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0. Introduction

The Berezin transform for complex multivariable domains D C C" is important to
harmonic analysis because of its covariance with respect to holomorphic transfor-
mations. It can be regarded as an analogue of the Poisson transform, replacing the
boundary integration by integrating over the domain itself. This applies in particu-
lar to homogeneous domains where a Lie group G of holomorphic transformations
acts transitively on D. The best known class are the symmetric domains where
G can be chosen as a semi-simple Lie group and the quantization Hilbert spaces
are the weighted Bergman spaces H?2(D) of holomorphic functions on D, where
v is a scalar parameter. For more general homogeneous domains one chooses in-
stead a solvable Lie group G, with corresponding ‘multi-weighted” Bergman space
H**(D) depending on a vector parameter v = (vy,..., V). This case has been
studied in detail by Gindikin [4]. In this paper we study the Berezin transform for
the multi-weighted Bergman spaces of Gindikin type. In the semi-simple case of
symmetric domains D = G /K, the Plancherel decomposition of L?(D) expresses
the Berezin transform in terms of eigenvalues which are known explicitly [6], with
precise information on the asymptotic behaviour. For solvable groups G = AN the
Plancherel decomposition is quite different, it involves the discrete series of AN
and, accordingly, the ‘spectral components’ of the Berezin transform 8 are not
eigenvalues but operators on suitable representation Hilbert spaces. In addition, the
nonunimodularity of G results in a modification of the Plancherel decomposition
which has to be addressed in the spectral analysis of $8. We obtain an explicit
realization of the spectral component of 8B, expressing its integral kernel in closed
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2 JONATHAN ARAZY AND HARALD UPMEIER

form as a multi-variable hypergeometric function, and prove the correspondence
principle for the Berezin transform in a general setting of summability theory.

1. Solvable Groups Associated with Siegel Domains

Let X be a real vector space of finite dimension d; and let 2 C X be a sharp open
convex cone. Then

GL(Q2) :={g € GL(X) : g2 = Q}

is a closed subgroup of GL(X) and therefore a real Lie group. The cone €2 is called
homogeneous if GL(2) acts transitively on €2. A homogeneous open convex cone
Q is called symmetric if there exists a scalar product (x|y) on X such that

Q={reX:(xly)>0V¥yeQ\{0). (1.1)

In this case X becomes a Euclidean Jordan algebra [3], with product x o y and unit
element e, such that

Q = {y*: y € X invertible}. (1.2)
Let U := X be the complexification of X, endowed with the canonical involution
(x +iy) :==x—iy (x,yeX).

Let V be a complex vector space of finite dimension d,, and let ®: V x V — U be
a sesqui-linear map (conjugate-linear in the second variable) such that ® (v, v) € Q2
for all v € V \ {0}. Then

D (vy, 12)" = P(v2, V1)
forallv;,v, € V.Weput Z := U x V = X® x V and define t: Z x Z — U by
T((uy, v1), (Uz, v2)) 1= u; + us — P(vy, v2)

for all uy,u, € U and v, v, € V. Then t(z1, 22)* = 1(22,27) forall z1,z, € Z.
The open convex domain

D=T&Q,®) = {u,v)eUxV :iu+u"—dw,v) € Q}
=1{zeZ:1(z,2) € 2}

is called the Siegel domain associated with 2 and ®. In the special case V = {0},
we obtain the tube domain

D=T(Q) ={uelU:u+u* e}
={x+iy:xeQ, yeX}=Q4+iX

associated with 2. A tube domain 7 (€2) is invariant under ‘imaginary’ translations

taw:=u+a weX® aeciX).
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 3

In the nontube case, the ‘quasi-translations’

o (b, b)
taryw,v):=lut+a+P(,b)+ 5 ,v+b],

foraciX,beV,ue X% veVv satisfy
T(ta,621, tap22) = T(21, 22)
for all z1, zo € Z, and hence leave D = T (€2, ®) invariant. Since t;}, =1t_4_pand
fay by lay.by = Lay+ayt(®(by.b1)~(b1.2) /2. bi+b) (1.3)
it follows that
Yi={t,p:aciX, beV}

is a group of affine transformations of D which is nilpotent of step 2 (generalized
Heisenberg group) and is usually identified with the orbit

X0) = {r(0):t € X}
={zeZ:1(z,27) =0}
= {(a+®b,b)/2, b):aciX,beV}

which is the Shilov boundary of D.

Now suppose 2 is a symmetric cone, realized as the positive cone (1.2) of a
Euclidean Jordan algebra X. Then GL(2) C GL(X) actson U = X c by com-
plexification. Moreover, there is a representation (g, v) — gv of GL(2) on V
satisfying

D (gvi, gv2) = gP (v, v2) (1.4)
for all vy, v, € V. Defining

g(u, v) := (gu, gv) (1.5)
foru e U,v € V, we have

T(821, 822) = 87(21, 22)
and therefore the linear transformations (1.5) leave D invariant. Since

8lap8 ™ = lgu b (1.6)

for all g € GL(2),a € iX, b € V it follows that GL(£2) acts on the group X, and
we may form the semi-direct product

Aff(D) = GL(Q) <« X = {(g,1) : g € GL(Q), t € T},

acapsl.tex; 8/12/2003; 14:10; p.3



4 JONATHAN ARAZY AND HARALD UPMEIER
consisting of all affine transformations of D, endowed with the product

(gla tal,bl)(gZa taz,bz) = (gnga tglal,glbltaz,bz)

for all g, g € GL(2), a1,a; € iX and by, b, € V.
Now fix a frame e, ..., ¢, of minimal orthogonal projections in X, with e :=
e; + - - - + e, the unit element. The associated Peirce decomposition

X= Y X
I<i<jsr

gives rise to a solvable subgroup AN, C GL(£2) which acts simply transitive on
Q [1]. Similarly, the semi-direct product

AN :=ANg < X

is a simply transitive solvable subgroup of the biholomorphic automorphism group
of D.

