies the Maurer-Cartan
equation in Tpoly(Rd). Thus it is a Poisson 2−vector field. The Kontsevich’s L∞-quasi-
isomorphism starting with ~γ gives rise to a star-product ?~γ :

?~γ = µ+ U(~γ) = µ+
∑

n≥1

~n

n!
Un(γ, . . . , γ), (1.4)

where ~ is a formal parameter. Indeed, a star-product is associative if, as an element of
g2, it satisfies a Maurer-Cartan type equation, so U relies two solutions of Maurer-Cartan
equations in corresponding GDLA’s. Notice that the associativity results from the Stokes
theorem applied to the integrals defining the weights wΓ.

Example. Let γ be the constant Poisson 2-vector field given by a constant symplectic
structure Λ on R2n. Then the only non-vanishing graphs are those whose vertices of the
first kind do not receive incoming edges. Thus the corresponding star-product is precisely
the Moyal star-product:

f ?M g (z) = exp(~Λrs∂xr∂xs)(f(x)g(y))|x=y=z.

Identifying GDLA’s g1 and g2 with their tangent spaces one defines the derivate map
dU : Tpoly(Rd)[1]→ Dpoly(Rd)[1][[~]] at the point ~γ :

dU~γ(δ) :=
∑

n>0

~n−1

(n− 1)!
Un(δ.γ.n). (1.5)

Tangent spaces to GDLA’s g1 and g2 inherit differential structures in such a way
that the co-boundary operator of the tangent co-chain complex of Tpoly(X)[1] is given by
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Q~γ = −[~γ,−]SN . this is a graded derivative of the exterior product ∧ of poly-vector
fields. This exterior product induces an associative and commutative product ∪ ( called
cup-product) on the cohomology space H~γ of the first tangent space.

On the second tangent space one introduces an associative graded product :

(A1 ∪A2)(f1 ⊗ · · · ⊗ fm1+m2) =
A1(f1 ⊗ · · · ⊗ fm1) ?~γ A2(fm1+1 ⊗ · · · ⊗ fm2) (1.6)

for every m1-differential operator A1 and m2-differential operator A2. This operation is
compatible with the co-boundary [−, ?]G of the second tangent complex and it induces a
cup-product on the cohomology space HU(~γ).

The following theorem is due to Kontsevich and was carefully proven by Manchon
and Torossian, see [5] §8 and [6] Théorème 1.2.

Theorem 2. Let X = Rd and U be the Kontsevich’s L∞-quasi-isomorphism. The differ-
ential dU~γ induces an algebra isomorphism from the cohomology space H~γ of the tangent
space T~γ(g1[1]) onto the cohomology space HU(~γ) of the tangent space TU(~γ)(g2[1]).

I.e. for every pair (α, β) of poly-vector fields such that [α, γ]SN = [β, γ]SN = 0 one
has

dU0(α ∪ β) = dU0(α) ∪ dU0(β) +D, (1.7)

where D is the Hochschild co-boundary of the algebra (C∞(X)[[~]], ?γ) given by D =
−[?γ , dU1(α, β)]G.

2 Quantization of the Kirillov-Kostant-Poisson
bracket

In the case when the manifold X is the dual of a finite dimensional Lie algebra g coef-
ficients of the canonical Kirillov-Kostant-Poisson 2-vector field γ are linear functions on
g∗. Let {e1, . . . , ed} be a basis of g and (e∗1, . . . , e

∗
d) be its dual basis, then the associated

Poisson 2-vector field is given by:

γ =
1
2

∑

i,j

[ei, ej ]e∗i ∧ e∗j .

Therefore on can considerably simplify the expression of poly-differential operators BΓ

that occur in the definition of the star-product ?γ (1.4). Because of the linearity of
coefficients of γ the only remaining graphs are those whose vertices of the first kind
receive at most one incoming edge.

Let f1 and f2 be two polynomials on g∗ with deg(f1) = l1, deg(f2) = l2. Then we
remark that the graphs contributing to the star-product formula for f1 ? f2 can have no
more than l1 + l2 vertices of the first type. Indeed, for any Γ ∈ An the corresponding
bi-differential operator BΓ,γ contains exactly 2n differentiations. When 2n > n+ l1 + l2,
BΓ is obviously 0 (because f1 can be differentiated at most l1 times, f2 at most l2 times
and each of the coefficients of γ corresponding to the remaining vertices at most once).
Hence

f1 ? f2 =
l1+l2∑

n=0

~n

n!

∑

Γ∈An

wΓBΓ(f1, f2).
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This sum is finite, and if we set ~ = 1, we obtain a polynomial on g∗ of degree
l1 + l2. Therefore, Kontsevich’s ?-product descends to an actual product on the algebra of
polynomial functions on g∗, which can be naturally identified with the symmetric algebra
S(g).

In [5] §8.4, Kontsevich denotes by Ialg the algebra isomorphism between (S(g), ?γ)
and U(g)and shows that the identification of (S(g), ?γ) with U(g) is given precisely by
the Duflo isomorphism of vector spaces.

Notice now that the zero tangent cohomology of g1 which is in this case the zero
Poisson cohomology of the symmetric algebra S(g) is precisely the set of ad(g)-invariants
in S(g) and on the other hand side that the zero tangent cohomology of g2 is the zero
Hochshild cohomology of g with coefficients in U(g) that is nothing else but the cen-
ter Z(g) of the universal enveloping algebra. Therefore, according to the theorem 2
the differential dU~γ of the Kontsevich’s L∞-quasi-isomorphism gives rise to an algebra
isomorphism between these to set which is precisely the Duflo map (0.1).

The fact that the Duflo map extends to all tangent cohomology groups was shown in
[7].
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Quantization Restrictions for Diffeomorphism

Invariant Gauge Theories

Christian Fleischhack

Abstract

The classical Stone-von Neumann theorem guarantees the uniqueness of the kine-
matical framework of quantum mechanics. In this short article we review the cor-
responding situation for diffeomorphism invariant field theories like gravity. Within
the loop quantization framework, we first describe the Weyl algebra and sketch then
a fundamental uniqueness result for its representations.

1 Introduction

The quantization of a classical system can be performed in different ways. Nevertheless,
there are typical features common to many of them. Often, the major step consists
of three choices: First, one selects some set V of classical variables to be “quantized”.
Second, one picks out some Hilbert space H. Finally, one chooses some assignment
between the selected classical variables and some operators on H. It is a fundamental
question – both mathematically and physically –, how far these three choices are unique
or may be made freely. Unfortunately, in general, this question cannot be answered
adequately. First of all, the selection of V is obviously highly non-unique. At the same
time, it very much constrains the two latter steps. In fact, if V is too small, we may loose,
e.g., information about some physical degrees of freedom; if, however, V is too large, van
Hove arguments may show that there is no (nontrivial) quantization at all. Therefore,
we will restrict ourselves to the two latter steps, i.e., the “representation theory” of some
given V.

The focal point of the present paper is to study the situation in gauge field theories
that incorporate diffeomorphism invariance. This is of enormous relevance, in particular,
for the quantization of gravity. There are several approaches to this issue. We will
consider here the loop quantization. This mainly means to include nonlocal parallel
transports along paths (or loops) instead of the connections themselves into the set V of
classical variables to be quantized. We are going to review under which assumptions the
kinematical framework used there is indeed unique. Before, however, we will motivate
our considerations by the celebrated Stone-von Neumann theorem in quantum mechanics.
Proven some 75 years ago, it is responsible for the (to a large extent) uniqueness of
quantization of classical mechanics.

In classical mechanics in, for brevity, one dimension, the configuration space C equals
R. The wave functions of quantum mechanics then are L2 functions over R w.r.t. the
Lebesgue measure dx on R. In the Schrödinger representation, the position and mo-
mentum variables x and p turn into self-adjoint multiplication and derivation operators
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fulfilling [x̂, p̂] = i. They generate weakly continuous one-parameter subgroups of uni-
taries: multiplication operators eiσbx = eiσx· and pull-backs eiλbp = L∗λ of translation
operators on C = R.

Although we presented the quantization procedure above like an unrevocable fact,
there are many other options to quantize classical mechanics. The easiest way to see
this is to exchange the rôles of x and p. There we end up with the Heisenberg picture of
quantum mechanics with p̂ being a multiplication and x̂ a differential operator. Neverthe-
less, the Heisenberg and Schrödinger pictures are still unitarily equivalent, i.e. physically
indistinguishable. Indeed, even more, the Stone-von Neumann theorem tells us that as-
suming continuity and irreducibility, all “pictures” of quantum mechanics are equivalent:
Each pair (U, V ) of unitary representations of R on some Hilbert space H satisfying the
commutation relations

U(σ)V (λ) = eiσλ V (λ)U(σ) (1.1)

for all σ, λ ∈ R, is equivalent to multiples of the Schrödinger representation above [14].
Hence, assuming irreducibility, we get the desired uniqueness. It should be emphazised
that the commutation relations (1.1) directly follow from U(σ) = eiσX , V (λ) = eiλP and
[X,P ] = i, i.e., they do not use any relations induced by special representations.

Finally, however, note that dropping the continuity assumption admits other, non-
equivalent representations. One of them is given by almost-periodic functions leading
to the Bohr compactification of the real line. The Hilbert space basis is given by {|x〉 |
x ∈ R}, and the operators U and V act by U(σ)|x〉 = eiσx|x〉 and V (λ)|x〉 = |x+ λ〉. Of
course, V is not continuous. Hence, p̂ is not defined, but the operator V (λ) corresponding
to eiλp only. We remark that this representation reappears in loop quantum cosmology
yielding to a resolution of the big bang singularity [7].

2 Configuration Space of Quantum Geometry

Let us now focus to (pure) gauge field theories. There the configuration space C consists of
all smooth connections (modulo gauge transforms) in a principal fibre bundle P (M,G)
with M being some manifold and G being some structure Lie group. Here, we will
assume that M is at least two-dimensional and that G is connected and compact. For
canonical gravity using Ashtekar variables [1], e.g., M is some Cauchy slice and G equals
SU(2). Aiming at a functional-integral description of quantum theory, one needs some
measure1 on C. In general, however, the structure of C is too complicated to allow for a
rigorous measure theory describing non-pathological measures. Therefore, in parallel to
the experiences known from the Wiener integral, it is reasonable to compactify C.

2.1 Compactification

Ashtekar et al. [2, 4, 3] successfully implemented the compactification strategy. Their
crucial idea was to use parallel transports instead of connections. In fact, a connection
is uniquely determined by its parallel transports along all (sufficiently smooth) paths in
M . Now, one considers the holonomy algebra2 HA, which is a subset of the bounded

1From now on, all measures are assumed to be normalized, regular, and Borel.
2Note that in [2] the holonomy algebra denotes the algebra generated by all Wilson loop variables,

giving the gauge invariant functions only. Here, we also include gauge variant functions.
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functions on the space A ≡ C of smooth connections. HA is the (unital) ∗-subalgebra
of Cbound(A) generated by all matrix elements Tγ,φ,m,n := φ(hγ)m

n of parallel transports
hγ , where γ runs over all paths in M , φ runs over all (equivalence classes of) irreducible
representations of G, and m and n over all the corresponding matrix indices. The space
A of generalized (or, distributional) connections is now defined to be the spectrum of the
completion of the holonomy algebra. Since HA is unital abelian, A is compact Hausdorff.

Equivalently, A can be described using projective limits. First, observe that the
elements of A are one-to-one with the homomorphisms from the groupoid3 P of paths
in M to the structure group G. In fact, each h ∈ Hom(P,G) defines a multiplicative
functional hA on HA via hA(Tγ,φ,m,n) := φ(h(γ))m

n implying hA ∈ A. Now, any finite
graph γ in M defines a continuous projection πγ : A −→ Hom(Pγ ,G) ∼= G#γ via

πγ(hA) := hA|Pγ =̂ hA(γ) ≡ (
hA(γ1), . . . , hA(γ#γ)

)
,

where Pγ denotes the paths in γ. Note that the edges γ1, . . . , γ#γ of γ freely generate
Pγ . Using the natural subgraph relation and defining πδ

γ : Hom(Pδ,G) −→ Hom(Pγ ,G)
for γ ≤ δ again by restriction, we get a projective system over the set of all finite graphs
in M , whose projective limit lim←−γ

Hom(Pγ ,G) is A again.

2.2 Ashtekar-Lewandowski Measure

Compactness opens the door to many far-reaching theorems in measure theory, in particu-
lar, on projective limits. In general, given a measure µ on a projective limit X := lim←−a

Xa,
we may always push-forward this to all Xa using the canonical projections πa : X −→ Xa.
Of course, there are certain compatibility relations among different constituents: If πb

a

projects Xb to Xa then (πb
a)∗(πb)∗µ equals (πb)∗µ. For a directed projective limit of com-

pact Hausdorff spaces, however, the Riesz-Markov theorem establishes also the other way
round. For each sequence µa of measures on Xa that fulfill the compatibility relations
(πb

a)∗µb = µa for all a ≤ b, there is a unique measure µ on X with (πa)∗µ = µa for all a.
Using this general theorem, it is rather easy to define measures on A. The most obvi-

ous choice gives the Ashtekar-Lewandowski measure µ0 [4] whose relevance will become
clear below. Here, one simply demands that the measure on Hom(Pγ ,G) ∼= G#γ is the
Haar measure for each γ. If the set of all finite graphs is directed, the compatibility con-
ditions are fulfilled and guarantee the existence and uniqueness of µ0. The directedness
is given if we assume all paths and graphs to be piecewise analytic. It is no longer given
for smooth paths. There it may happen that two graphs have infinitely many intersection
points without sharing a full segment, whence there is no third graph containing both
graphs. Although it is in principle possible to circumvent this problem [9], we will restrict
ourselves to piecewise analytic paths from now on.

