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Boundary Measures for Symmetric Domains and Integral

Formulas for the Discrete Wallach Points

Jonathan Arazy Harald Upmeier

Abstract

Let D be an irreducible hermitian symmetric domain of rank r in Cd and let G :=
Aut(D) be the group of all biholomorphic automorphisms of D. We construct explicit in-
tegral formulas for the G-invariant inner products on spaces of holomorphic functions on
D associated with the discrete Wallach points by means of integration on G-orbits in the
boundary ∂D of D. These formulas avoid the somewhat unnatural ”shifting of parameters”
and extend to the infinite dimensional setting of Hilbert-Schmidt symmetric domains. Sim-
ilar results are obtained, in the bounded and unbounded case, for the ”dual” parameters α`

embedded in the continuous part of the Wallach set. The semi-invariant measures on the
boundary orbits are explicitly constructed, including a polar decomposition with respect to
a compact subgroup.
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0 Introduction

For an irreducible hermitian symmetric space D of non-compact type, the holomorphic au-
tomorphism group G = Aut(D) has a (scalar) holomorphic discrete series whose analytic
continuation is given by parameters forming the so-called ”Wallach set”. It is an important
problem to give explicit realizations of the corresponding irreducible representations of G in
terms of the (boundary) geometry of the underlying domain D. A standard reference using Lie
theoretic methods is [RV76]. In our previous works ([AU97] and [AU98]) we considered mainly
certain parameter values within the continuous part of the Wallach set and constructed real-
izations emphasizing the Jordan theoretic description of D [FK94]. In this paper we treat the
more difficult discrete part and find explicit integral formulas using Lassalle’s boundary mea-
sures [La87]. The paper contains also a new realization (and proof of existence) of Lassalle’s
measures, using only basic results from Jordan theory (Peirce decomposition).

The problem of concrete description of the analytic continuation of the holomorphic discrete
series by means of Sobolev-type integral formulas attracted the attention of many mathemati-
cians (see for instance [RV76], [O80], [A92-1], [A92-2], [FK90], [Y93], [AU97] and [AU98]). This
problem is intimately connected with the problem of the concrete description of the analytic
continuation of the Riesz distribution (see [Ri49], [Ga47], [O80], [Gi75] and [AU97]). One of the
oldest results on the description of the analytic continuity of the holomorphic discrete series is
the realization of H d

r
as the Hardy space H2(S) = L2

a(S, σ) (where S is the Shilov boundary
of D and σ is the unique K-invariant probability measure on S).

The shifting method of Yan (see [Y93] and [AU97]) enables one to give integral formulas of
the form

< f, g >λ=< Sλ,`f, g >λ+`

for suitable ` ∈ N and shifting operator Sλ,` (which is a GL(Ω)-invariant differential operator).
In particular, if λ + ` > p − 1 or λ + ` = d

r one obtains integral formulas for < f, g >λ of the
desired type. However, these integral formulas are not best possible, in that

(i) They use unnecessary large numbers of parameters.
(i.e. the topological dimension of the set on which the integration is performed is bigger
than the Gelfand-Kirillov dimension of the representation).

(ii) They do not permit generalization to the infinite-rank case.

Our main goal here is to obtain explicit, Sobolev-type integral formulas for the invariant
inner products < ·, · >` a

2
associated with the discrete Wallach points ` a

2 , ` = 0, 1, 2, . . . , r − 1,
by means of integration on the G-orbits on the boundary ∂D. These formulas use the optimal
number of parameters (i.e. the topological dimension of the set on which the integration is
performed is minimal), and furthermore allow the passage to the case of infinite rank domains.
The paper is a continuation of [AU97] and [AU98], in which we develop the formulas of the
desired type for < f, g >a

2
. The proofs in the general case given here, which are simpler

and more conceptual, use the Harish-Chandra isomorphism between the rings of invariant
differential operators and the symmetric polynomials.

There is another type of integral formulas for < ·, · >λ, λ ∈ W (D) which use the Cayley
transform (which realizes D as a symmetric Siegel domain, denoted by T (Ω)) and the Fourier
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transform (which realizes the weighted Bergman spaces on T (Ω) as weighted L2-spaces on Ω).
These formulas are also extended to the discrete Wallach points `a

2 ; they are quite natural but
do not allow to work directly with the data coming from D.