For an irreducible Euclidean Jordan algebra X of rank r, the ‘Jordan determi-
nant’ A: X — R is a r-homogeneous irreducible polynomial satisfying A(e) = 1
and

A(gx) = A(ge)A(x)
forall g e GL(2) and x € X.Forany 1 <k <r,
Xk = Z Xij
I<i<j<k

is a subalgebra of X of rank k, with unit element e; + - -- 4 ¢;. It has a Jordan
determinant function Ay,, and we define A;: X — R by

Ak(-x) = AXk(Pk-x)v (17)

where P,: X — X is the Peirce 1-projection of e; + --- + €;. Then A, = A.
Using the ‘minors’ (1.7), we define conical functions

A(x) 1= AL A () A () (1.8)

for all x € @, where s = (sq, ..., s,) € C" is a multi-parameter.

2. Spectral Components of Invariant Operators

For nonunimodular groups G such as ANg and AN (cf. Section 1), the Plancherel
formalism has to be slightly modified: Let (G), be an irreducible representation
space of a nonunimodular group G, with inner product (¢;|¢,) conjugate-linear in
the first variable, and consider the rank 1 operator

(0193)9 = ¢1($219), ¢ € (G)
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 5

on (G),, induced by ¢1, ¢> € (G),. For a left Haar measure dA, the operator

T, 1=/Gd)»(g)(ﬂ(g)qﬁl)(n(g)qﬁz)*

on (G), commutes with the action of G, since for all y € G

TV g9 = /Gdk(g)(ﬂ(yg)cbl)(ﬂg)qﬁz)*

fG () (T (7)) (T (Y8)$2)* T (1) = T, 7 ().

By Schur’s lemma, Ty, 4, is a scalar operator, more precisely

Spr1 = (D2|SP1) - I,

where S = S is a positive (possibly unbounded) operator in (G),. Thus

(D21SPV) Y =/d)»(g)(n(g)¢z|1ﬁ)n(g)¢1 2.1
G

for all ¢y, ¢, € Dom(S) and ¥ € (G),. Equivalently
(D2 SP) W lYn) = /Gdk(g)(ﬂ(g)cbzhﬁz)(%|7T(g)¢1)- (2.2)

Note that the operator S depends on the normalization of A. For ¢, ¢ € Dom S'/2,
we define the modified coefficient function

X Y)(g) = (Plm(g)S™*y), geG.
Then clearly

l (PN Y) = (m(g9)p) WY,

where (£, f)(y) == f (g~ 'y) denotes left translation. By (2.2), we have

(1 X Y12 K Y2) 126y = (W1lv2) (daldr1) (2.3)

for all ¢;, ¢ € (G), Y1 € Dom S~/2, ¢, € Dom S'/2.
Now let B: L?(G) — L*(G) be a densely defined integral operator

(Bf)(g) =fdk(h)£(g,h)f(h), feL*G),
G
with left-invariant integral kernel:

B(yg,vh)=B(g, h)
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6 JONATHAN ARAZY AND HARALD UPMEIER

for all g, y, h € G. Then 8 commutes with left translations:
B, fH(g) = / dr(h)B(g, h)(Ly, f)(h) = f dA(h)B(g. h) f(y~'h)
G G

- /G LB gy MG = (B g
— 1,(8/)(9).

For any irreducible representation 7 of G, define the spectral component B, of
B as the operator

8, = [ @B S s 24
G
on (G),. Here 1 € G is the identity, and S is defined via (2.1).

PROPOSITION 2.1. For ¢, ¥ € (G), we have

BpXY) =¢ K (Bry). (2.5)
Proof. Putting y := g~'h we have

BN Y)(g) / di(h)B (g, h) (¢ W ¥)(h)
G

/ dr(R)B(1, g7 h) (Pl (h)S™*y)
G

/G ) B, 1)@l (@) (r)S )

@17 (s) /G ) B, )7 () S
@17 (9)S™ 2 Brp) = (6 B (Bry)) (o). .

In view of (2.3), we obtain

COROLLARY 2.2. For ¢, ¢o, Y1, Y, we have
(1 X Y| B2 ¥ Y2)) 126y = (92101) (V1| Br2). (2.6)

As formal consequences of (2.5) and (2.6) we obtain

COROLLARY 2.3. For left-invariant operators B, A on L*(G), we have

(1) (BA); = By Ay
(i) (B*)r = (Br)™
(iii) If B is normal, unitary, self-adjoint, positive, resp., then B, is also normal,
unitary, self-adjoint, positive, resp.
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 7

(iv) If B is invertible, then B, is invertible.
(v) For the spectrum, we have o (8B,) C o (B).