2.3 Spin Networks

Having now H0 := L2(A, µ0) as a candidate for the kinematical Hilbert space, we still
have to look for a basis or, at least, some reasonable generating system of this space.
As in the case of measures, the problem is solved by focussing first on the graph level
and then lifting it to the continuum. In fact, bases for L2(Gn, µHaar) are given by the

3The groupoid structure is induced by the standard concatenation of paths modulo reparametrization
and deletion/insertion of immediate retracings.
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Peter-Weyl theorem. Each one contains just all tensor products of matrix elements of
irreducible representations of the n group factors. Combining this with the projections
πγ , we get the spin network functions [5]4

⊗
k Tγk,φk,mk,nk

≡ ⊗
k(φk)mk

nk
◦ πγk

: A −→ C.
Here, γ = {γ1, . . . , γ#γ} is a graph, each φk a nontrivial irreducible representation of G,
and each mk and each nk a matrix index. The set of all spin network functions generates
H0. However, it does not form a basis, since two spin network functions that correspond,
e.g., to graphs where one graph is a refinement of the other, need not be orthogonal. But,
at least, the trivial spin network function, i.e., the constant function, is orthogonal to all
the others.

2.4 Semianalytic Diffeomorphisms

Until now, only general gauge theory ingredients have been implemented. Now, we are
going to consider the most important difference between quantum gauge field theories and
quantum geometry – the diffeomorphism invariance. Fortunately, within the loop formal-
ism, this task is straightforward. The action of diffeomorphisms on M lifts naturally to an
action on the sets of paths and graphs, whence to an action on A and finally on C(A) as
well. For instance, let there be given a cylindrical function, i.e. a function f ∈ C(A) which
equals fγ ◦πγ for some graph γ and some fγ ∈ C(πγ(A)). Then αϕ(fγ ◦πγ) = fγ ◦πϕ(γ),
with αϕ denoting the action of the diffeomorphism ϕ on C(A). One shows easily that µ0

is diffeomorphism invariant, whence the action of diffeomorphisms is even unitary on H0.
Of course, we can only consider diffeomorphisms that preserve the piecewise ana-

lyticity of paths and graphs. Smooth diffeomorphisms, in general, do not meet this
requirement. Analytic ones, on the other hand, are too restrictive from the physical
point of view. In fact, gravity is a local theory, meaning it is invariant w.r.t. diffeo-
morphisms being the identity outside some subset of M . But, analyticity is nonlocal:
Changing an analytic object locally, modifies it globally. In other words, we are looking
for some intermediate kind of diffeomorphisms reconciling locality and analyticity. This
is indeed possible working in the semianalytic category [12, 13, 6] what we will always
do in the following. Recall that semianalytic sets are stratified by analytic manifolds,
whence semianalytic diffeomorphisms only need to be analytic on each single stratum.

3 Weyl Algebra of Quantum Geometry

In quantum mechanics, the Schrödinger representation assigns multiplication operators
to the exponentiated position operators and pull-backs of translation operators to the
exponentiated momentum operators. In quantum geometry, since we are dealing with
fields, we do not only exponentiate the operators, but also smear them. In fact, parallel
transports are exponentiated connections smeared along paths being one-dimensional ob-
jects. The corresponding momenta in quantum geometry (or, more specific, in canonical
gravity) are densitized dreibein fields. They are now exponentiated after getting smeared
along one-codimensional objects, namely (semi-)analytic submanifolds. While the paral-
lel transports (or, to be precise, their matrix elements) act naturally by multiplication

4Note again that, originally, spin network functions have been defined a little bit differently in order
to implement gauge invariance.
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operators on H0, the exponentiated and smeared dreibein field operators will turn into
unitary pull-backs of translation operators on A.

3.1 Weyl Operators

Let now S be some oriented analytic hypersurface and let g ∈ G. We define the intersec-
tion function σS(γ) to be +1 (−1) if the path γ starts at S, such that γ̇ is non-tangent
to S and such that some initial path of γ lies fully above (below) S; otherwise σS(γ)
is 0. Above and below, of course, refer to the orientation of S. Next, observe that due
to the semianalyticity of paths and hypersurfaces, each path can be decomposed into a
finite number of paths whose interior is either fully contained in S (internal path) or
disjoint to S (external path). One now checks quite easily [8] that there is a unique map
ΘS

g : A −→ A, such that5

hΘS
g (A)(γ) = gσS(γ) hA(γ) g−σS(γ−1)

for all external and all internal γ ∈ P and for all A ∈ A. The map ΘS
g is a homeo-

morphism. It even preserves the Ashtekar-Lewandowski measure, due to the translation
invariance of the Haar measure.

The Weyl operator wS
g is now the pull-back of ΘS

g . It becomes an isometry on C(A)
and, by µ0-invariance, a unitary operator on H0 = L2(A, µ0). The subset of B(H0)
generated by all Weyl operators {wS

g } is denoted byW. We remark that the Weyl operator
of the disjoint union of hypersurfaces equals the product of the (mutually commuting)
Weyl operators of the single hypersurfaces. This way, it is natural to extend the notion
of Weyl operators even to semianalytic submanifolds S having at least codimension 1.
For instance, the Weyl operator for an equator (i.e., a one-dimensional circle in a three-
dimensional space) can be seen as the Weyl operator of the full sphere times the inverses
of the Weyl operators corresponding to the upper and lower hemisphere. Therefore,
w.l.o.g., W is always assumed to contain also the semianalytic subsets of M having at
least codimension 1.

The diffeomorphisms act covariantly on W via αϕ ◦ wS
g ◦ α−1

ϕ ≡ αϕ(wS
g ) = w

ϕ(S)
g , as

one checks immediately.

3.2 Weyl Algebra

The C∗-subalgebra A of B(L2(A, µ0)), generated by C(A) andW, is called Weyl algebra
of quantum geometry. Its natural representation on L2(A, µ0) will be denoted by π0.

Sometimes, we will consider the C∗-subalgebra of B(L2(A, µ0)) generated by the Weyl
algebra A and the diffeomorphism group D. It will be denoted by ADiff . One immediately
sees that D acts covariantly on A.

3.3 Irreducibility

In this subsection, we are going to prove the irreducibility of A. For this, let f ∈ A′.
First, by C(A) ⊆ A, we have A′ ⊆ C(A)′ = L∞(A, µ0). Second, by unitarity of Weyl
operators w, we have f = w∗ ◦ f ◦ w = w∗(f). Therefore, we have 〈T, f〉 = 〈T,w∗(f)〉 =

5Usually, instead of g being just an element of G, it denotes a function from S to G, encoding the
smearing of the flux. We will not use non-constant smearings here; we skip this possibility.
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〈w(T ), f〉 for every spin network function T . Each nontrivial T may be decomposed into
T = (Tγ,φ,m,n) T ′ with some edge γ and nontrivial φ, where T ′ is a (possibly trivial) spin
network function.

• If φ is abelian, choose some hypersurface S intersecting γ, but no edge used for T ′.
Then wS

g (T ) = φ(g2) T for all g ∈ G, whence 〈T, f〉 = 〈wS
g (T ), f〉 = φ(g2) 〈T, f〉.

Since φ is nontrivial, there is some g ∈ G with φ(g2) 6= 1. Hence, 〈T, f〉 = 0.

• If φ is nonabelian, then trφ has a zero [11]. Since square roots exist in any compact
connected Lie group, there is a g ∈ G with tr φ(g2) = 0. Choose now infinitely
many mutually disjoint surfaces Si intersecting γ, but no edge used for T ′. A
straightforward calculation yields for i 6= j

〈wSi
g (T ), wSj

g (T )〉 =
∣∣∣tr φ(g2)

dimφ

∣∣∣
2

= 0.

Now, 〈wSi
g (T ), f〉 = 〈T, f〉 = 〈wSj

g (T ), f〉 implies 〈T, f〉 = 0 again.

Altogether, f is constant. Hence, A′ consists of scalars only.

4 Uniqueness Theorem

The natural representation π0 of A is not only irreducible, but also regular, i.e., it is
weakly continuous w.r.t. the Weyl operator smearings g. Moreover, π0 is diffeomorphism
invariant, i.e., there is a diffeomorphism invariant vector in H0 (the constant function)
and the diffeomorphisms act covariantly on A. The fundamental question now is how far
these properties already determine π0 among the C∗-algebra representations of A. Fairly
uniquely, as we will learn from the following theorem.

4.1 Theorem

Let dimM ≥ 3, let G be nontrivial, and let all the paths, hypersurfaces, and diffeo-
morphisms be semianalytic. Assume that all the hypersurfaces used for the definition of
W are widely6 triangulizable. Let now π : ADiff −→ B(H) be some regular C∗-algebra
representation of ADiff on some Hilbert space H, which has some diffeomorphism invari-
ant vector being cyclic for π|A. If the diffeomorphisms even act naturally7, then π|A is
unitarily equivalent to π0.

4.2 Sketch of Proof

The proof will consist of three main steps: First, by general C∗-algebra arguments, we
have π|C(A) =

⊕
ν πν , where each πν is the canonical representation of C(A) on L2(A, µν)

for some measure µν . Second, we prove that πν equals π0|C(A) for some ν using diffeo-
morphism invariance and regularity. Finally, from naturality, diffeomorphism invariance
and cyclicity we deduce that the directed sum above consists of just a single component

6A triangulation (K, f) is called wide iff for every σ ∈ K there is some open chart in M containing
the closure of f(σ) and mapping it to a simplex in that chart.

7The definition of naturality will be provided in the sketched proof below.
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and that π|A = π0. Let us now sketch the final steps 2 and 3. The full proof may be
found in [10].

For step 2, let us assume for simplicity that G is abelian. Fix ε > 0, and let f =
hγ(·)nT be some nontrivial spin network function, i.e., γ and the graph underlying T form
a graph again and n 6= 0. Assume 〈10, π(f)10〉H 6= 0 for some (cyclic and) diffeomorphism
invariant vector 10 ∈ H. Define for some “cubic” hypersurface S

wt := wS
eit/2 and vt :=

1
2m

2m∑

k=1

αϕk
(wt).

Here, each ϕk is a diffeomorphism winding γ, such that it has exactly m punctures with
S. Each k corresponds to a sequence of m signs + or − . These signs correspond to the
relative orientations of S and ϕk(γ) at the m punctures. Then

vt(f) =
(eint + e−int

2

)m
· f

and

‖(vt − e−
1
2
m(nt)2) f‖∞ ≤ O(m(nt)4) ‖f‖∞.

Hence, for any small t there is some m = m(nt, ε) with

ε < O(m(nt)2) |〈10, π(f)10〉H| −O(m(nt)4) ‖f‖∞
≤ |(1− e−

1
2
m(nt)2)〈10, π(f)10〉H| − |〈10, π[(vt − e−

1
2
m(nt)2)f ]10〉H|

≤ |〈10, π[(vt − 1)f ]10〉H|.
Now, for each small t there is a diffeomorphism ϕ with

ε ≤ |〈10, π[(wt − 1)(αϕ(f))]10〉H|
≤ 2 ‖10‖H ‖(π(wt)− 1)10‖H ‖π(αϕ(f))‖B(H)

= 2 ‖10‖H ‖(π(wt)− 1)10‖H ‖f‖∞,
by diffeomorphism invariance. The final term, however, does not depend on ϕ, whence
by regularity it goes to zero for t → 0 giving a contradiction. Hence, 〈10, π(f)10〉H = 0
for n 6= 0 implying π|C(A)

∼= π0.
For step 3, let w be some Weyl operator assigned to an open ball or simplex, possibly

having higher codimension. Observe that, for w commuting with αϕ, we have

〈π(αϕ(f))10, π(w)10〉H = 〈π(f)10, π(w)10〉H.
Next, for nonconstant spin-network functions f , choose diffeomorphisms ϕi, commuting
with w, such that

δij = 〈αϕi(f), αϕj (f)〉H0 ≡ 〈π(αϕi(f))10, π(αϕj (f))10〉H.
(This, however, is not always possible causing some technical difficulties that will, never-
theless, be ignored in the present article.) Consequently, we have

0 = 〈π(f)10, π(w)10〉H = 〈f, P0π(w)10〉H0 ,

with P0 being the canonical projection from H to π(C(A)) 10
∼= L2(A, µ0) ≡ H0. Now,

P0π(w)10 = c(w) 10 with c(w) ∈ C, whence (1 − P0)π(w)10 generates L2(A, µ0). The
naturality of π w.r.t. the action of diffeomorphisms implies that π(w)10 is diffeoinvariant
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itself.8 Since S is assumed to be a ball or simplex (with lower dimension than M), there is
a (semianalytic) diffeomorphism mapping S to itself, but inverting its orientation. Now,
we have

π(w)210 = π(w)π(αϕ)π(w)∗π(αϕ)∗10 = 10

implying π(w)10 = 10 by taking the square root of the smearing. The proof furnishes
using cyclicity and triangulizability.
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Orbits of triples in the Shilov boundary of a

bounded symmetric domain

Jean-Louis Clerc and Karl-Hermann Neeb

Abstract

Let D be a bounded symmetric domain of tube type, S its Shilov boundary, and
G the neutral component of its group of biholomorphic transforms. We classify the
orbits of G in the set S × S × S.

1 The problem

It is well-known that any bounded symmetric domain D in a finite-dimensional complex
vector space can be realized as the open unit ball

(1) D = {z ∈ V ‖z‖ < 1}

of a normed complex vector space V . Such a unit ball is symmetric if and only if the group
Aut(D) of biholomorphic transforms of D acts transitively, i.e., if D is homogeneous. Let
G := Aut(D)0 be the identity component of Aut(D) and S be the Shilov boundary of D.
The action of any element of G extends to a neighborhood of D, and hence G acts on S.
It is well known that this action is transitive. The main result we are reporting on is a
classification of the G-orbits in the set S × S × S of triples in S, when D is of tube type.
The action of G on S × S can be easily studied as an application of Bruhat theory, and
the description of the orbits is the same, whether D is of tube type or not. But for triples
there is a drastic difference between tube type domains and non tube type domains. In
the first case, there is a finite number of orbits in S×S×S, whereas there are an infinite
number of orbits for a non tube type domain.