The paper is organized in the following way. Part 1 is devoted to the construction of the
tools needed to prove our results. In Section 1.2 we survey the Harish-Chandra isomorphism
between the rings of invariant differential operators on symmetric cones and of the symmetric
polynomials. Using spectral theory we extend this result to more general invariant operators.
In Section 1.3 we use the conical polar decomposition Z = K · Ω to study K-averaging of
certain functions on D, (a process we call “conialization”). In Section 1.4 we construct for
each ` ∈ {1, 2, . . . , r − 1} two K-orbits on D̄ and natural measures on them.

After these preparatory sections we prove the above mentioned theorem, in section 1.4 (see
Theorem 2.1.7 for the exact formulation). Some related results are established as well.

Section 2.2 is devoted to the development of canonical integral formulas for the inner
products < ·, · >` a

2
, 1 ≤ ` ≤ r − 1, in the framework of the symmetric Siegel domain T (Ω)

associated with the Cartan domain D via the Cayley transform. The case of symmetric Siegel
domains of type I (i.e. tubes over the symmetric cones Ω) is treated first, where we use in
an essential way the semi-invariant Lassalle measures on the boundary orbits ∂`Ω of the cone
Ω. The development of the analogous integral formulas in the context of symmetric Siegel
domains of type II is technically harder and requires additional efforts. In Section 2.4 we use
the Lassalle measures to construct integral formulas for the invariant inner products associated
with the continuous Wallach points α` := d

r + `a
2 , 0 ≤ ` ≤ r− 1, for symmetric Siegel domains

of type II, which generalize the analogous formulas for symmetric Siegel domains of type I
constructed in [AU97].

Finally, in Part 3 we present a new construction of the Lassalle measures. Unlike the
original construction of Lassalle (see [La87]) which uses local coordinates (coming from the
subgroup AN of GL(Ω)), our formulas use global coordinates and make the semi-invariance
apparent.
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1 Extension of Invariant Operators on Boundary Orbits of

Symmetric Domains

1.1 Jordan algebra and symmetric domains

In this section we review some known results in analysis on Jordan algebras and triples and
on the associated symmetric domains, and establish the notation. For more information see
[Hu63], [Gi64], [Lo77], [U87], [FK94] and [A95].

Let D ⊂ Cd be a Cartan domain, i.e. D is an irreducible bounded symmetric domain in
the Harish-Chandra realization. This is equivalent to saying that D is the open unit ball of
Cd with respect to a certain norm ‖ · ‖, such that the group G := Aut(D) of all biholomorphic
automorphisms of D acts transitively on D. By [Lo77], [U87], there exists a triple product
{·, ·, ·} : Cd × Cd × Cd → Cd so that Z := (Cd, ‖ · ‖, {·, ·, ·}) is a Jordan-Banach ∗-triple (JB∗-
triple). The maximal compact subgroup of G is K := {ϕ ∈ G;ϕ(0) = 0} = G ∩ GL(Z), and
D ≡ G/K.

Let (r, a, b) be the type of D (or, of Z), where r is the rank and a, b are the characteristic
multiplicities. Thus the dimension d and the genus p are given by

d = r +
r(r − 1)

2
a+ r b, p = 2 + (r − 1) a+ b. (1.1.1)

A tripotent v ∈ Z is an element satisfying {v, v, v} = v. The Peirce decomposition associated
with the tripotent v is

Z = Z1(v)⊕ Z 1
2
(v)⊕ Z0(v), (1.1.2)

where Zν(v) := {z ∈ Z; {v, v, z} = νz}, ν = 1, 1
2 , 0. The associated Peirce projection Pν(v),

is the projection whose range is Zν(v) and whose kernel is the sum of the other two Peirce
subspaces. We denote also

Dν(v) := D ∩ Zν(v). (1.1.3)

The spaces Zν(v) are sub-triples of Z, and the rank of the tripotent v is by definition the rank
of Z1(v). We define