3. Spectral Components for L H*(Q" x V)

Let X* be the dual space of X. For & € X*, x € X we denote the pairing by (£, x).
Then

Qf ={ge X" (£,x) >0Vx e Q) (3.1)

is called the (open) dual cone of Q. If Q is homogeneous, with simply transitive
solvable group ANg, one can show that the adjoint action (g, &) — (g’ )~lE, for
g € ANg and & € X*, is also simply transitive on . Here we define

(g'6, x) := (£, gx) (3.2)

forall £ € X*, x € X. For a symmetric cone 2, realized as the open positive cone
(1.2) of a Euclidean Jordan algebra X with unit element e, we may identify X ~ X*
via the scalar product (x|y) on X, and (1.1) shows that 2 ~ Q" is self-dual. In this
case (3.2) gives the usual transposition g > g’, defined by

(g'ylx) = (ylgx)

for all x, y € X. We define ¢ € X* by (e, x) := (e|x) for all x € X. For each
& € Q" there exists a unique g € ANg such that

gie =&.

Now let D = T(2, ®) C Z = U x V be a symmetric Siegel domain, the special
case of tube domains (V = {0}) being included.

PROPOSITION 3.1. For fixed & € Q¥ consider the probability measure
_ ar/r 4 o)
dy; (v) = A(§) —e (3.3)
T2
on V. Then the Segal-Bargmann space
HZ (V) == {y € L*(V, dy;) : ¥ holomorphic}
has the reproducing kernel

(v1, v3) > e—(é-,‘l’(vl,vz)).

Proof. For £ = ¢ we have A(¢) = 1 and

(vi]v2) == (e, D(v1, v2))
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8 JONATHAN ARAZY AND HARALD UPMEIER

is the inner product on V. In this case the statement is classical. For general £ € Q¥,
write & = gés for a unique g: € ANg. Then we have

(&, @(vi,12)) = (gee, P(v1, 1)) = (&, g P (v1, v2)) = (&, P(gz vy, gev2))
= (gevilgev2).

Since the transformation v + u = ggv satisfies du = A(&)®2/"dv, the assertion
follows. 0

Let LH*(Q" x V) denote the Hilbert space of all measurable functions
Y Q' x V= C, (€ ) ¥E )

which are holomorphic in the second variable v € V and satisfy

lyl? = /Q#dum@/vdyg(v)h/f(s,v>|2

= [ anw@a@® [ e e P < oo
ot vy T

Putting
(T (Y)E, v) =P ('E, o), (34)
(T (ta )Y)(E, v) 1= &= ECCDTHTEN Y gy 4 b) (3.5)

foralla € iX, b € V and ¢ € GL(2), it is easy to check that 7w (c), w (¢, ;) are
unitary operators on L H?(Q* x V), which satisfy

n(c)m(cr) = m(cic2),
T (Lo b )T (Lay,by) = T () 1ar+(D (b, by) =D (b1.b2)) /2, by+b2)s
n(c)n(ta,b) = n(tca,cb)n(c)

forall a,a;,a, € iX, b,b;,b, € V and ¢, c;, c; € GL(R2). It follows that (3.4)
and (3.5) define a unitary representation of GL(Q2) < ¥ on L H?(Q* x V), given by

n(Cta b)w(s’ U) — lp_(cts’ b 4 C—lv)e—(é,@(v,cb)—ca-FCD(cb,cb)/Z).

For any pair ¢ € L*(Q%), u € V define Ky € LH?*(Q* x V) by
Kpu(§,v) i= ¢(§) - &0, (3.6)
Then Proposition 3.1 implies for any ¥ € LH?*(Q* x V)
dv — V,0)) LreN
(Kpul¥) = f dugs () AE)™/" / —e PG E) x
ot y T
% e(&@(gglu,v))w(é’ v)

| e @F@ 06,550 ()
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 9

It follows that the functions (3.6) form a total family in L H>(Q* x V).

The AN-invariant measures dug(x) = dxA(Xx)™ /" and dug:(E) =
dEAE)™/" on Q and QF, resp., are related by the modulus function on ANg.
More precisely [1] we have

/Q Qi () f(x) = fg g (§)A3,(6) f(s:0) (3.8)

forall f € C.(2), where 2p, = 5(2k —r — 1) for 1 < k < r and A* denotes the
conical function on Q* (cf. (1.8)) for the reverse ordering e,, ..., e; of the frame.
We define the left Haar measure on ANg, by

/ di(e) f (ce) = / dpa(0) £ () (3.9)
ANg Q

and use

da db

di(ctyp) = dA(c)—— )@ &

(3.10)

forc € ANg,a € iX and b € V, as a left Haar measure on AN.

PROPOSITION 3.2. For the representation space LH*(Q* x V), the S-operator
is a multiplication operator, given by

(SY)E, v) = A5, 4, EVVE,v).
Proof. Let ¥, Yy, ¥, € LH*(Q* x V). We may assume that 1, is of the form

Vi€, v) = fi(&)eE P 1)
fOI' fl (S LZ(Q#)’ ul (S V FOI‘ any S’ T] c Q#’ = V we have

1) = /A NdA(g)(n(g*)%)(s,g—luo(n(g)w(n,u)

- \/I;NQ d)\‘(C)\/‘ d2 /X (2 )dl (ﬂ(t—a,—bc_l)wz) X
x (&, g 'up) (T (ctq b)lﬁ)(ﬂ,u)

N /ANQ dk(y)/ /x (2m)h (T (t—a,—bY ™ 8 V2) X
X (S’ gg Ml)(ﬂ(g,7 )/l‘a’b)]p)(n’ l/t)

by making the change of variables y = g,c, dA(y) = dA(c). Since

(T (t—apy @DV (E, g5 'u1)

_1
= 9a(gy(y) T NE, g, v (gr uy — by)e” GO by
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10 JONATHAN ARAZY AND HARALD UPMEIER
and
_ _ iyt -1 _
(g, V1)V (0. w) = Y (v e,y ggu + bye” VSO0 snhmar S G:D/2)

it follows that

db da o
16 = ANQdA(V)fVEfX V() E gy a5 = ) x

—1
% e—(g,a—i-CI)(b,b)/Z—CIiv(gE ul,b))w(ytg’ V_lgnu 4 b) X

x e~ V'e @ gyub)—a+®(b,b)/2)

Using (3.8) and evaluating the a-integral by Fourier inversion we obtain, putting
y = gl?’