2 Jordan triples, Jordan frames, and polydiscs

In the following we shall always assume that D is realized as a unit ball as in (1). Then
D is said to be reducible if V = V1 × V2 with the norm on V satisfying ‖(v1, v2)‖ =
max(‖v1‖, ‖v2‖), so that D = D1 ×D2, where Dj is the unit ball in Vj .

Any D can be written as a product or irreducible domains, and since G and S de-
compose accordingly as products, we assume in the following that D is irreducible.

Then G is a finite-dimensional simple real Lie group acting transitively on D, the
stabilizer K of 0 ∈ D is maximal compact and D ∼= G/K is a non-compact Riemannian

Keywords: bounded symmetric domain, tube type domain, Shilov boundary, face, Maslov index,
flag manifold, Jordan triples

Subject classification: 32M15, 53D12, 22F30
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symmetric space of hermitian type. We consider the Lie algebra g of G as realized by
vector fields on D. Since all these vector fields are polynomial of degree ≤ 2, they extend
to all of V . Moreover, g has a Cartan decomposition g = k⊕ p, where k = L(K) consists
of linear vector fields and p consists of even vector fields. Since the evaluation map
p→ V ∼= T0(D), X 7→ X(0) is a linear isomorphism, each element of p can be written as

Xv(z) = v +Q(z)(v),

where Q(z)(v) is quadratic in z and real linear in v. Polarization now leads to the triple
product

{·, ·, ·} V 3 → V

which is uniquely determined by

Q(z)(v) = {z, v, z} and {a, b, c} = {c, b, a} for a, b, c, z, v ∈ V.

By definition, the triple product is linear in the first and third argument. It is antilinear
in the second argument.

An element e ∈ V is called a tripotent if {e, e, e} = e and two tripotents e, f are said
to be orthogonal if {e, e, f} = 0, which turns out to define a symmetric relation. The sum
e+ f of two non-zero orthogonal tripotents is a tripotent, called decomposable. A Jordan
frame is a maximal tuple (c1, . . . , cr) of pairwise orthogonal indecomposable tripotents.
Their number r is called the rank of D.

It is a well-known fact that for each Jordan frame (c1, . . . , cr) with E := span{c1,
. . . , cr} the intersection

D ∩ E =
{ r∑

j=1

ζjcj |ζj | < 1, 1 ≤ j ≤ r
} ∼= ∆r

is an r-dimensional polydisc, i.e., the unit ball in (Cr, ‖·‖∞). The converse is less obvious
([CN05]):

Theorem 2.1. If E ⊆ V is an r-dimensional subspace for which E ∩ D is a polydisc,
then there exists a Jordan frame (c1, . . . , cr) in V spanning E.

3 Faces and orbits

It is easy to describe the G-orbit structure on D in terms of a Jordan frame: There are
r + 1 orbits which are represented by the tripotents

ek := c1 + . . .+ ck, k = 0, . . . , r.

Here e0 = 0, G.e0 = D, and G.ek = S is the Shilov boundary of D. We may therefore
define a rank function

rank D → {0, . . . , r}, g.ek 7→ k,

classifying the G-orbits in D.
Our next goal is to extend this rank function to tuples of elements in D, which is done

by using faces of the compact convex set D. For a subset M ⊆ D we write Face(M) ⊆ D
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for the face generated by M , i.e., the intersection of all faces of D containing it. Using the
result that the faces of D coincide with the closures of the holomorphic arc components
of D, we see that the group G acts on the set F(D) of faces of D. There are precisely
r + 1 orbits, represented by the faces Face(ek), k = 0, . . . , r. As for D, this leads to a
G-invariant rank function

rank F(D)→ {0, . . . , r}, g.Face(ek) = Face(g.ek) 7→ k,

classifying the G-orbits.
This picture provides a nice connection between the convex geometry of D and its

complex geometric properties. In particular, the Shilov boundary S coincides with the
set of extreme points, i.e., the one-point faces of D.

From the rank function for faces, we immediately obtain integral invariants for the
diagonal G-action on the product sets Dm:

Dm → {0, . . . , r}, (z1, . . . , zm) 7→ rank(Face(z1, . . . , zm)).

4 The Diagonalization Theorem and its consequences

The main result of Section 1 in [CN05] is a classification of the G-orbits in the set D2 of
pairs which are transversal in the sense that rank Face(x, y) = 0, i.e., x and y do not lie in
a common proper face of D. The main tool for the classification of G-orbits in S×S×S
(for tube type domains) is the characterization of this relation in Jordan theoretic terms:
it is equivalent to quasi-invertibility ([CN05, Th. 2.6]). This characterization is also valid
for non tube type domains. This fact is used to setup an inductive proof of the

Theorem 4.1 (Diagonalization Theorem). If D is a bounded symmetric domain of
tube type and ∆r ⊆ D is a polydisc of maximal rank r (hence given by a Jordan frame),
then every triple in S is conjugate to a triple in the Shilov boundary T of ∆r.

The assumption that D is of tube type is essential in the preceding theorem because
it is invalid for all non-tube type domains.

This reduces the classification ofG-orbits in S×S×S to the description of intersections
of these orbits with the 3r-dimensional torus T 3. This is fully achieved by assigning a
5-tuple (r0, r1, r2, r3, ι) of integer invariants to each orbit and by showing that triples with
the same invariant lie in the same orbit. The first four components of this 5-tuple are

(r0, . . . , r3) =
(rank Face(x1, x2, x3), rank Face(x1, x2), rank Face(x2, x3), rank Face(x1, x3)). (4.1)

The fifth component is the Maslov index ι(x1, x2, x3), an integer invariant taking val-
ues in {−r, . . . , r} (cf. [CØ01], [Cl04a/b]). If all pairs (x1, x2), (x2, x3) and (x3, x1) are
transversal, then all ri vanish, which implies that the G-orbits in the set of transversal
triples are classified by the Maslov index.

Theorem 4.2 (Classification of orbits). Let D be a bounded symmetric domain of
tube type. Then the five integers (r0, r1, r2, r3, ι) separate the orbits of G in S × S × S,
and a 5-tuple (r0, r1, r2, r3, ι) ∈ Z5 arises from some orbit if and only if
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(P1) 0 ≤ r0 ≤ r1, r2, r3 ≤ r.
(P2) r1 + r2 + r3 ≤ r + 2r0.
(P3) |ι| ≤ r + 2r0 − (r1 + r2 + r3).
(P4) ι ≡ r + r1 + r2 + r3 mod 2.

A special case of this theorem was known before: If D is the Siegel domain (the
unit ball in the space of complex symmetric matrices Symr(C)), then the group G is the
projective symplectic group PSp2r(R) := Sp2r(R)/{±1}, and the Shilov boundary of D
can be identified with the Lagrangian manifold (the set of Lagrangian subspaces of R2r).
Then the orbits of triples of Lagrangians have been described (see [KS90, p.492]), using
linear symplectic algebra techniques.

As a byproduct of Theorem 2, we also obtain the following axiomatic characterization
of the Maslov index, which actually was our original motivation for the project:

Theorem 4.3. The Maslov index is characterized by the following properties:
(M1) It is invariant under the group G.
(M2) It is an alternating function with respect to any permutation of the three arguments.
(M3) It is additive in the sense that if D = D1 ×D2, so that S = S1 × S2, then

ιS(x, y, z) = ιS((x1, x2), (y1, y2), (z1, z2)) = ιS1(x1, y1, z1) + ιS2(x2, y2, z2) .

(M4) If Φ : D1 −→ D2 is an equivariant holomorphic embedding of bounded symmetric
domains of tube type of equal rank, then ιS2 ◦ Φ = ιS1.

(M5) It is normalized by ιT(1,−1,−i) = 1 for the Shilov boundary T of the unit disc ∆.

5 More on orbits on products of flag manifolds

The Shilov boundary S of a bounded domain is in particular a generalized flag manifold
of G, i.e. of the form G/P , where P is a parabolic subgroup of G. A nice description of
P is obtained after performing a Cayley transform. The domain D is transformed to an
unbounded domain DC which is a Siegel domain of type II and the group P is the group
of all affine transformations preserving DC . The group P has some specific properties:
it is a maximal parabolic subgroup of G, conjugate to its opposite. Moreover, one can
show that the domain D is of tube type if and only if the unipotent radical U of P is
abelian. A natural question arises to which extent results similar to Theorem 3 could be
valid for other generalized flag manifolds. The natural background for this problem is
the following. If P1, . . . , Pk are parabolic subgroups of a connected semisimple group G′,
then the product manifold

M := G′/P1 × . . .×G′/Pk

is called a multiple flag manifold of finite type if the diagonal action of G′ on M has
only finitely many orbits. For k = 1 we always have only one orbit, and for k = 2
the finiteness of the set of orbits follows from the Bruhat decomposition of G′. For
G′ = GLn(K) or G′ = Sp2n(K) and K an algebraically closed field of characteristic
zero, it has been shown in [MWZ99/00] that finite type implies k ≤ 3, and for k = 3
the triples of parabolics leading to multiple flag manifolds of finite type are described
and the G′-orbits in these manifolds classified. The main technique to achieve these
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classifications was the representation theory of quivers. In [Li94], Littelmann considers
general simple algebraic groups over K and describes all multiple flag manifolds of finite
type for k = 3 under the assumption that P1 is a Borel subgroup and P2, P3 are maximal
parabolics. Actually Littelmann considers the condition that B = P1 has a dense orbit in
G′/P2×G′/P3, but the results in [Vi86] show that this implies the finiteness of the number
of B-orbits and hence the finiteness of the number of G′-orbits in G′/B×G′/P2×G′/P3.
From Littelmann’s classification one can easily read off that for a maximal parabolic P
in G′ the triple product (G′/P )3 is of finite type if and only if the unipotent radical U of
P is abelian, and in two exceptional situations. If U is abelian, then P is the maximal
parabolic defined by a 3-grading of g′ = L(G′), so that G′/P is the conformal completion
of a Jordan triple (cf. [BN05] for a discussion of such completions in an abstract setting).
This case was also studied in [RRS92]. The first exceptional case, where U is not abelian,
corresponds to G′ = Sp2n(K), where G′/P = ¶2n−1(K) is the projective space of K2n, U is
the (2n− 1)-dimensional Heisenberg group and the Levi complement is Sp2n−2(K)×K×.
In the other exceptional case G′ = SO2n(K), and G′/P is the highest weight orbit in the
2n-dimensional spin representation of the covering group G̃′ = Spin2n(K) of G′. Here
U ∼= Λ2(Kn) ⊕ Kn also is a 2-step nilpotent group and the Levi complement acts like
GLn(K) on this group. A classification of all spaces G/P (G reductive algebraic over
an algebraically closed field) for which G has open orbits in (G/P )3 has been obtained
recently by V. Popov in [Po05].

It seems that the positive finiteness results have a good chance to carry over to the
split forms of groups over more general fields and in particular to K = R. Suppose
that G is a real reductive groups and GC its complexification, and that GC acts with
finitely many orbits on (GC/PC)3. Then, for each GC-orbit M ⊆ (GC/PC)3 meeting the
totally real submanifold (G/P )3, the intersection M ∩ (G/P )3 is totally real in M , hence
a real form of M , and [BS64, Cor. 6.4] implies that G has only finitely many orbits in
M ∩ (G/P )3.
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On a certain 8-dimensional non-symmetric

homogenous convex cone

Takaaki Nomura

This work started with a discussion with Simon Gindikin when I visited Rutgers
University last year. The idea of considering the present 8-dimensional cone comes from
just looking through a list of basic relative invariants associated to homogeneous convex
cones given by Yusuke Watanabe who is currently preparing his master thesis. Discussions
with Hideyuki Ishi also contribute to the contents.

Let us begin with some facts about matrices. Consider the following subgroups AC
and NC of GL(r,C):

AC :=
{
a = diag[a1, . . . , ar] ; a1 ∈ C×, . . . , ar ∈ C×

}
,

NC :=





n =




1 0 · · · 0 0
n21 1 · · · 0 0

...
. . .

...
nr−1,1 nr−1,2 1 0
nr1 nr2 · · · nr,r−1 1




; nji ∈ C (j > i)





.

We denote by V the vector space of real r × r symmetric matrices: V := Sym(r,R). In
V , we have the open convex cone Ω of positive definite matrices. Then the tube domain
Ω + iV in the complexified vector space VC is contained in the orbit of the triangular
subgroup NCAC through the r × r unit matrix E ∈ Ω:

Ω + iV ⊂ NCAC · E. (0.1)

For every real or complex r× r matrix w = (wij), we denote by ∆k(w) the k-th principal
minor of w (k = 1, . . . , r):

∆k(w) = det



w11 · · · w1k

...
...

wk1 · · · wkk


 ,

and we set ∆0(w) ≡ 1. By (0.1) we see that if w ∈ Ω + iV , then we have ∆k(w) 6= 0 for
any k = 1, . . . r.

Lemma 0.1. Let w ∈ Sym(r,C) and suppose that Rew ∈ Ω. If one writes w = natn
with a = diag[a1, . . . , ar] ∈ AC and n ∈ NC according to (0.1), then one has

ak =
∆k(w)

∆k−1(w)
(k = 1, . . . , r).

Subject classification: Primary 32M10; Secondary 32A07, 52A20
Keywords: homogeneous convex cone, tube domain, principal minor, basic relative invariant
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Lemma 0.2. Suppose that Re(natn) is positive definite for a = diag[a1, . . . , ar] ∈ AC
and n ∈ NC. Then Re a1 > 0, . . . ,Re ar > 0.

From these two lemmas we have the following proposition.

Proposition 0.3. Let w ∈ Sym(r,C) and suppose that Rew ∈ Ω. Then

Re
∆k(w)

∆k−1(w)
> 0 (k = 1, . . . , r).