* db da to t\—1 -1
1) = /Q#dligz#(l?)Azp(ﬁ)/VE/iX Wlﬁz(gr,(g,s) £,8, 8 %

-1
X (g luy — b))e” EHPODRETVEN DNy (9, ol g u 4 b) x

o« o~ 08y gu.b)—a+D(b.b)/2)
db 1
ok 1, —(&, D (b,b)/2—D(g; 'uy.b))
= Azp*_dl/r(g)/vndz lﬁz(n,gn (uq géb))e d X
—1
X w(g’ gg_lgT]u + b)e_(gsd:’(gg gnit,b)+®(b,b)/2)

db
ek dofr —(E.D(b.b) ¢,
= Ay (E)AE) /Vndze Va(n, 8, (U1 — geb) x

X Y (€, g5 gyt +b) (& ®(gg r1—gyu).b))
= A}, 0y EVa(n WY&, g7 uy)

by using the fact that v, (n, gn_l(ul —gb)v(§, gglg,,u + b) is holomorphic in b

and therefore, by Proposition 3.1, the b-integral evaluates at b = g, Yy — gnlt).
On the other hand, (2.2) implies

Ya1, 1) /Q du O T ENE g5 ')
— (0, W (Y1 ISY) = /A EXGEIOITACIRIAINY
- [ s@wir v E@no
- fA ) fg g O RO YE g @Y w0

_ /Q duer OO ©).
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 11
Therefore

Ya(n, w)(SY)(E, g 'ur) = T1(€) = A}, 4, EVa(n W)Y (€, g 'ur)

and the assertion follows. O

THEOREM 3.3. For the representation space LH*(Q2* x V), the spectral compo-
nent B, of an AN-invariant operator B has the kernel

B (5. vin. u)
= A (E)AL_ ), ()els PW/2H P25

do
X /X (2 )dlﬂ(ggtv’tagntu)e
forallé,ne Q*andv,u e V.

Proof. Let y € LH*(Q* x V) and € € Q*, v € V. Applying the definition
(2.4) and using left-invariance of di and 8 we obtain

(B V)
B fANQ dk(c)f % / Gy B ctua) (8" (ctup) ST E )

=/ANQd)\()/)/ 2 /X (271)6113( gg Vtab)X
x (S (g b>S ”Ws v)x

dAa totoota
) /ANQ ) v —y /X (27 )d B(gstvs LgevlyaypY ) X
X (SY27 (85 " tyayny)S™ W)(s v)

— dA(Y)A(yle)~ /T f ——— B(gety, taytg) X
/:ANQ v Jix Qm)d 5 ¢

X ($V2(t-ug: 1ay 1) ST PY)(E, V).

(3.11)

Here we made the successive change of variables
y =g,  di(y) =drlo),
B:=b+y 'gv, dB=adb,
a:=ya+ (P(yB, gev) — P(g:v. vph))/2,
do = A(ye)"/"da = A(y'e)/"da.

Then (1.3) and (1.6) imply g, ..., yby = lya+(@(yb, g~ <I>(gsv yb)/2, gsv-H/by =
la,ypY = lalypy = loy1p and hence g, ty,l ybY = 8 tggvto,yt,g = (tgsvgg)
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12 JONATHAN ARAZY AND HARALD UPMEIER

Xtyyts = (gety) \tyyts = t_vggltaytﬁ. Using Proposition 3.2 and applying (3.4),
(3.5) repeatedly, we obtain

NS E)SVP (g ay 1) ST 2N (5, 0)
= (T(1-u8; ay 1) ST 26, V)
= (m(g; 'tav1p) S~ PY) (€, 0)e& PO/
= ((tayts) S~ *Y) (e, 0)e& P02
= (T (r1p)S™ 2P (e, 0)eels @1/
= (ﬂ(lﬁ)S_l/zlﬁ)(ytg 0)e<s,a> (£, D (v,v)/2)
= A}, (V' OV (e, el U2t e 0 BA/),

Now combine (3.11), (3.12) and use (3.6), putting y = g,. Then
(Bx¥) (&, v)
=/ANQ dA()A(y'e)” d'/’/ —& /X G )dlﬁ(ggtv, ¥ 1g) X
X A4 ) D, (V' OV (e, el eb B trie B R/
_ / dpion (DAL, (DAY ™" / &L / G Blait tug )X
X Ao EVAS o (W (1, Bl 0D e 0B.5)/2)
= A’;_d/z,(é)e@’q’(”’”)/z/ dpgr (M Ay 0, (M AP x

x ﬁ —(n, (8,8} v(n, ﬁ)e 1, ®(B.8)/2)
v 7T

do
X /X (2n)dl£(g§tv’tagntﬁ)e

4. Berezin Transform for Gindikin-Bergman Spaces

An important example of a G-invariant operator, for a Lie group G acting holomor-
phically on a complex domain D, is the Berezin transformation [2, 6] associated
with a Hilbert space H of holomorphic functions on D which has a reproducing
kernel and carries an irreducible unitary representation of G.