By using the framework of Euclidean Jordan algebra, it is not hard to generalize
Proposition 0.3 to the case where Ω is a general symmetric cone. For this we just think of
∆k(w) as the Jordan algebra principal minors which are described in the book of Faraut–
Korányi [1]. In view of the fact that Lemma 0.2 can be proved by making use of the
stability of the Jordan algebra inverse map w 7→ w−1 for symmetric tube domains, and
then of the fact that this stability characterizes symmetric tube domains (cf. Kai–Nomura
[4]), it would be quite natural to have the following question:

Question 0.4. Is Proposition 0.3 characteristic of symmetric cones?

Here if one would like to generalize Proposition 0.3 to any homogenous open convex
cone (we say homogenous cone in what follows for simplicity), then it is necessary to
generalize ∆k to such a case. Ishi has done this in [3], and we take ∆k(w) as the basic
relative invariants associated to homogeneous cones following [3]. These are polynomial
functions on the ambient vector space V of the homogeneous cone Ω under considera-
tion, so that they are naturally continued to holomorphic polynomial functions on the
complexification VC. Of course, if the cone is symmetric, these basic relative invariants
coincide with the principal minors. Now Question 0.4 can be formulated in the following
way:

Conjecture 0.5. With the above notation, the implication for w ∈ VC that

Rew ∈ Ω =⇒ Re
∆k(w)

∆k−1(w)
> 0 (k = 1, . . . , r) (∗)

is equivalent to the symmetry of Ω.

The purpose of this note is to present a counterexample to this conjecture. In other
words, we show that there is a non-symmetric homogeneous cone for which we have the
above implication (∗) for elements w ∈ VC. The cone is 8-dimensional as mentioned in
the title.

From now on, let I be the 2×2 unit matrix, and V will denote the 8-dimensional real
vector space described in the following manner:

V :=



x =



x11I x21I y
x21I x22I z
ty tz x33


 ; y =

(
y1

y2

)
∈ R2, z =

(
z1
z2

)
∈ R2, xij ∈ R



 .

We note V ⊂ Sym(5,R). As for an open convex cone Ω, we take the positive definite
ones in V :

Ω := {x ∈ V ; xÀ 0}. (0.2)
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Let
A := {a = diag[a1I, a2I, a3] ; a1 > 0, a2 > 0, a3 > 0} ,

N :=



n =




I 0 0
ξI I 0
tn1

tn2 1


 ; ξ ∈ R, n1 ∈ R2, n2 ∈ R2



 .

(0.3)

Then we see without difficulty that the semidirect product group H := N nA acts on Ω
by H ×Ω 3 (h, x) 7→ hxth ∈ Ω simply transitively. Indeed, if x ∈ Ω is expressed as in the
definition of V , then the equation x = natn with x ∈ A and n ∈ N as in (0.3) is solved as

a1 = ∆1(x), a2 =
∆2(x)
∆1(x)

, a3 =
∆3(x)
∆2(x)

,

ξ =
x21

∆1(x)
, n1 =

y
∆1(x)

, n2 =
x11z− x21y

∆2(x)
.

(0.4)

Here, ∆1,∆2,∆3 are the polynomial functions on V given by





∆1(x) = x11,

∆2(x) = x11x22 − x2
21,

∆3(x) = x11x22x33 + 2x21y · z− x33x
2
21 − x22‖y‖2 − x11‖z‖2,

with y · z the canonical inner product in R2 and ‖ · ‖ the corresponding norm. Moreover
these ∆k(x) (k = 1, 2, 3) are the basic relative invariants associated to the current homo-
geneous cone Ω. We note here that, if δk(x) (k = 1, . . . , 5) stands for the k-th principal
minors of the 5× 5 matrix x ∈ V , then

δ1(x) = ∆1(x), δ2(x) = ∆1(x)2, δ3(x) = ∆1(x)∆2(x),

δ4(x) = ∆2(x)2, δ5(x) = ∆2(x)∆3(x).

Therefore x ∈ Ω is equivalent to ∆k(x) > 0 for any k = 1, 2, 3. Of course this is also seen
from the general case treated in Ishi [3].

Now, extending the canonical inner product y · z in R2 to a complex bilinear form
on C2 which we denote by the same symbol, and writing ν(y) := y · y instead of ‖y‖2
(and similarly for ν(z)), we have the obvious analytic continuations of ∆k(x) (k = 1, 2, 3)
to holomorphic polynomial functions on VC. Let AC and NC be the complexifications of
A and N , respectively. As shown in Nomura [6] for the general case, the tube domain
Ω + iV is contained in the orbit of NCAc through the 5× 5 identity matrix E ∈ Ω, that
is, Ω + iV ⊂ NCAC · E. In particular, none of ∆k vanishes on Ω + iV .

Proposition 0.6. Suppose that w ∈ VC satisfies Rew ∈ Ω. Then

Re
∆k(w)

∆k−1(w)
> 0 (k = 1, 2, 3).

Proposition 0.6 is almost clear from the complex version of (0.4) together with Lemma
0.2 applied to the case r = 5, our cone (0.2) being evidently a subset of the cone of 5× 5
real positive definite symmetric matrices.
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A characterization of symmetric tube domains by

convexity of Cayley transform images

Chifune Kai

Abstract

We show that a homogeneous tube domain is symmetric if and only if its Cayley
transform image is convex. Moreover this convexity forces the parameter of the
Cayley transform to be a specific one, so that the Cayley transform coincides with
the standard one defined in terms of the Jordan algebra structure associated with
the domain.

1 Introduction

A homogeneous bounded domain is an important geometric and analytic object. It is holo-
morphically equivalent to a homogeneous Siegel domain, which is a higher dimensional
analogue of the right half-plane in C and is affine homogeneous. Among homogeneous
Siegel domains, there is a special subclass consisting of symmetric ones. In [3] we charac-
terized symmetric Siegel domains by the simple geometric condition that the image of the
naturally defined Cayley transform is convex. We have this convexity as follows. Since a
symmetric Siegel domain is a Hermitian symmetric space of non-compact type, it has a
canonical bounded realization, the Harish-Chandra realization. In [6] Korányi and Wolf
introduced (the inverses of) the Cayley transforms which map a symmetric Siegel domain
to its Harish-Chandra realization. Since the Harish-Chandra realization is known to be
the open unit ball for a certain norm, the image of the Cayley transform is convex. Be-
fore proceeding, we would like to mention that it is shown in [7] that the Harish-Chandra
realization of a symmetric Siegel domain is characterized essentially among bounded re-
alizations by its convexity. In other words, the Cayley transform is essentially the only
bounded convex realization of a symmetric Siegel domain.

In this article we deal with homogeneous tube domains (homogeneous Siegel domains
of type I) for simplicity. We present an example. We put V := Sym(n,R), the real vector
space of symmetric matrices of order n and set W := VC = Sym(n,C). We define an
open convex cone Ω by

Ω := {X ∈ V | X À 0 (positive definite)}.
Then the tube domain Ω + iV ⊂ W is symmetric, which is called the Siegel upper half-
plane (though it is a right half-plane here). The Cayley transform for Ω+iV is introduced
by

C(w) := (w − e)(w + e)−1 (w ∈W ),

Subject classification: 32M15, 43A85
Keywords: Homogeneous cone, Homogeneous tube domain, Cayley transform, Jordan algebra, clan
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where e is the unit matrix of order n. We put z := C(w). By an easy computation we
see that

Rew = (e− z)−1(e− zz∗)((e− z)−1
)∗
.

Hence we have

C(Ω + iV ) = {z ∈W | e− zz∗ À 0}.
The right hand side is the open unit ball for a certain norm and is convex. For every
symmetric tube domain, we can define the Cayley transform in a natural way using the
structure of the associated Jordan algebra, and the image of the Cayley transform is
convex (see §3 for details). We shall see that this convexity characterizes symmetric tube
domains among homogeneous ones.

In this article we deal with the parametrized family of Cayley transforms for homo-
geneous Siegel domains defined by Nomura [11], which is specialized to tube domains.
This family includes Penney’s Cayley transform [13], and Nomura’s one associated with
the Bergman kernel (resp. Szegö kernel) of the domain appearing in [8], [9] and [10] (resp.
[12]). Though there is no essential difference between these three Cayley transforms in the
case of tube domains, the parametrization is significant when we use the main theorem
of this article to prove [3, Theorem 3.1]. If the domain is symmetric, the parametrized
family of Cayley transforms includes the above-mentioned Cayley transform defined by
means of the Jordan algebra structure. Our theorem states also that the convexity of
Cayley transform image is characteristic of that Cayley transform.

2 Homogeneous tube domains

Let V be a finite-dimensional vector space over R. An open convex cone Ω ⊂ V is called
a homogeneous convex cone, if the linear automorphism group

G(Ω) := {g ∈ GL(V ) | g(Ω) = Ω}
acts transitively on Ω. We putW := VC, the complexification of V , and denote by w 7→ w∗

the complex conjugation of W with respect to the real form V . For a homogeneous
convex cone Ω ⊂ V , we call the domain Ω + iV ⊂ W a homogeneous tube domain. It is
homogeneous, in particular, affine homogeneous.

2.1 Admissible relative invariants on the cone

By [14, Theorem 1], there exists a split solvable subgroup H of G(Ω) acting simply
transitively on Ω. A function ∆ : Ω → R+ is called a relative invariant if there exists
a character (one-dimensional representation) of H such that ∆(hx) = χ(h)∆(x) (h ∈
H,x ∈ Ω). We take any E ∈ Ω and fix it throughout this article. For a relative invariant
∆ on Ω, we define a bilinear form on V by

〈x|y〉∆ := DxDy log ∆(E) (x, y ∈ V ),

where for a C∞ function f on V , v ∈ V and x ∈ Ω, we define

Dvf(x) := d
dtf(x+ tv)

∣∣
t=0

.
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If the bilinear form 〈·|·〉∆ defines a positive definite inner product on V , we say that ∆ is
admissible (only in this article). We know that one of the admissible relative invariants
is given by ∆Det(h) := deth−1 (h ∈ H).

3 Cayley transforms for symmetric tube domains

We suppose that Ω + iV is symmetric in this section. Then Ω is a symmetric cone and
the associated Jordan algebra structure is introduced in the following way. We define a
commutative product ◦ on V by

〈x ◦ y|z〉∆Det
= −1

2DxDyDz log ∆Det(E) (x, y, z ∈ V ). (3.1)

We know that E is the unit element. Since Ω + iV is symmetric, we see that V with
the product ◦ is a Jordan algebra. This means that in addition to the commutativity we
have for all x, y ∈ V ,

x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y).

Moreover this Jordan algebra is Euclidean in the sense of [1]. In fact, by (3.1) we have

〈x ◦ y|z〉∆Det
= 〈x|y ◦ z〉∆Det

(x, y, z ∈ V ).

We extend the product ◦ to W by complex bilinearity. Then W is a semisimple complex
Jordan algebra.

We introduce the Cayley transform CJ for Ω + iV by

CJ(w) := (w − E) ◦ (w +E)−1 (w ∈W ).

Remark 3. We note that the above definition is rewritten as

CJ(w) := E − 2(w +E)−1 (w ∈W ).

For an invertible v ∈ V , the Jordan algebra inverse v−1 is characterized as

〈v−1|x〉∆Det
= −Dx log ∆Det(v) (x ∈ V ).

Let us describe the Cayley transform image CJ(Ω + iV ). For w ∈ W , we denote by
L(w) the multiplication operator by w: L(w)v := w ◦ v (v ∈W ). For x, y ∈W , we define
a complex linear operator x¤y on W by

x¤y := L(x ◦ y) + [L(x), L(y)].

For w ∈W , we set |w| := ‖w¤w∗‖1/2, where the operator norm is computed through the
norm associated with 〈·|·〉∆Det

. By [1, Proposition X.4.1], we know that | · | is a norm on
W , which is called the spectral norm.

Proposition 3.1. We have

CJ(Ω + iV ) = {w ∈W | |w| < 1},

so that CJ(Ω + iV ) is convex.
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4 Cayley transforms for homogeneous tube domains

Now we proceed to the case of homogeneous tube domains. Let Ω+iV be the homogeneous
tube domain defined in §2. Let ∆ be any admissible relative invariant on Ω. For x ∈ Ω,
the pseudoinverse I∆(x) of x is defined by

〈I∆(x)|y〉∆ = −Dy log ∆(x) (y ∈ V ).

We call I∆ : Ω→ V the pseudoinverse map. Let us present the key properties of I∆:

• We denote by Ω∆ the dual cone of Ω realized in V by means of the inner product
〈·|·〉∆. We see that I∆ gives a bijection from Ω onto Ω∆.

• One has I∆(E) = E.

• I∆ is analytically continued to a birational map W → W . Let HC be the com-
plexification of H. We extend 〈·|·〉∆ to a complex bilinear form on W . Then I∆ is
HC-equivariant: I∆(hx) = ∆h−1I∆(x) (h ∈ HC), where ∆h stands for the transpose
of h with respect to 〈·|·〉∆.

• I∆ is holomorphic on Ω + iV .

• We suppose that Ω+ iV is symmetric and ∆ = ∆Det
p for some p > 0. We introduce

the Jordan algebra structure with the unit element E as we did in §3. Then I∆
coincides with the Jordan algebra inverse map.

We define the Cayley transform C∆ for Ω + iV by

C∆(w) := E − 2I∆(w +E) (w ∈W ).