For the symmetric Siegel domain D = T (€2, ®) (including the tube type do-
mains 7 (£2)) and G := AN, the relevant Hilbert spaces are the Gindikin—Bergman
spaces

H?(D) := {h € L*(D, du,) : h holomorphic} 4.1)
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 13

with respect to the measure

dz Ay—2djr—ayr (T (2, 2))
wd Tq(w)la(v —d/r)

d,lLv(Z) =

on D. Here v = (vq,...,v,) € R" is a multi-parameter satisfying v; > d/r +
(i — 1)a/2 for all i, and we put

V¥ = (v, ..., V).
For multi-parameters v, 8 and z1, z, € D one can show [4] that

dz T  Ap(r(z,2)  Ta@®)

pm?  A(t(z1,2) Ta(B* +di/r) Ay(t(z, 22))
_ To@v* =B —2d,/r —d>/r)

Ao pradyjr—ayr (T(21, 22))

Putting 8 = v* — 2d,/r — d,/r this implies

/d_Z o) Avoayjr—ayr(t(z,2)) T _ Ca(v™)
p T4 A (T(z21,2)) Lo(v—d/r) Ay(t(z,22))  Ay(t(z1,22)

This shows that H?(D) has the reproducing kernel
Ky(z,w) =A_,(t(z,w)), z,weD. 4.2)
Putting K (z) := K, (z, w), we obtain the Berezin transform

(K| fK}) K,(z,w) f(w)K,(w, z)
K du, (w)
(2, 2) D K,(z,2)
Fqo(v*) dw
= m ; FA—Zdl/r—dz/r(T(w, w)) X
Ay(t(z,2) A (T (w, w))

A @ W) AT (W, )

(B"f)@) =

This shows that 8", as an integral operator on D ~ AN with respect to the Haar
measure (3.10), has the integral kernel
Co(®)  Ay(T(z,2) A (T(w, w))

B ) — 43
) = L — D) A wn A (w, 2) @

forall z, w € D.

Now consider the AN-representation space L H*(Q2* x V) introduced in Section
3, and let B denote the associated spectral component of the Berezin transform
$B". As our main result, we will express the integral kernel of 8 in closed form,
using the theory of multivariable special functions, more precisely the generalized
hypergeometric functions associated with symmetric (or homogeneous) cones [4].
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14 JONATHAN ARAZY AND HARALD UPMEIER

In the multiparameter case the representation of hypergeometric functions as gen-
eralized Euler integrals is more convenient than the approach via hypergeometric
series. Accordingly, our starting point is the hypergeometric function

otF(p,o0,7)(X)

_ Te@
It (0)lgr(t — 0)
X / dpor ()AL (E)AT_, 4/ (e —E)AT (e — geh) 4.4)
Q*N(e—Qt)

introduced in [4, Definition 4.1]. Here A € Q* N (¢ — Q%) or A € —Q*. In the
second case there is a more convenient representation

Q#F(p’ g, T)(_)\')
_ It (T) 1 y
Ilgt(o)lge(t — o) Aj_d/r(k)

X / dpgr ()AL (E)AL (e +E)AT_, 4/, (X — &) 4.5)
QFN(—0")

valid for A € Q" [4, (4.12)]. The functions (4.4), (4.5) are multi-variable general-
izations of the classical , F}-hypergeometric functions. For our purposes, we need
a limiting case analogous to the classical W-function [5], which in turn is closely
related to the Bessel functions K, and the confluent hypergeometric function | Fj.
Accordingly, we define for any fixed x € Q2

Yao(p, 0)(x) = lim 4F(p,0,7)( —T(g,)"'e), (4.6)
where T > 0 is a scalar, identified with (z, ..., 7), and g, € AN, satisfied g.e =

x. Note that & — 7(g')~'e € —Q" if 7 is sufficiently large. Hence (4.5) implies

2t F(p,0,7)(e —1(g)te)
1

Lar(0) Jarne(g)-1e—e—at)

dugr(§)AZ ()AL (e +8) f2(6), 4.7

where

[t (T) Aﬁ_a_d/r(‘[(g;)_ls —e—§)
Fe(t—0) Al (@) e—o)

Since gi € ANg+ we have

fx () =

* — * — * €
Ar—d/r(f(g)tc) e —e) = Ar—d/r(f(g)tc) lg)Ar—d/r (5 - gi;)
and, similarly,

A}, gt e —e—8)

_ e+ &
= Ai—a—d/r(l—(g)tc) lg)Aj—cr—d/r (8 - g)tc )

T
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 15

For T — 400 it follows that

At—a—d/r(g - g;%) e (gr(eth)e)

[ t a [ J—
" s — W —e (g36.€) —e (€.8x€) —
Ar_d/r(&‘ — gx;) e x&

On the other hand

At—cr—d/r (T (g)tc)_lg)
[&t_d/r(f(g;)—lg)

= A*_(t(g)e) = T AL (x).

Since Tg#(t)/Tq,(t — o)l — 1 as t — +oo, it follows that f,(§) —
Ag+(x)e &%) pointwise on QF. By Lebesgue theory we obtain from (4.7)

Ya(p,0)(x) = Ag+(x) /Q# dpgr ()AL (E)A* (s + &) Y. (4.8)

THEOREM 4.1. The Berezin transform 8" associated with H>(D) has the spec-
tral component B!, for the representation space LH*(Q* x V), with integral
kernel

AZ+U*—d/2r (g)A;+v*—d/2r (m .
Co(w*)Lo(v —d/r)

X A_y(2gse + 2gye + P(gsv — gyu, gev — gyu)) X

x Wq(dy/r — v, v*) x

X (2gce +2g,e + O(gev — gy, gev — gylt))

By vinu) = 47 —(Em-e) glsevignn)

forallé,n e Q*and u,v € V, where Vg, is the W-function of the cone 2, defined
in (4.6) and given explicitly by (4.8).
Proof. Given a function o on 5#, let

5(s) == /4 dre "o (1), seT(Q)
Q

denote the Laplace transform, considered as a holomorphic function on 7'(€2). Let

Ao da —t.a)
f) = /,»X Gore @

denote the Fourier transform of a function f on i X. Then, for fixed s € T(2), the
function f;(a) := 6 (s — a) satisfies

fi@) =e "o (1)

for all r € 5#, as follows by Fourier inversion. Similarly, the function A(a) :=
e~ £, (a) satisfies

ﬁ(t) = f;(t +¢e) = e_<’+“>a(t +¢)
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16 JONATHAN ARAZY AND HARALD UPMEIER

forall € 2. Applying Parseval’s formula, it follows that, for fixed s € T(2), we
have

d [
/ a e Y5, (s — a)éa(s — a)

x 2m)h
=e ) / dto (H)os (1 + e)e” 7 (4.9)
o'

. . —# -
if o1, 0, are functions on €, with Laplace transforms &, 05, resp. Now let B:
D x D — C be an AN-invariant kernel of the form

B(z, w) = Ki(1(z, 2)) Kz (t(w, w))a1(7 (2, w))o2 (7 (2, w)), (4.10)

where K, K;: @ — R and o4, 0, are functions on §#, with Laplace transforms
01,0 resp. Since gzt (e) = (gee + P(gev, gev)/2, gev), we have t(get,(e),
gety(e)) = 2gge and

s = 1(gety(e), gytule))
D(gsv, gsv) | P(gyu, gHu)
_|_
2 2
This implies (¢, s) = (§ +n, e) + (&, P(v, v)/2) +(n, P(u, u)/2) — (g:v|g,u) and
s+s* =2gce+2g,e + P(gev — gyu, g:v — gyu). Since t(z, t,w) = t(z, w) —a
foralla € i X, (4.9) yields

= gee+ gye+ — D (gzv, gyu).

da
hN\dy —(g,a)
/iX (2m) B(gstv(e), tagytule))e
da

= K2 K>(2
1(2gee)K2(2g,€) /ix Oy
=K, (2g€e)K2(2gne)e—<5+n-,e>e—(é-,‘l’(v,U)/2>—<Tl,<1>(u,u)/2)e(gsUlgnu)X

X /_# dto-l(t)o-z(t_j’_8)6_(t»2g$€+2gn€+¢'(g§U_gnu’gév_gnu»'
Q

e Y5, (s — a)ér(s — a)

Applying Theorem 3.3, we see that 8, has the integral kernel

B, vin,u)
= K1(28:0)Kr(2gye)e” e IsmAY ) (E)AS 1, ()%

X /—# dtGl (t)Gz(t _j’_8)6_(t»2g$€+2gn€+¢’(gév_gnu’géU_gnu)>' (411)
Q

By [3, Corollary VII.1.3] we have
1 -
—A
Lo(v*) Jor Lo (v*)
for all s € T (€2). It follows that the integral kernel (4.3) of 8" has the form

v _ AV(T(Z’ Z))AU(T(U), w)) ~ ~
B'Gw) =~ ey v @ W) A (T(w. 2)).

A_,(s) =

dle_(t’s)Av*—dl/r(t) = ve—di/r($)
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 17
Taking K| := A,/ Tq(w*), K, == A,/ Tq(v —d/r),o1 = 0 = Aj*_dl/r in
(4.10) and putting

s =2gce+2g,e + P(gev — gyu, gev — gyut) € 2,
(4.11) and (4.8) imply

B (&, v;n,u)

_ A, (2g€ e)Av (2gne) e_(g_,_,],e

= d Ye(8svlgnu) o
Fo(w)lq(v — )

X A5y (EVAS () /Q AL (DA, g)e 19

4rv

i A
Lol — %)
x e@EBI A ()W (dy /r — v*, 1) (s). O

—(E+.e) o

pvi—dyr EVAL g, ()€

5. Correspondence Principle for Berezin Transforms

In this section we prove that the correspondence principle holds for the Berezin
transform B” on D = T (2, ®), namely B — I, strongly as v — oo. We shall
reduce this to general summability arguments.

Consider a topological group G with left Haar measure dA(g).

DEFINITION 5.1. A net {F,},c; (Where J is a directed set) of functions in
L'(G, d») is called a summability kernel if

@) fG dr(h)Fy(h) =1, Ya € J.
(ii) C :=sup,, [, dr(h)|Fy(h)| < oco.
(ii1) There is a family {Us}o<s<1 of open neighborhoods of the identity element
1 € G, so that ﬂSe(O,l) Us =1{1}, Us, C U, if 0 < 8 <8, < 1and

lim dA(h)|Fy(h)| =0, Vée (0,1). .1
* JG\Us

If F,(g) = 0 almost everywhere on G for all « € J then the kernel {F,},c, is
called positive. In this case (ii) above reduces to (i), with C = 1.
The right translation operator on functions on G is defined by

(Rnf)(g) = f(gh). (5.2)

DEFINITION 5.2. A Banach space X of measurable functions on G is called right
homogeneous if
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18 JONATHAN ARAZY AND HARALD UPMEIER

(@) Forall f e Xandh € G,R,f € X and |R,fllx = | fllx (i.e. G acts on X
isometrically by right translations).