It is shown that C∆ maps Ω+iV biholomorphically onto a bounded domain. Thus we have
the Cayley transform for every admissible relative invariant on Ω. Our characterization
theorem for symmetric tube domains is stated as follows:

Theorem 4. Let Ω + iV be a homogeneous tube domain and ∆ an admissible relative
invariant on Ω. Then C∆(Ω + iV ) is convex if and only if Ω + iV is symmetric and
∆ = ∆Det

p for some p > 0.
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The asymptotic expansion of Bergman kernels on

symplectic manifolds

George Marinescu

1 Introduction

In this talk, we explain some ideas of our approach to the asymptotic expansion of the
Bergman kernel associated to a line bundle. The basic philosophy developed in [8, 15, 18]
is that the spectral gap properties for the operators proved in [3, 14] implies the existence
of the asymptotic expansion for the corresponding Bergman kernels if the manifold X is
compact or not, or singular, or with boundary, by using the analytic localization technique
inspired by [2, §11]. The interested readers may find complete references in [8, 15, 17],
and in the forthcoming book [18].

We consider a compact complex manifold (X, J) with complex structure J , and holo-
morphic vector bundles L, E on X, with rkL = 1. Let {H0,q(X,Lp ⊗ E)}nq=0 be the

Dolbeault cohomology groups of the Dolbeault complex (Ω0,•(X,Lp ⊗ E), ∂Lp⊗E) :=
(⊕qΩ0,q(X,Lp ⊗E), ∂Lp⊗E).

We fix Hermitian metrics hL, hE on L, E. Let ∇L be the holomorphic Hermitian
connection on (L, hL) with curvature RL and let gTX be a Riemannian metric on X such
that

gTX(J ·, J ·) = gTX(·, ·). (1.1)

We denote by ∂
Lp⊗E,∗ the formal adjoint of the Dolbeault operator ∂Lp⊗E on the Dol-

beault complex Ω0,•(X,Lp ⊗ E) endowed with the L2-scalar product associated to the
metrics hL, hE and gTX and the Riemannian volume form dvX(x′). Set

Dp =
√

2
(
∂

Lp⊗E + ∂
Lp⊗E,∗)

. (1.2)

Then 1
2D

2
p is the Kodaira-Laplacian acting on Ω0,•(X,Lp⊗E) and preserves its Z-grading.

By Hodge theory, we know that

KerDp|Ω0,q = KerD2
p|Ω0,q ' H0,q(X,Lp ⊗ E). (1.3)

We denote by Pp the orthogonal projection from Ω0,•(X,Lp ⊗ E) onto KerDp. The
Bergman kernel Pp(x, x′), (x, x′ ∈ X) of Lp ⊗ E is the smooth kernel of Pp with respect
to the Riemannian volume form dvX(x′).

In this setting, we are interested to understand the asymptotic expansion of Pp(x, x′)
as p → ∞. If RL is positive, it is studied in [22, 20, 26, 7, 4, 21, 13, 23, 12] in various
generalities. Moreover, the coefficients in the diagonal asymptotic expansion encode
geometric information about the underlying complex projective manifolds. This diagonal
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asymptotic expansion plays a crucial role in the recent work of Donaldson [10] where the
existence of Kähler metrics with constant scalar curvature is shown to be closely related
to Chow-Mumford stability.

In the symplectic setting, Dai, Liu and Ma [8] studied the asymptotic expansion of
the Bergman kernel of the spinc Dirac operator associated to a positive line bundle on
compact symplectic manifolds, and related it to that of the corresponding heat kernel.
This approach is inspired by local Index Theory, especially by the analytic localization
techniques of Bismut-Lebeau [2, §11]. In [8] they also focused on the full off-diagonal
asymptotic expansion [8, Theorem 4.18] which is needed to study the Bergman kernel on
orbifolds. By exhibiting the spectral gap properties of the corresponding operators, in [17],
we also explained that without changing any step in the proof of [8, Theorem 4.18], the full
off-diagonal asymptotic expansion still holds in the complex or symplectic setting if the
curvature RL of L is only non-degenerate. Note that Berman and Sjöstrand [1] recently
also studied the asymptotic expansion in the complex setting when the curvauture RL of
L is only non-degenerate.

Along with 1
2D

2
p there is another geometrically defined generalization to symplectic

manifolds of the Kodaira-Laplace operator, namely the renormalized Bochner-Laplacian.
In this talk, we explain the asymptotic expansion of the generalized Bergman kernels
of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle
on compact symplectic manifolds. In this situation the operators have small eigenvalues
when the power p → ∞ (the only small eigenvalue is zero in [8], thus we have the key
equation [8, (3.89)]) and we are interested in obtaining Theorem 8, that is, the near
diagonal expansion of the generalized Bergman kernels.

There are three steps: In Step 1, by using the finite propagation speed of solutions
of hyperbolic equations, we can localize our problem if the spectral gap properties holds.
In Step 2, we work on Tx0X ' R2n, and extend the bundles and connections from a
neighborhood of 0 to all of Tx0X such that the curvature of the line bundle L is uniformly
non-degenerate on Tx0X. We combine the Sobolev norm estimates from [8] and a formal
power series method to obtain the asymptotic expansion. In Step 3 we compute the
coefficients by using the formal power series method from Step 2. Actually, in [17],
we compute also some coefficients in the asymptotic expansion of the Bergman kernel
associated to the spinc Dirac operators in [8] by using the formal power series method
here.

2 Main results

Let (X,ω) be a compact symplectic manifold of real dimension 2n. Assume that there
exists a Hermitian line bundle L over X endowed with a Hermitian connection ∇L with
the property that

√−1
2π RL = ω, where RL = (∇L)2 is the curvature of (L,∇L). Let (E, hE)

be a Hermitian vector bundle on X with Hermitian connection ∇E and its curvature RE .
Let gTX be a Riemannian metric on X. Let ∇TX be the Levi-Civita connection

on (TX, gTX) with its curvature RTX and its scalar curvature rX . Let dvX be the
Riemannian volume form of (TX, gTX). The scalar product on the space C∞(X,Lp⊗E)
of smooth sections of Lp ⊗E is given by

〈s1, s2〉 =
∫

X
〈s1(x), s2(x)〉Lp⊗E dvX(x) .
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Let J : TX −→ TX be the skew–adjoint linear map which satisfies the relation

ω(u, v) = gTX(Ju, v) (2.1)

for u, v ∈ TX. Let J be an almost complex structure which is (separately) compatible
with gTX and ω, especially, ω(·, J ·) defines a metric on TX. Then J commutes also with J.
Let∇XJ ∈ T ∗X⊗End(TX) be the covariant derivative of J induced by∇TX . Let∇Lp⊗E

be the connection on Lp⊗E induced by ∇L and ∇E . Let {ei}i be an orthonormal frame
of (TX, gTX). Set |∇XJ |2 =

∑
ij |(∇X

ei
J)ej |2. Let ∆Lp⊗E = −∑

i[(∇Lp⊗E
ei

)2 − ∇Lp⊗E
∇TX

ei
ei

]

be the induced Bochner-Laplacian acting on C∞(X,Lp⊗E). We fix a smooth hermitian
section Φ of End(E) on X. Set τ(x) = −πTr|TX [JJ], and

∆p,Φ = ∆Lp⊗E − pτ + Φ. (2.2)

By [14, Cor. 1.2] (cf. also [11, Theorem 2]) there exist µ0, CL > 0 independent of p such
that the spectrum of ∆p,Φ satisfies

Spec ∆p,Φ ⊂ [−CL, CL] ∪ [2pµ0 − CL,+∞[ . (2.3)

This is the spectral gap property which plays an essential role in our approach. In the
first place, it indicates a natural space of sections which replace the space of holomorphic
sections from the complex case.

Let P0,p be the orthogonal projection from (C∞(X,Lp⊗E), 〈 · , · 〉) onto the eigenspace
of ∆p,Φ with eigenvalues in [−CL, CL]. If the complex case (i.e. J is integrable and Φ =
−
√−1

2 RE(ej , Jej)) the interval [−CL, CL] contains for p large enough only the eigenvalue
0 whose eigenspace consists of holomorphic sections. For the computation of the spectral
density function we need more general kernels. Namely, we define Pq,p(x, x′), q > 0
as the smooth kernels of the operators Pq,p = (∆p,Φ)qP0,p (we set (∆p,Φ)0 = 1) with
respect to dvX(x′). They are called the generalized Bergman kernels of the renormalized
Bochner-Laplacian ∆p,Φ. Let det J be the determinant function of Jx ∈ End(TxX).

Theorem 5. There exist smooth coefficients bq,r(x) ∈ End(E)x which are polynomials in
RTX , RE (and RL, Φ) and their derivatives of order 6 2(r+ q)− 1 (resp. 2(r+ q)), and
reciprocals of linear combinations of eigenvalues of J at x, and

b0,0 = (det J)1/2 IdE , (2.4)

such that for any k, l ∈ N, there exists Ck, l > 0 such that for any x ∈ X, p ∈ N,

∣∣∣ 1
pn
Pq,p(x, x)−

k∑

r=0

bq,r(x)p−r
∣∣∣
C l

6 Ck, l p
−k−1. (2.5)

Moreover, the expansion is uniform in that for any k, l ∈ N, there is an integer s such
that if all data (gTX , hL, ∇L, hE, ∇E, J and Φ) run over a bounded set in the C s- norm
and gTX stays bounded below, the constant Ck, l is independent of gTX ; and the C l-norm
in (2.5) includes also the derivatives on the parameters.

Theorem 6. If J = J, then for q > 1,

b0,1 =
1

8π

[
rX +

1
4
|∇XJ |2 + 2

√−1RE(ej , Jej)
]
, (2.6)

bq,0 =
( 1

24
|∇XJ |2 +

√−1
2

RE(ej , Jej) + Φ
)q
. (2.7)
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Theorem 5 for q = 0 and (2.6) generalize the results of [7], [26], [13] and [23] to the
symplectic case. The term rX + 1

4 |∇XJ |2 in (2.6) is called the Hermitian scalar curvature
in the literature and is a natural substitute for the Riemannian scalar curvature in the
almost-Kähler case. It was used by Donaldson [9] to define the moment map on the
space of compatible almost-complex structures. We can view (2.7) as an extension and
refinement of the results of [11, §5] about the density of states function of ∆p,Φ, (2.7)
implies also a correction of a formula in [6].

Now, we try to explain the near-diagonal expansion of Pq,p(x, x′).
Let aX be the injectivity radius of (X, gTX). We fix ε ∈]0, aX/4[. We denote by

BX(x, ε) and BTxX(0, ε) the open balls in X and TxX with center x and radius ε. We
identify BTxX(0, ε) with BX(x, ε) by using the exponential map of (X, gTX).

We fix x0 ∈ X. For Z ∈ BTx0X(0, ε) we identify LZ , EZ and (Lp ⊗ E)Z to Lx0 , Ex0

and (Lp⊗E)x0 by parallel transport with respect to the connections ∇L, ∇E and ∇Lp⊗E

along the curve γZ : [0, 1] 3 u→ expX
x0

(uZ). Then under our identification, Pq,p(Z,Z ′) is
a section of End(E)x0 on Z,Z ′ ∈ Tx0X, |Z|, |Z ′| ≤ ε, we denote it by Pq,p,x0(Z,Z ′). Let
π : TX ×X TX → X be the natural projection from the fiberwise product of TX on X.
Then we can view Pq,p,x0(Z,Z ′) as a smooth section of π∗ End(E) on TX ×X TX (which
is defined for |Z|, |Z ′| ≤ ε) by identifying a section S ∈ C∞(TX×X TX, π∗ End(E)) with
the family (Sx)x∈X . We denote by | |C s(X) a C s norm on it for the parameter x0 ∈ X.

We will define the function PN (Z,Z ′) in (4.5).

Theorem 7. There exist Jq,r(Z,Z ′) ∈ End(E)x0 polynomials in Z,Z ′ with the same
parity as r and deg Jq,r(Z,Z ′) ≤ 3r, whose coefficients are polynomials in RTX , RE

( and RL, Φ) and their derivatives of order 6 r − 1 ( resp. r), and reciprocals of linear
combinations of eigenvalues of J at x0 , such that if we denote by

Fq,r(Z,Z ′) = Jq,r(Z,Z ′)PN (Z,Z ′), (2.8)

then for k,m,m′ ∈ N, σ > 0, there exists C > 0 such that if t ∈]0, 1], Z,Z ′ ∈ Tx0X,
|Z|, |Z ′| 6 σ/

√
p,

sup
|α|+|α′|6m

∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′
(
Pq,p(Z,Z ′)−

k∑

r=2q

Fq,r(
√
pZ,
√
pZ ′)p−r/2

)∣∣∣
C m′ (X)

6 Cp−(k−m+1)/2. (2.9)

3 Idea of the proofs

3.1 Localization

First, (2.3) and the finite propagation speed for hyperbolic equations, allows us to localize
the problem. In particular, the asymptotics of Pq,p(x0, x

′) as p → ∞ are localized on a
neighborhood of x0. Thus we can translate our analysis from X to the manifold R2n '
Tx0X =: X0.

Let f : R → [0, 1] be a smooth even function such that f(v) = 1 for |v| 6 ε/2, and
f(v) = 0 for |v| > ε. Set

F (a) =
( ∫ +∞

−∞
f(v)dv

)−1
∫ +∞

−∞
eivaf(v)dv. (3.1)
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Then F (a) is an even function and lies in the Schwartz space S(R) and F (0) = 1. Let
F̃ be the holomorphic function on C such that F̃ (a2) = F (a). The restriction of F̃ to R
lies in the Schwartz space S(R). Then there exists {cj}∞j=1 such that for any k ∈ N, the
function

Fk(a) = F̃ (a)−
k∑

j=1

cja
jF̃ (a), (3.2)

verifies

F
(i)
k (0) = 0 for any 0 < i 6 k. (3.3)

Proposition 3.1. For any k,m ∈ N, there exists Ck,m > 0 such that for p > 1
∣∣∣Fk

(
1√
p∆p,Φ

)
(x, x′)− P0,p(x, x′)

∣∣∣
C m(X×X)

6 Ck,mp
− k

2
+2(2m+2n+1). (3.4)

Here the C m norm is induced by ∇L, ∇E, hL, hE and gTX .

Using (3.1), (3.2) and the finite propagation speed of solutions of hyperbolic equations,
it is clear that for x, x′ ∈ X, Fk

(
1√
p∆p,Φ

)
(x, ·) only depends on the restriction of ∆p,Φ

to BX(x, εp−
1
4 ), and Fk

(
1√
p∆p,Φ

)
(x, x′) = 0, if d(x, x′) > εp−

1
4 . This means that the

asymptotic of ∆q
p,ΦPHp(x, ·) when p→ +∞, modulo O(p−∞) (i.e. terms whose C m norm

is O(p−l) for any l,m ∈ N), only depends on the restriction of ∆p,Φ to BX(x, εp−
1
4 ).

3.2 Uniform estimate of the generalized Bergman kernels

We will work on the normal coordinate for x0 ∈ X. We identify the fibers of (L, hL),
(E, hE) with (Lx0 , h

Lx0 ), (Ex0 , h
Ex0 ) respectively, in a neighborhood of x0, by using the

parallel transport with respect to ∇L, ∇E along the radial direction.
We then extend the bundles and connections from a neighborhood of 0 to all of

Tx0X. In particular, we can extend ∇L (resp. ∇E) to a Hermitian connection ∇L0 on
(L0, h

L0) = (X0 × Lx0 , h
Lx0 ) (resp. ∇E0 on (E0, h

E0) = (X0 × Ex0 , h
Ex0 ) ) on Tx0X in

such a way so that we still have positive curvature RL0 ; in addition RL0 = RL
x0

outside a
compact set. We also extend the metric gTX0 , the almost complex structure J0, and the
smooth section Φ0, (resp. the connection ∇E0) in such a way that they coincide with their
values at 0 (resp. the trivial connection) outside a compact set. Moreover, using a fixed
unit vector SL ∈ Lx0 and the above discussion, we construct an isometry E0⊗Lp

0 ' Ex0 .
Let ∆X0

p,Φ0
be the renormalized Bochner-Laplacian on X0 associated to the above data by

a formula analogous to (2.2). Then (2.3) still holds for ∆X0
p,Φ0

with µ0 replaced by 4µ0/5.
Let dvTX be the Riemannian volume form on (Tx0X, g

Tx0X) and κ(Z) be the smooth
positive function defined by the equation dvX0(Z) = κ(Z)dvTX(Z), with k(0) = 1. For
s ∈ C∞(R2n, Ex0), Z ∈ R2n and t = 1/

√
p , set

‖s‖20 =
∫

R2n

|s(Z)|2
hEx0

dvTX(Z),

and consider

Lt = S−1
t t2κ

1
2 ∆X0

p,Φ0
κ−

1
2St , where (Sts)(Z) = s(Z/t) . (3.5)
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Then Lt is a family of self-adjoint differential operators with coefficients in End(E)x0 . We
denote by P0,t : (C∞(X0, Ex0), ‖ ‖0) → (C∞(X0, Ex0), ‖ ‖0) the spectral projection
of Lt corresponding to the interval [−CL0t

2, CL0t
2]. Let Pq,t(Z,Z ′) = Pq,t,x0(Z,Z ′),

(Z,Z ′ ∈ X0, q > 0) be the smooth kernel of Pq,t = (Lt)q P0,t with respect to dvTX(Z ′).
We can view Pq,t,x(Z,Z ′) as a smooth section of π∗ End(E) over TX ×X TX, where
π : TX ×X TX → X. Let δ be the counterclockwise oriented circle in C of center 0 and
radius µ0/4. By (2.3),

Pq,t =
1

2πi

∫

δ
λq(λ−Lt)−1dλ. (3.6)

From (2.3) and (3.6) we can apply the techniques in [8], which are inspired by [2, §11],
to get the following key estimate.

Theorem 8. There exist smooth sections Fq,r ∈ C∞(TX ×X TX, π∗ End(E)) such that
for k,m,m′ ∈ N, σ > 0, there exists C > 0 such that if t ∈]0, 1], Z,Z ′ ∈ Tx0X, |Z|, |Z ′| 6
σ,

sup
|α|,|α′|6m

∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′
(
Pq,t −

k∑

r=0

Fq,rt
r
)

(Z,Z ′)
∣∣∣
C m′ (X)

6 Ctk. (3.7)

Let P0,q,p(Z,Z ′) ∈ End(Ex0) (Z,Z ′ ∈ X0) be the analogue of Pq,p(x, x′). By (3.5),
for Z,Z ′ ∈ R2n,

P0, q, p(Z,Z ′) = t−2n−2q κ−
1
2 (Z)Pq,t(Z/t, Z ′/t)κ−

1
2 (Z ′). (3.8)

By Proposition 3.1, we know that

P0,q,p(Z,Z ′) = Pq,p,x0(Z,Z ′) + O(p−∞), (3.9)

uniformly for Z,Z ′ ∈ Tx0X, |Z|, |Z ′| ≤ ε/2.
To complete the proof the Theorem 2.1, we finally prove Fq,r = 0 for r < 2q. In fact,

(3.7) and (3.8) yield

bq,r(x0) = Fq,2r+2q(0, 0). (3.10)

4 Evaluation of Fq,r

The almost complex structure J induces a splitting TRX⊗RC = T (1,0)X⊕T (0,1)X, where
T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to the eigenvalues

√−1 and
−√−1, respectively. We choose {wi}ni=1 to be an orthonormal basis of T (1,0)

x0 X, such that

−2π
√−1Jx0 = diag(a1, · · · , an) ∈ End(T (1,0)

x0
X). (4.1)

We use the orthonormal basis e2j−1 = 1√
2
(wj +wj) and e2j =

√−1√
2

(wj−wj) , j = 1, . . . , n
of Tx0X to introduce the normal coordinates as in Section 3. In what follows we will use
the complex coordinates z = (z1, · · · , zn), thus Z = z + z, and wi =

√
2 ∂

∂zi
, wi =

√
2 ∂

∂zi
.

It is very useful to introduce the creation and annihilation operators bi, b+i ,

bi = −2 ∂
∂zi

+
1
2
aizi , b+i = 2 ∂

∂zi
+

1
2
aizi , b = (b1, · · · , bn) . (4.2)
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Now there are second order differential operatorsOr whose coefficients are polynomials
in Z with coefficients being polynomials in RTX , Rdet, RE , RL and their derivatives at
x0, such that

Lt = L0 +
∞∑

r=1

Ort
r, with L0 =

∑

i

bib
+
i . (4.3)

Theorem 9. The spectrum of the restriction of L0 to L2(R2n) is given by

{
2

n∑

i=1

αiai : αi ∈ N
}

and an orthogonal basis of the eigenspace of 2
∑n

i=1 αiai is given by

bα
(
zβ exp

(−1
4

∑

i

ai|zi|2
))
, with β ∈ Nn . (4.4)

Let N⊥ be the orthogonal space of N = Ker L0 in (L2(R2n, Ex0), ‖ ‖0). Let PN ,
PN⊥

be the orthogonal projections from L2(R2n, Ex0) onto N , N⊥, respectively. Let
PN (Z,Z ′) be the smooth kernel of the operator PN with respect to dvTX(Z ′). From
(4.4), we get

PN (Z,Z ′) =
1

(2π)n

n∏

i=1

ai exp
(
− 1

4

∑

i

ai

(|zi|2 + |z′i|2 − 2ziz′i
))
. (4.5)

Now for λ ∈ δ, we solve for the following formal power series on t, with gr(λ) ∈
End(L2(R2n, Ex0), N), f⊥r (λ) ∈ End(L2(R2n, Ex0), N⊥),

(λ−Lt)
∞∑

r=0

(
gr(λ) + f⊥r (λ)

)
tr = IdL2(R2n,Ex0 ) . (4.6)

From (3.6), (4.6), we claim that

Fq,r =
1

2πi

∫

δ
λqgr(λ)dλ+

1
2πi

∫

δ
λqf⊥r (λ)dλ. (4.7)

From Theorem 9, (4.7), the key observation that PNO1P
N = 0, and the residue

formula, we can get Fq,r by using the operators L −1
0 , PN , PN⊥

, Oi, (i 6 r). This gives
us a method to compute bq,r in view of Theorem 9 and (3.10). Especially, for q > 0, r < 2q,

F0,0 = PN , Fq,r = 0, (4.8)

Fq,2q = (PNO2P
N − PNO1L

−1
0 PN⊥O1P

N )qPN ,

F0,2 = L −1
0 PN⊥O1L

−1
0 PN⊥O1P

N −L −1
0 PN⊥O2P

N

+ PNO1L
−1
0 PN⊥O1L

−1
0 PN⊥ − PNO2L

−1
0 PN⊥

+ PN⊥
L −1

0 O1P
NO1L

−1
0 PN⊥ − PNO1L

−2
0 PN⊥O1P

N .

In fact L0 and Or are formal adjoints with respect to ‖ ‖0 ; thus in F0,2 we only need
to compute the first two terms, as the last two terms are their adjoints. This simplifies
the computation in Theorem 6.



86 George Marinescu

5 Generalizations to non-compact manifolds

In this section we come back to the case of complex manifolds, which was briefly discussed
in the introduction, but focus on non-compact manifolds. Let (X,Θ) be a Hermitian
manifold of dimension n, where Θ is the (1, 1) form associated to a hermitian metric on
X. Given a Hermitian holomorphic bundles L and E on X with rkL = 1, we consider the
space of L2 holomorphic sections H0

(2)(X,L
p ⊗ E). Let Pp be the orthogonal projection

from the spaceLLL2(X,Lp⊗E) of L2 sections of Lp⊗E ontoH0
(2)(X,L

p⊗E). By generalizing
the definition from Section 1, we define the Bergman kernel Pp(x, x′), (x, x′ ∈ X) to be the
Schwartz kernel of Pp with respect to the Riemannian volume form dvX(x′) associated to
(X,Θ). By the ellipticity of the Kodaira-Laplacian and Schwartz kernel theorem, we know
Pp(x, x′) is C∞. Choose an orthonormal basis (Sp

i )dp

i=1 (dp ∈ N∪{∞}) of H0
(2)(X,L

p⊗E).
The Bergman kernel can then be expressed as

Pp(x, x′) =
dp∑

i=1

Sp
i (x)⊗ (Sp

i (x′))∗ ∈ (Lp ⊗E)x ⊗ (Lp ⊗ E)∗x′ .

Let KX = det(T ∗(1,0)X) be the canonical line bundle of X and Rdet be the curvature of
K∗

X relative to the metric induced by Θ. The line bundle L is supposed to be positive
and we set ω =

√−1
2π RL.

We denote by gTX
ω the Riemannian metric associated to ω and by rX

ω the scalar
curvature of gTX

ω . Moreover, let α1, . . . , αn be the eigenvalues of ω with respect to Θ
(αj = aj/(2π), j = 1, . . . , n where a1, . . . , an are defined by (4.1) and (2.1) with gTX

the Riemannian metric associated to Θ). The torsion of Θ is T = [i(Θ), ∂Θ], where
i(Θ) = (Θ ∧ ·)∗ is the interior multiplication with Θ.

Theorem 10 ([15]). Assume that (X,Θ) is a complete Hermitian manifold of dimension
n. Suppose that there exist ε > 0 , C > 0 such that

√−1RL > εΘ ,
√−1Rdet > −CΘ ,

√−1RE > −CΘ , |T | 6 CΘ . (5.1)

Then the kernel Pp(x, x′) has a full off–diagonal asymptotic expansion uniformly on com-
pact sets of X×X and Pp(x, x) has an asymptotic expansion analogous to (2.5) uniformly
on compact sets of X. Moreover, b0 = α1 · · ·αn IdE and

b1 =
α1 · · ·αn

8π

[
rX
ω IdE −2∆ω

(
log(α1 · · ·αn)

)
IdE +4

n∑

j=1

RE(wω,j , wω,j)
]
,

where {wω,j} is an orthonormal basis of (T (1,0)X, gTX
ω ).

By full off-diagonal expansion we mean an expansion analogous to (2.9) where we allow
|Z|, |Z ′| 6 σ.

Let us remark that if L = KX , the first two conditions in (5.1) are to be replaced by

hL is induced by Θ and
√−1Rdet < −εΘ. (5.2)

Moreover, if (X,Θ) is Kähler, the condition on the torsion T is trivially satisfied.
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The proof is based on the observation that the Kodaira-Laplacian 2p = 1
2D

2
p acting

on LLL2(X,Lp ⊗ E) has a spectral gap as in (2.3). The proof of Theorem 5 applies then
and delivers the result.

Theorem 10 has several applications e.g. holomorphic Morse inequalities on non-
compact manifolds (as the well-known results of Nadel-Tsuji [19], see also [15, 25]) or
Berezin-Toeplitz quantization (see [18] or the fothcommimg [16]).

We will emphazise in the sequel the Bergman kernel for a singular metric. Let X be
a compact complex manifold. A singular Kähler metric on X is a closed, strictly positive
(1, 1)-current ω. If the cohomology class of ω in H2(X,R) is integral, there exists a
holomorphic line bundle (L, hL), endowed with a singular Hermitian metric, such that√−1
2π RL = ω in the sense of currents. We call (L, hL) a singular polarization of ω.

If we change the metric hL, the curvature of the new metric will be in the same
cohomology class as ω. In this case we speak of a polarization of [ω] ∈ H2(X,R). Our
purpose is to define an appropriate notion of polarized section of Lp, possibly by changing
the metric of L, and study the associated Bergman kernel.

Corollary 11. Let (X,ω) be a compact complex manifold with a singular Kähler metric
with integral cohomology class. Let (L, hL) be a singular polarization of [ω] with strictly
positive curvature current having singular support along a proper analytic set Σ . Then
the Bergman kernel of the space of polarized sections

H0
(2)(X r Σ, Lp) =

{
u ∈ L0,0

2 (X r Σ, Lp , ΘP , h
L
ε ) : ∂Lp

u = 0
}

has the asymptotic expansion as in Theorem 10 for X r Σ, where ΘP is a generalized
Poincaré metric on X r Σ and hL

ε is a modified Hermitian metric on L.