(b) Forevery f € X themap G > h +— R, f € X is continuous in the norm of X.

(c) Norm-convergence in X implies almost everwhere convergence.

For every F € L'(G,d)) and f € X the integral

Fxf:= /(;dk(h)F(h)Rh(f) (5.3)

converges absolutely in the norm of X (by (a) and (b)), i.e. it is a Bochner integral.
In view of (c) it converges almost everywhere on G and

(F % f)(g) = fG AW F () f (gh) = /G (WY F (g~ h) f(h) (5.4)

almost everywhere in G. Thus F x f is essentially the convolution of F' and f. If
B is a left-invariant operator on G with kernel 8B(g, h), i.e.

(Bf)(g) = /Gdk(h)ﬁ(g, h) f(h) (5.5)
and

B(g18. 81h) Vgi1,8.8 €GC, (5.6)
then (5.4) shows that

Bf=Fxf (5.7
where

F(h) := 8(1, h). (5.8)

Conversely, given F € L'(G, dA), define
B(g,h):=F(g'h), Vg,hegG. (5.9)
Then (5.6), (5.7) and (5.8) hold.

THEOREM 5.3. Let {F,}qcs be a summability kernel on G, and let X be a right-
homogeneous Banach space on G. Then

lim|Fy,* f— fllx=0, VfelX. (5.10)
Consequently,
lim(F, x f)(g) = 1imf di(h)F(h) f(gh) = f(g) (5.11)
o o G

almost everywhere on G.
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BEREZIN TRANSFORM FOR SOLVABLE GROUPS 19

Proof. Choose {Us}sc(o,1) as in Definition 5.1(iii). For every f € X define its
modulus of continuity by

wyx(8) = sup IR (f) = fllx, & €0, 1.

The continuity of the right action of G on X implies that

;irr(l)wf,x((S) =0, VfelX.

Fix f € X and ¢ > 0. Choose § € (0,1) such that wsx(§) < &. Then, by
Definition 5.1(1),

Fos f—f= / WM F (R f — f), Vo eI,
G
It follows that

1 Fo % f = fllx < /Gd)»(h)lFa(h)Ilthf—fllx

/de(h>|Fa(h>|||Rhf—f||x+
+f AW F IR f — Flix
G\Us

< wyrx(d) d)»(h)lFa(h)|+2||f||x/ di(h)|Fo (h)]
Us G\Us

< sC+2IIf||xf dr(h)| Fy(h)|
G\Us
by the choice of §, Definition 5.1(ii) and Definition 5.2(a). Using condition (iii)
in Definition 5.1 we conclude that lim, || F, % f — f|lx < &C. This holds for all

¢ > 0, hence we obtain (5.10). Finally, (5.11) follows from (5.10) by condition (c)
in Definition 5.2. O

Here are some examples of right-homogeneous Banach spaces on G.

(a) X = the space of uniformly continuous, bounded functions on G with the
supremum norm.

(b) X = L?(G,dp), 1 < p < 0o, where p is a right Haar measure on G.

(c) Let Y be any Banach space of measurable functions on G for which norm
convergence implies almost everywhere convergence on G. Then

X = {f €Y; DRy f €Y, YVheG, ()| fllx:=suplRyflly < oo,
heG

(i) G 5 h > Ry f € X is continuous}
is a right-homogeneous Banach space.
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20 JONATHAN ARAZY AND HARALD UPMEIER

Returning to the group G = AN C Aut(D), D =T (2, D) let
. d . a :
J={v=(@W,...,v) eR’; Vj>—+(J—1)5,1<j<r
r

be ordered by v < 0 <= v; < o, for1 < j < r.Thus
V=00, >ooVlL i<

Forall1 < j <randz, w € D define

| ATz, D)) A (T (w, w))
%@ W) = = @ w) P

Forv € J let

8y(z, w) = 1_[5/'(2, w) TNz, w e D,
j=1

where v,;1 := 0. Thus the Berezin transform 8", as an operator of G, is given by

v FQ(V*
(B ) (g) = =2 f ()8, (g(e), h(e)) £ (h),
Fo(v —3) Jo

where the left Haar measure dA is related to the invariant measure on D via
dw
dA(h) f(h(e)) = FA—Zdl/r—dz/r(T(w, w)) f(w).
G D

Define forve Jand h € G

Ca(v®)
. = —"_5,(e, .
F,(h) (v 9)8 (e, h(e))

Our main result in this section is
THEOREM 5.4. {F,},c; is a summability kernel on G = AN.
By Theorem 5.3, this implies

COROLLARY 5.5 (Correspondence principle for the Berezin transform). Let X
be a right-homogeneous Banach space on G = AN. Then for every f € X

lim 8" f = f

v—>00

in the norm of X as well as pointwise almost everywhere. Namely, lim,_, o, B” = 1
in the strong operator topology on X.
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The proof of Theorem 5.4 requires some preparation. Consider for v € J the
Hilbert space H2(D) of holomorphic functions on D (cf. ((4.1)), with reproducing
kernel K (z, w) = K{’(z) = A_,(t(z, w)) (cf. (4.2). Thus

K @ w)l = (K KV | S WK Nz - 1K Mgy (5.12)
with equality if and only if z = w. This simple fact is used in the following result.
LEMMAS5.6. For1 < j<r

dj(z,w) <1 Vz,weD.