Using an idea of Takayama [24], Corollary 11 gives a proof of the Shiffman-Ji-Bonavero-
Takayama criterion, about the characterization of Moishezon manifolds by (1, 1) positive
currents.

We mention further the Berezin-Toeplitz quantization. Assume that X is a complex
manifold and let C∞

const(X) denote the algebra of smooth functions ofX which are constant
outside a compact set. For any f ∈ C∞

const(X) we denote for simplicity the operator of
multiplication with f still by f and consider the linear operator

Tf,p : LLL2(X,Lp) −→ LLL2(X,Lp) , Tf,p = Pp f Pp . (5.3)

The family (Tf,p)p>1 is called a Toeplitz operator. The following result generalizes [5] to
non-compact manifolds.

Corollary 12. We assume that (X,Θ) and (L, hL) satisfy the same hypothesis as in
Theorem 10 or (5.2). Let f, g ∈ C∞

const(X). The product of the two corresponding Toeplitz
operators admits the asymptotic expansion

Tf,pTg,p =
∞∑

r=0

p−rTCr(f,g),p + O(p−∞) (5.4)

where Cr are differential operators. More precisely,

C0(f, g) = fg , C1(f, g)− C1(g, f) =
1√−1
{f, g} (5.5)
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where the Poisson bracket is taken with respect to the metric 2πω. Therefore

[Tf,p, Tg,p] = p−1T 1√−1
{f,g},p + O(p−2). (5.6)

Remark 13. For any f ∈ C∞(X,End(E)) we can consider the linear operator

Tf,p : LLL2(X,Lp ⊗E) −→ LLL2(X,Lp ⊗E) , Tf,p = Pp f Pp . (5.7)

Then (5.4) holds for any f, g ∈ C∞(X,End(E)) which are constant outside some compact
set. Moreover, (5.5), (5.6) still hold for f, g ∈ C∞

const(X) ⊂ C∞(X,End(E)).
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Hua operators and Poisson transform for

non-tube bounded symmetric domains

Khalid Koufany and Genkai Zhang

1 Introduction

The purpose of the present note is to give an overview of the main results obtained in
[9]. Due to the limitation of the space we will be rather brief and descriptive.

Suppose Ω is a bounded symmetric domain in a complex n−dimensional space V . Let
S be its Shilov boundary and r its rank. We consider the characterization of the image
of the Poisson transform Ps (s ∈ C) on the Shilov boundary S. For a specific value of
s (s = 1 in our parameterization) the corresponding Poisson transform P := P1 maps
hyperfunctions on S to harmonic functions on Ω. When Ω is a tube domain Johnson and
Korányi [7] proved that the image of the Poisson transform P is exactly the set of all
Hua-harmonic functions. Lassalle [10] has shown that the Hua system of Johnson and
Korányi can be replaced by and equivalent system containing fewer equations. For non-
tube domains the characterization of the image of the Poisson transform P was done by
Berline and Vergne [1] where certain third-order differential Hua-operator was introduced
to characterize the image. In his paper [15] Shimeno considered the Poisson transform Ps

on tube domains, it is proved that Poisson transform maps hyperfunctions on the Shilov
boundary to certain solution space of the Hua operator. For the Shilov boundary of a
non-tube domain the problem is still open. We will construct two Hua operators of third
order and use them to give a characterization.

2 Notations

Let Ω = G/K be a bounded symmetric domain of non-tube type in a complex n−dimensional
vector space V . Let g = k ⊕ p be a Cartan decomposition of the Lie algebra of G. It is
known that V carries a unique Jordan triple structure V × V̄ × V → V : (u, v̄, w) 7→
{uv̄w} such that p = {ξv : v ∈ V } where ξv(z) = v − Q(z)v̄ and Q(z)v̄ = {zv̄z}.
Let (r, a, b) be the characteristic parameters of the bounded symmetric domain Ω, then
n = rb + r + r(r−1)

2 a. Fix a Jordan frame {cj}rj=1, then a = ⊕Rξcj is a maximal
Abelian subspace of p. The restricted roots system Σ = Σ(g, a) consists of the roots
±βj (1 ≤ j ≤ r) with multiplicity 1, the roots ±1

2βj ± 1
2βk (1 ≤ j 6= k ≤ r) with

multiplicity a, and the roots ±1
2βj (1 ≤ j ≤ r) with multiplicity 2b. The half sum of

the positive roots, is given by ρ =
∑r

j=1 ρjβj , where ρj = b+1+a(j−1)
2 , j = 1, . . . , r. Let

Keywords: Bounded symmetric domains, Shilov boundary, invariant differential operators, eigen-
functions, Poisson transform, Hua systems
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n± =
∑

β∈Σ± gβ and let m = Zk(a) be the centralizer of a in k. Let M , A and N be
the analytic subgroups of G of Lie algebras m, a and n− respectively. The subgroup
P = Pmin = MAN is parabolic subgroup of G and maximal boundary (the Furstenberg
boundary) G/P of Ω can be viewed as K/M . Recall that e = c1 + c2 + . . . + cr is a
maximal tripotent of V and the G−orbit S = G · e is the minimal boundary (the Shilov
boundary) of Ω.

3 The Poisson transform

Let D(Ω)G be the algebra of all invariant differential operators on Ω. Recall the definition
of the Harish-Chandra eλ−function : eλ, for λ ∈ a∗C is the unique N−invariant function
on Ω such that eλ(exp

∑r
j=1 tjξcj · 0) = e2

Pr
j=1 tj(λj+ρj). Then eλ are the eigenfunctions

of T ∈ D(Ω)G and we denote χλ(T ) the corresponding eigenvalues. Denote further
M(Ω, λ) = {f ∈ C∞(Ω); Tf = χλ(T )f, T ∈ D(Ω)G}.

Corresponding to the minimal parabolic subgroup P there is the Poisson transform
on the maximal boundary G/P = K/M . For λ ∈ aa∗C, the Poisson transform Pλ,K/M is
defined by

Pλ,K/Mf(gK) =
∫

K
eλ(k−1g)f(k)dk

on the space B(K/M) of hyperfunctions on K/M .

It is proved by Kashiwara et al. in [8] that for λ ∈ a∗C, if −2 〈λ,α〉
〈α,α〉 /∈ {1, 2, 3, . . .} for

all α ∈ Σ+(g, a), then the Poisson transform Pλ,K/M is a G-isomorphism from B(K/M)
onto M(Ω, λ).

We now introduce the Poisson transform on the Shilov boundary. Let h(z) be
the unique K−invariant polynomial on V whose restriction to ⊕r

j=1Rcj is given by
h(

∑r
j=1 tjcj) =

∏r
j=1(1− t2j ). As h is real-valued, we may polarize it to get a polynomial

on V × V , denoted by h(z, w), holomorphic in z and anti-holomorphic in w such that

h(z, z) = h(z). The Poisson kernel P (z, u) on Ω × S is P (z, u) =
(
h(z, z)/|h(z, u)|2

)n
r .

For a complex number s we define the Poisson transform Ps is defined by

(Psϕ)(z) =
∫

S
P (z, u)sϕ(u)dσ(u)

on the space B(S) of hyperfunctions on S.
The kernel P (z, u)s, for u = e is a special case of the eλ−function. The Poisson

transform Ps on S can be viewed as a restriction of the Poisson transform Pλ,K/M . For
s ∈ C, we choose a corresponding λ = λs that satisfies the (non-integer) condition of the
Kashiwara et al. theorem. More precisely we let λs = ρ+n(s−1)ξ∗c where ξ∗c ∈ a such that
ξ∗c (ξc) = 1 and ξ∗c (ξ⊥c ) = 0 with ξc =

∑r
j=1 ξcj . Then we have an equivalent (non-integer)

condition ([9, (1)]) for s. Moreover, Psf(z) = Pλs,K/Mf(z) where f on S is viewed as
a function on K and thus on K/M . Thus PsB(S) ⊂ Pλs,K/MB(K/M) ⊂ M(Ω, λs) and
when s satisfies ([9, (1)]), Pλs,K/MB(K/M) =M(Ω, λs).
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4 Hua operators

We define some Hua operators of second and third orders by using the covariant Cauchy-
Riemann operator studied in [2], [17] and [19]. Recall briefly that the covariant Cauchy-
Riemann operator can be defined on any holomorphic Hermitian vector bundle over a
Kähler manifold. Trivializing the sections of a homogeneous vector bundle E on the
bounded symmetric space Ω as the space C∞(Ω, E) of E-valued functions on Ω, where
E is a holomorphic representation of KC, the covariant Cauchy-Riemann operator D̄ is
defined by

D̄f = b(z, z̄)∂̄f, (4.1)

where b(z, z̄) is the inverse of the Bergman metric, also called Bergman operator of Ω,
given by b(z, w̄) = 1−D(z, w̄)+Q(z)Q(w̄). The operator D̄ maps C∞(Ω, E) to C∞(Ω, V ⊗
E), with V viewed as the holomorphic tangent space.

4.1 The second order Hua operator

Consider the space C∞(Ω) of C∞-functions on Ω as the sections of the trivial line bundle.
The operator ∂ is then well-defined on C∞(Ω) and it maps C∞(Ω) to C∞(Ω, V ′) =
C∞(Ω, V̄ ) with the later identified as the space of sections of the holomorphic cotangent
bundle. We can then define the differential operator

AdV⊗V̄ (D̄⊗ ∂) : C∞(Ω)→ C∞(Ω, kC), f 7→ AdV⊗V̄ (D̄⊗ ∂f)

with AdV⊗V̄ : V ⊗ V̄ = p+ ⊗ p− → kC being the Lie bracket, u ⊗ v → D(u, v). So
by the covariant property of ∂ and D̄ (see [19]) we have AdV⊗V̄ (D̄ ⊗ ∂)(f(gz)) =
dg(z)−1AdV⊗V̄ (D̄ ⊗ ∂f)(gz), where dg(z) : V = T

(1,0)
z → T

(1,0)
gz is the differential of

the mapping g, which further is dg(z) = Ad(dg(z)) the adjoint action of dg(z) ∈ KC on
kC. It follows easily that this operator agree with the Hua operator H introduced by
Johsnon and Korànyi [7],

AdV⊗V̄ (D̄⊗ ∂) = H.
Symbolically we may write H = D(b(z, z̄)∂̄, ∂).

4.2 Third-order Hua operators

Let again E be a homogeneous holomorphic vector bundle on Ω. On E there is a Her-
mitian structure defined by using the Bergman operator b(z, z̄) as an element in KC and
thus there exists a unique Hermitian connection ∇ : C∞(Ω, E) → C∞(Ω, T ′ ⊗ E), com-
patible with the complex structure of the cotangent bundle T ′. Under the decomposition
T ′z = (T ′)(1,0)

z + (T ′)(0,1)
z we have ∇ = ∇(1,0) + ∂̄ with

∇(1,0) : C∞(Ω, E)→ C∞(Ω, (T ′)(1,0) ⊗ E) = C∞(Ω, p− ⊗ E),

using our identification that (T ′)(1,0)
z = p−. Note that on the space C∞(Ω) of sections of

the trivial bundle we have ∇(1,0) = ∂.
We now define two covariant third-order Hua operators W and U on C∞(Ω, E) by

Wf = Adp+⊗kC

(
D̄(Adp+⊗p−(D̄∇(1,0)f))

)
,

Uf = AdkC⊗p+

(
Adp−⊗p+(∇(1,0)D̄)D̄f

)
.
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These operators can also be defined by using the enveloping algebra (see [9, Section 7]).
For our purpose we consider E to be the trivial representation and the space C∞(Ω) of
smooth functions identified as right K-invariant functions on G.

The third-order Hua operator defined by Berline and Vergne in [1] can be viewed, in
our context, up to some non-zero constant as

V = Adp−⊗kC→p−
(
∇(1,0)Adp+⊗p−→kC(D̄∇(1,0))

)
.

So it is different from our W and U . For explicit computations the operators W and U
are somewhat easier to handle as the operator D̄ has a rather explicit formula (4.1) on
different holomophic bundles [2], whereas the formula for ∇(1,0) depends on the metric
on the bundles [19]. Note also that the first ∇(1,0) and the second ∇(1,0) in V are different
as they are acting on different bundles.

5 Main results

The Hua operator of second-order H for a general symmetric domain is defined as a
kC-valued operator. For tube domains it maps the Poisson kernels into the centre of kC,
namely the Poisson kernels are its eigenfunctions up to an element in the center Z0, but
it is not true for non-tube domains. More precisely we have :

Theorem 5.1 ([9, Theorem 5.3]). For u fixed in S, the function z 7→ P (z, u)s satisfies
the following differential equation

HP (z, u)s = P (z, u)s
[
(
n

r
s)2D(b(z, z̄)(zz̄ − uz̄), z̄z − ūz)− (

n

r
sp)Z0

]
,

where p is the genus of Ω and where xy denotes the quasi-inverse of x with respect to y.

However for type I = Ir,r+b domains of non-tube type, there is a variant of the
Hua operator, H(1) see [9, Section 6.], by taking the first component of the operator,
since in this case kC = k

(1)
C + k

(2)
C is a sum of two irreducible ideals. We prove that the

operator H(1) has the Poisson kernels as its eigenfunctions and we find the eigenvalues.
We prove further that the eigenfunctions of the Hua operator H(1) are also eigenfunctions
of invariant differential operators on Ω. For that purpose we compute the radial part of
the Hua operator H(1), see [9, Proposition 6.3]. We give eventually the characterization of
the image of the Poisson transform in terms of the Hua operator for type Ir,r+b domains
:

Theorem 5.2 ([9, Theorem 6.1]). Suppose s ∈ C satisfies the following condition

−4[b+ 1 + j + (r + b)(s− 1)] /∈ {1, 2, 3, · · · }, for j = 0 and 1.

A smooth function f on Ir,r+b is the Poisson transform Ps(ϕ) of a hyperfunction ϕ on S
if and only if

H(1)f = (r + b)2s(s− 1)fIr.

Our method of proving the characterization is the same as that in [10] by proving that
the boundary value of the Hua eigenfunctions satisfy certain differential equations and
are thus defined only on the Shilov boundary, nevertheless it requires several technically
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demanding computations.
In [9, Section 7] we study the characterization of range of the Poisson transform for
general non-tube domains using the third-order Hua-type operators U and W :

Theorem 5.3 ([9, Theorem 7.2]). Let Ω be a bounded symmetric non-tube domain of
rank r in Cn. Let s ∈ C and put σ = n

r s. If a smooth function f on Ω is the Poisson
transform Ps of a hyperfunction in B(S), then

(
U − −2σ2 + 2pσ + c

σ(2σ − p− b) W
)
f = 0. (5.1)

Conversely, suppose s satisfies the condition

−4[b+ 1 + j
a

2
+
n

r
(s− 1)] /∈ {1, 2, 3, · · · }, for j = 0 and 1.

Let f be an eigenfunction f ∈ M(Ω, λs). If f satisfies (5.1) then it is the Poisson
transform Ps(ϕ) of a hyperfunction ϕ on S.

After this paper was finished we were informed by Professor T. Oshima that he and N.
Shimeno have obtained some similar results about Poisson transforms and Hua operators.

The second author would like to thank the organizers of the workshop “Complex
Analysis, Operator Theory and Mathematical Physics” at Erwin Schrördinger institute
for the invitation and to thank the institute for its support and hospitality.
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Unitarizability of holomorphically induced

representations of a split solvable Lie group

Hideyuki Ishi

1 Introduction

Let G be a connected and simply connected split solvable Lie group with the Lie algebra g,
and h ⊂ gC a totally complex positive polarization at a linear form λ on g. In this article,
we consider the unitarizability of a representation of G holomorphically induced from h.
The subject is an analogue of the unitarizability of the highest weight representations of
a Hermitian Lie group ([4], [11], [16], [17]).

We state the settings more precisely. The stabilizer

Gλ := { g ∈ G ; Ad∗(g)λ = λ }

at λ equals the subgroup exp(h ∩ g) of G. Let νλ be a unitary character of Gλ given
by νλ(expX) := ei〈X,λ〉 (X ∈ h ∩ g). For X ∈ g and φ ∈ C∞(G), we define R(X)φ ∈
C∞(G) by R(X)φ(a) :=

(
d
dt

)
t=0

φ(a exp tX) (a ∈ G), and for X1, X2 ∈ g, define R(X1 +
iX2)φ := R(X1)φ + iR(X2)φ. We denote by C(G, h, λ) the space of smooth functions
φ on G satisfying the conditions (C1) φ(xh) = νλ(h)−1φ(x) (x ∈ G, h ∈ Gλ), and
(C2) R(Z)φ = −i〈Z, λ〉φ (Z ∈ h), where λ is extended complex linearly to gC. Our
holomorphically induced representation τλ is defined on C(G, h, λ) by the left translation:
τλ(g)φ(x) := φ(g−1x) (g, x ∈ G). Put

H2(G, h, λ) :=

{
φ ∈ C(G, h, λ) ; ‖φ‖2 :=

∫

G/Gλ

|φ(g)|2 dġ < +∞
}
,

where dġ denotes an invariant measure on the coset space G/Gλ. If H2(G, h, λ) is non-
trivial, H2(G, h, λ) is a G-invariant Hilbert space and the representation (τλ,H2(G, h, λ))
is unitary. Moreover, H2(G, h, λ) has a reproducing kernel and (τλ,H2(G, h, λ)) is irre-
ducible. The non-vanishing condition of H2(G, h, λ) is given by Fujiwara ([5], [6]). Now
we note that, even if H2(G, h, λ) = {0}, there may still exist a non-zero G-invariant
subspace H(G, h, λ) of C(G, h, λ) with a reproducing kernel Hilbert space structure such
that (τλ,H(G, h, λ)) is a unitary representation of G. The representation (τλ,H(G, h, λ))
is necessarily irreducible by [12]. We shall describe the condition for the existence of
such H(G, h, λ) (Theorem 15), and determine the coadjoint orbit in b∗ corresponding to
the representation (τλ,H(G, h, λ)) by the Kirillov-Bernat correspondence [2]. In a certain
case, we realize the Hilbert space as a space of holomorphic functions on a Siegel domain
(section 4).

96
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2 Normal j-algebras and Siegel domains

Since our study is based on the theory of normal j-algebras established by Piatetskii-
Shapiro, we first review his results [14, Chapter 2, Sections 3 and 5] briefly. Let b be a
split solvable Lie algebra, j : b → b a linear map such that j2 = −idb, and ω a linear
form on b. The triple (b, j, ω) is called a normal j-algebra if the following are satisfied:
(NJA1) [Y1, Y2] + j[jY1, Y2] + j[Y1, jY2]− [jY1, jY2] = 0 for all Y1, Y2 ∈ b, and (NJA2) the
bilinear form (Y1|Y2)ω := 〈[Y1, jY2], ω〉 (Y1, Y2 ∈ b) gives a j-invariant inner product on
b. Let a be the orthogonal complement of the subspace [b, b] ⊂ b with respect to (·|·)ω.
Then a is a commutative subalgebra of b. Put r := dim a, and for a linear form α ∈ a∗,
set bα := {Y ∈ b; [C, Y ] = 〈C,α〉Y (C ∈ a)}.
Proposition 2.1 (Piatetskii-Shapiro). (i) There is a linear basis {A1, . . . , Ar} of a

such that if one puts El := −jAl, then [Ak, El] = δklEl (k, l = 1, . . . , r).
(ii) Let α1, . . . , αr be the basis of a∗ dual to A1, . . . , Ar. Then one has a decomposition
b = b(1)⊕ b(1/2)⊕ b(0) with

b(1) :=
r∑⊕

k=1

REk ⊕
∑⊕

1≤k<m≤r

b(αm+αk)/2, b(1/2) :=
r∑⊕

k=1

bαk/2,

b(0) := a ⊕
∑⊕

1≤k<m≤r

b(αm−αk)/2.

(iii) One has [b(p), b(q)] ⊂ b(p + q) (p, q = 0, 1/2, 1), where b(p) := {0} if p > 1. (iv)
One has jb(αm−αk)/2 = b(αm+αk)/2 (1 ≤ k < m ≤ r) and jbαk/2 = bαk/2 (k = 1, . . . , r).

LetB be the connected and simply connected Lie group corresponding to b. The group
B is realized as an affine transformation group acting on a Siegel domain D constructed
as follows. The subgroup B(0) := exp b(0) of B acts on b(1) by the adjoint action
because of Proposition 2.1 (iii). Let Ω be the B(0)-orbit through E := E1 + · · ·+ Er in
b(1). Then Ω is a regular open convex cone on which B(0) acts simply transitively. By
Proposition 2.1 (iv), the operator j defines a complex structure on b(1/2). We define a
b(1)C-valued Hermitian map Q on (b(1/2), j) by Q(u, u′) := ([ju, u′] + i[u, u′])/4 (u, u′ ∈
b(1/2)). Our Siegel domain D is a complex domain in b(1)C × (b(1/2), j) defined by
D := { (z, u) ; =z −Q(u, u) ∈ Ω } . The group B acts on D simply transitively by

exp(x0 + u0)h0 · (z, u)
:= (Ad(h0)z + x0 + 2iQ(Ad(h0)u, u0) + iQ(u0, u0),Ad(h0)u+ u0)

(x0 ∈ b(1), u0 ∈ b(1/2), h0 ∈ B(0), (z, u) ∈ D).

Let b− be the subspace {Y + ijY ; Y ∈ b } of bC. Then b− is a totally complex
positive polarization at −ω ∈ b∗ ([15]). Let b′ be the orthogonal complement of the one
dimensional subspace RAr in b, and ω′ the restriction of ω to b′. Put b′− := CEr ⊕ (b′C ∩
b−) ⊂ b′C. Then b′− is a totally complex positive polarization at −ω′.

3 Non-vanishing condition of H(G, h, λ)

Now recall the polarization h ⊂ gC at λ ∈ g∗ in section 1.



98 Hideyuki Ishi

Theorem 14. For the triple (g, h, λ), there exists a normal j-algebra (b, j, ω) and a Lie
algebra homomorphism $ : gC → bC satisfying either

$(g) = b, $(h) = b−, λ = −ω ◦$, (3.1)

or
$(g) = b′, $(h) = b′−, λ = −ω′ ◦$. (3.2)

This (b, j, ω) is unique up to isomorphisms.

Let $̃ : G→ B the Lie group homomorphism given by $̃(expX) := exp$(X) (X ∈
g). The pull back $̃∗ induces an isomorphism from either C(B, b−,−ω) or C(B′, b′−,−ω′)
onto C(G, h, λ), where B′ is the subgroup exp b′ of B. Thus the existence of a non-
zero H(G, h, λ) is equivalent of the one of H(B, b−,−ω) or H(B′, b′−,−ω′), so that we
can describe the non-vanishing condition of H(G, h, λ) in terms of the structure of the
normal j-algebra (b, j, ω). For ε = (ε1, . . . , εr) ∈ {0, 1}r with εr = 1, we set qk(ε) :=∑

m>k εm dim b(αm−αk)/2 (k = 1, . . . , r) and

X (ε) := { s ∈ Rr ; sk > qk(ε)/4 (if εk = 1), sk = qk(ε)/4 (if εk = 0) } .
Let X be the disjoint union

⊔
εX (ε).

Theorem 15. Put γk := 〈ω,Ek〉 (k = 1, . . . , r). Then a non-zero H(G, h, λ) exists if
and only if γ := (γ1, . . . , γr) belongs to X .

Thanks to Proposition 2.1, any element Y of b is expressed as Y =
∑r

k=1(ckAk +
xkkEk) + Y0 with ck, xkk ∈ R and Y0 ∈ (a⊕ ja)⊥. Then we have 〈Y, ω〉 =

∑r
k=1(βkck +

γkxkk), where βk := 〈Ak, ω〉 (k = 1, . . . , r).

Theorem 16. If γ belongs to X (ε), define ωε ∈ b∗ by 〈Y, ωε〉 :=
∑r

k=1(βkck + εkγkxkk).
Then the irreducible unitary representation (τλ,H(G, h, λ)) corresponds to the coadjoint
orbit through λε := −ωε ◦$ ∈ g∗ by the Kirillov-Bernat correspondence.

We remark that λε belongs to the boundary of the coadjoint orbit Ad(G)∗λ ⊂ g∗

unless ε = (1, . . . , 1).

4 Function spaces on the Siegel domain D

Rossi and Vergne [15] observed that the spaces C(B, b−,−ω) and H2(B, b−,−ω) are
realized as spaces of holomorphic functions on the Siegel domain D (see also [6, Section
5B]). Thanks to this fact, Theorems 15 and 16 are deduced from results about analysis
on Siegel domains [10] in the case (3.1) in Theorem 14. In this section, we give a similar
realization of C(B′, b′−,−ω) and H(B′, b′−,−ω) as function spaces on D. The results play
substantial roles in the study of the case (3.2).

We define a one-dimensional representation χω : B → C of B in such a way that
χω(expC) = ei〈C+ijC,ω〉 (C ∈ a). Set κ := 〈Er, ω〉. We denote by O(D;κ) the space of
holomorphic functions F on D with the property F (z + cEr, u) = eiκcF (z, u) ((z, u) ∈
D, c ∈ R). For F ∈ O(D;κ), define a function ΨωF on the group B′ by ΨωF (b) :=
χω(b)F (b · p0) (b ∈ B′), where p0 := (iE, 0) ∈ D.

Lemma 4.1. The map Ψω gives an isomorphism from O(D;κ) onto C(B′, b′−,−ω′).
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Recalling Theorem 15, we assume that γ ∈ X (ε). LetHω(D) be a subspace of O(D;κ)
with a Hilbert space structure such that Ψω gives a unitary isomorphism from Hω(D)
onto H(B′, b′−,−ω′). Put B′(0) := B(0) ∩B′. Then each x ∈ Ω is uniquely expressed as
x = Ad(h)E + cEr with h ∈ B′(0) and c > −1. Let Υω be a function on Ω defined by
Υω(Ad(h)E + cEr) := e−κc|χω(h)|−2. We denote by ξε ∈ b(1)∗ the restriction of ωε to
b(1) (see Theorem 16), and by O∗ the B′(0)-orbit Ad∗(B′(0))ξε ⊂ b(1)∗.

Proposition 4.2. There exists a B′(0)-relatively invariant measure dµω on O∗ such that

Υω(x) =
∫

O∗
e−〈x,ξ〉 dµω(ξ) (x ∈ Ω).

The function Υω is analytically continued to a holomorphic function on the domain
Ω + ib(1) ⊂ b(1)C by Υω(z) =

∫
O∗ e

−〈z,ξ〉 dµω(ξ) (z ∈ Ω + ib(1)).

Proposition 4.3. The reproducing kernel Kω of Hω(D) is given by

Kω((z1, u1), (z2, u2)) = AΥω((z1 − z̄2)/i− 2Q(u1, u2)) ((z1, u1), (z2, u2) ∈ D),

where A is a constant.

We normalize the inner product ofHω(D) so that A = 1. Now we give a Paley-Wiener
type description of the Hilbert space Hω(D). For ξ ∈ O∗, let Fξ be the Fock-Bargmann
space on (b(1/2), j) whose reproducing kernel is e2ξ◦Q.

Theorem 17. One has a unitary isomorphism Φω :
∫ ⊕
O∗ Fξdµω(ξ) 3 f 7→ F ∈ Hω(D),

where
F (z, u) :=

∫

O∗
ei〈z,ξ〉f(ξ)(u) dµω(ξ) ((z, u) ∈ D).
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