Moreover

z=w= iz, w) =1, 1<j<r&<4iw =1
Proof. For every v € J (5.12) yields

Sy(z,w) <1 and 6,(z,w)=1<4 = z=w.
In particular, if vi = v, =---=v, =8 > (r — 1)% we obtain

Sz w)f <1l Vz,weD and S.(z,w)f=1z=w.
This implies that

8, (z,w) <1 Vz,we D and §,(z,w)=1<=z=w.
Fix1 < j<r—1.Choosev = (v,...,V,) so that

Vi =Vy = =V, Vigt =Vjpp=---=V>r—1

and v; — v = By,

where B is a large positive number. Then v; > (i — 1) for all i and

Sy(z, w) = 1_[81}4'—11,'“ (z, w) = 5]. (z, w)ﬂv’S,(z, w)".

i=1

Hence

8y(z, w) = (8;(z, w)8,(z, w)” < 1.
Since g is arbitrarily large, we see that

§j(z,w) < L.

For the equality case it suffices to show that if §,(z, w) = 1 for z, w € D then
z = w. But §,(z, w) = 1 implies that for 8 > (r — )5 andv = (8, B, ..., B) we
have §,(z, w) = 1. Thus z = w by the reproducing kernel consideration. a
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22 JONATHAN ARAZY AND HARALD UPMEIER

Next, we define a system of open neighborhoods of 1 in G by
Ui=lheG;1-6§<é(ehe))}, 0<dé<l1.
Clearly, 1 € Us forall0 < § < 1 and
Us, € Us, whenever 0 <§; <4, < 1.

Also, since §,(e, h(e)) = 5,(1(e), h(e)) < 1, Vh € G we have

() Us=1he€G;.(e,h(e) =1} = {1}
0<é<l1

by Lemma 5.6 and the fact that G = AN acts on D simply transitively.

Proof of Theorem 5.4. 1t is clear that 0 < F,(h) forallv € J and & € G. Also,
by the fact that B” is a stochastic operator, we have

/ dr(h)F,(h) =1, Vvel.
G
It remains to prove (iii) of Definition 5.1, i.e. that

lim dr(h)F,(h) =0, V§e(0,1).

v—00 G\Us
Letv € J and let 8 = %min{vj; 1 < j < r}. We assume that v is large enough,
sothatv — B € J, i.e.

d . a 1 . .

v > ;+(j—1)5+5m1n{vl-; 1<i<r}
(this is the case, for instance, if 8 > (r—i + (r — 1)% = p — 1). Since

8v(z, w) = 8,_p(z, w8 (z,w), Vz,we D

we obtain

/ () F ()
G\Us

_ Ta()
S Ta—9) Jsewm<ios
T —p)
T —B - 4 Js,eowy<i-s
8 o)l —g—9)
Fo(* — BTa —9)
Lo(v* — )

Fo( —B—9) Jseam<is

dpo(w)d, (e, w)

dpeo(w)8,—g(e, w)s, (e, w)F

(1—8)° dpio(w)8y_p (e, w)x

N
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 La0Mla(v — B - 9)
Fo(* — BTa — 9)
sla(W)la(v — B — 9)
To(* — BTa(v — &)

The product formula [3]

<(1-=9)

Fo(a) = 2m) ™ ]_[r<oz,~ - (- 1)%)

j=1
together with Stirling’s formula imply that
L)o@ - B =9
1m q =
v=00 Po(w* — B)la(v — 7)

Since 8 = %min{vj; 1<j<r}— ocoasv — oo, we see that forall § € (0, 1)
Low)Tow —p— %)
Fo(v* — BT — %)

Thus indeed lim,_, fG\U(S dr(h)F,(h) = 0. This completes the proof of Theo-
rem 5.4. O

lim dr(h)F,(h) < lim (1 — 8)”
v—>00 G\U(; v—>00

We will now show that the correspondence principle holds also for the spec-
tral components of the Berezin transform. The spectral component of the Berezin
transform B” corresponding to the representation 7 on L H*(Q* x V) is

v Fo(” 12 -1/2
s — 8]) ) .
. rQ(.,_g)/Gd“g> (e, g(e))S"*x ()

This leads us to consider the representation
o(g) =S"n(e)s"*, geG

of G on function spaces. Notice that in view of the fact that (Svy)(&, v)
= A3, /()Y (E, v) we have

(0 (@Y)E,v) = A_prapn(T(g(e)), g(e)/2)(z(8)¥)(E, v)
forallg € G and (§,v) € QF x V.

DEFINITION 5.7. A Banach space of measurable functions X on Q% x V is
o -invariant if

(a) Forevery f €e X and g € Gwehaveo(g)f € X and |lo(g)fllx = I fllx-
(b) Forevery f € X themap G > g — o(g)f € X is continuous.
(c) Norm convergence in X implies almost everywhere convergence on Q¥ x V.
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The notion of 7-invariant Banach space of measurable functions on Q¥ x V
is defined analogously. Notice that X is o-invariant if and only if the space ¥ =
S~12X (with the norm || F||y = ||SY/?F||x) is w-invariant.

THEOREM 5.8. Let X be a o-invariant Banach space of measurable functions
on Q* x V. Then for every f € X the integral defining B f converges in the norm
of X (as well as almost everywhere on Q" x V) and

lim | B f — flx =0.
v—>00

The proof is essentially the same as the analogous proof for B, and uses
properties (a), (b) and (c) of X and the fact that forall 0 < § < 1

FQ (V*

0 dr(g)é, (e, =0,
LS oo ARCLCLACELD)

where {Us}o<s<1 are the neighborhoods of 1 in G introduced above.
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