Sj = the set of tripotents of rank j, j = 0, 1, 2, . . . , r. (1.1.4)

S := Sr is the Shilov boundary of D. Let us choose a frame

e1, e2, . . . , er, (1.1.5)

i.e. a maximal set of tripotents of rank one which are pairwise orthogonal, i.e. {ei, ei, ej} = 0
whenever i 6= j. The tripotent

e = e1 + e2 + . . .+ er (1.1.6)

is maximal (having rank r), and thus Z0(e) = 0. The stabilizer of e in K, namely

L := {k ∈ K; k(e) = e}, (1.1.7)

will play an important role in the sequel. Notice that since K acts transitively on S, we have
S ≡ K/L. More generally, K acts transitively on the frames, and in particular it is transitive
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on each of the Sj . The sub-triple Z1(e) has the structure of a JB∗-algebra with respect to the
product z ◦ w := {z, e, w} and the involution z∗ := {e, z, e}, and e is the unit of Z1(e). The
real part of Z1(e), i.e. the subset X = X1(e) := {x ∈ Z1(e);x∗ = x} of self-adjoint elements of
Z1(e) is a Euclidean (or formally-real) Jordan algebra, with determinant (“norm”) and trace
polynomials

N(z) = det(z) and tr(z) :=< z, e > (1.1.8)

respectively. Here 〈z, w〉 denotes the uniqueK-invariant scalar product on Z satisfying 〈e1, e1〉 =
1. The set

Ω := {x2;x ∈ X,N(x) 6= 0} (1.1.9)

is the symmetric cone associated with X. The group L, restricted to X, coincides with the
Jordan-algebra automorphisms of X. In particular, it is transitive on the frames of orthogonal
minimal idempotents in X whose sum is the unit element e.

For 1 ≤ j ≤ r, let uj = e1 + . . .+ ej and let Nj denote the determinant polynomial of the
Jordan sub-algebra Z(j) := Z1(uj), extended to all of Z via Nj(z) := Nj(P1(uj)z). Note that
Nr ≡ N . The conical function associated with s = (s1, s2, . . . , sr) ∈ Cr is defined by

Ns(x) := N1(x)s1−s2 N2(x)s2−s3 · · ·Nr−1(x)sr−1−sr Nr(x)sr , ∀x ∈ Ω. (1.1.10)

A partition is a sequence m = (m1,m2, . . . ,mr) of integers so that m1 ≥ m2 ≥ . . . ≥ mr ≥ 0.
Note that for any partition m, Nm is a polynomial (called conical), and it extends to all of Z.
Let us denote

Pm := span{Nm ◦ k; k ∈ K}. (1.1.11)

A fundamental theorem [Sch69], (see also [U86]) says that the spaces Pm are irreducible and
mutually inequivalent with respect to the action π(k)(f) := f ◦ k−1 of K, and that the space
P of all holomorphic polynomials on Z is their direct sum: P =

∑⊕
m Pm. Thus the Pm are

mutually orthogonal with respect to any K-invariant inner-product on P. The Fischer-Fock
inner-product on P is given by

< f, g >F =
1
πd

∫
Cd

f(z) g(z) e−|z|
2
dm(z), (1.1.12)

where | · | is the Euclidean norm, and dm(z) is the Lebesgue measure. The reproducing kernel
of Pm with respect to < ·, · >F is denoted by Km(z, w). Thus,

∑
mKm(z, w) = e<z,w>.

The Gindikin-Koecher Gamma function associated with the cone Ω is defined for s =
(s1, s2, . . . , sr) ∈ Cr with <sj > (j − 1)a

2 by the convergent integral

ΓΩ(s) :=
∫

Ω
e−tr(x)Ns(x) dµΩ(x), (1.1.13)

where dµΩ(x) := N(x)−
d1
r dm(x) is the (unique up to a multiplicative constant) measure on Ω

which is invariant under the group GL(Ω) := {g ∈ GL(X); g(Ω) = Ω}, and d1 := dimR(X) =
r(r−1)

2 a+ r. It is known that ΓΩ can be expressed as a product of ordinary Gamma functions:

ΓΩ(s) := (2π)
d1−r

2

r∏
j=1

Γ(sj − (j − 1)
a

2
),
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and this allows the extension of ΓΩ to a meromorphic function on all of Cr. The Beta function
associated with the cone Ω is related to the Gamma function via

BΩ(p,q) :=
ΓΩ(p) ΓΩ(q)
ΓΩ(p + q)

. (1.1.14)

For λ ∈ C and any partition m we denote

(λ)m :=
ΓΩ(λ+ m)

ΓΩ(λ)
=

r∏
j=1

(λ− (j − 1)
a

2
)mj , (1.1.15)

where (t)m := t(t+ 1)(t+ 2) · · · (t+m− 1).

Let h(z, w) be the unique K-invariant irreducible polynomial, which in holomorphic in z,
anti-holomorphic in w, and satisfies h(x, x) = N(e− x2) ∀x ∈ X. It is known that

h(z, w)−λ =
∑
m

(λ)mKm(z, w), ∀z, w ∈ D, ∀λ ∈ C, (1.1.16)

and the series converges absolutely and uniformly on compact subsets of D × D × C. The
fundamental formula (1.1.16) (called the “binomial expansion”) was proved in special cases in
[Hu63] and [La86], and in full generality in [FK94]. The Wallach set W (D) of D consists of
all those λ ∈ C for which (z, w) 7→ h(z, w)−λ is positive definite. Using the expansion (1.1.16)
one sees that

W (D) = {0, a
2
, 2
a

2
, . . . , (r − 1)

a

2
} ∪ ((r − 1)

a

2
, ∞). (1.1.17)

This result was established by several authors using various techniques: [Be75], [RV76] (in the
context of Siegel domains), [W79], [La87] and [FK90]. For each λ ∈ W (D) we denote by Hλ

the completion of span{h(·, w)−λ;w ∈ D} with respect to the unique inner-product < ·, · >λ

determined by
< h(·, w)−λ, h(·, z)−λ >λ= h(z, w)−λ, ∀z, w ∈ D.

Point evaluations are continuous linear functionals on Hλ and the corresponding reproducing
kernel is h(z, w)−λ.

If λ > (r − 1)a
2 then Hλ contains P as a dense subspace. On the other hand, for the

discrete Wallach points (which are our main concern in this paper) ` a
2 , 0 ≤ ` ≤ r − 1, H` a

2
is

the completion of
P` :=

∑
m1≥···m`≥0=m`+1=···=mr

Pm. (1.1.18)

Since K acts irreducibly on each Pm, every K-invariant inner product on Pm is proportional
to the Fischer inner product. The computation of the proportionality constants for the inner
products < ·, · >λ is one of the major steps in the proof of (1.1.16). Thus for every λ ∈W (D)
and every partition m for which Pm ⊂ Hλ,

< f, g >λ=
< f, g >F

(λ)m
, ∀f, g ∈ Pm. (1.1.19)

This implies for all functions f =
∑

m fm and g =
∑

m gm in Hλ (with fm, gm ∈ Pm ∀m),

< f, g >λ=
∑
m

< fm, gm >F

(λ)m
. (1.1.20)
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Let us define an action of G on functions on D via

(U (λ)(ϕ−1)f)(z) := f(ϕ(z)) (Jϕ(z))
λ
p , ϕ ∈ G, (1.1.21)

where Jϕ(z) := Det(ϕ′(z)). Then, for λ ∈ W (D), U (λ) is a projective representation of G on
Hλ.

It is well known that for λ > p− 1 Hλ is the weighted Bergman space L2
a(D,µλ), i.e. the

space of all analytic functions in L2(D,µλ), where

dµλ(z) := cλ h(z, z)λ−p dm(z), cλ :=
ΓΩ(λ)

πd ΓΩ(λ− d
r )
.

The representations {U (λ);λ > p− 1} form the holomorphic discrete series of representations
of G.

We now turn to the structure of the boundary ∂D and introduce some more notation. The
boundary component associated to a tripotent v is the set B(v) := v +D0(v) (see (1.1.3)). Its
closure is a face of D and all the faces arise in this way. Notice that D1(v) and D0(v) are
Cartan domains of type (`, a, 0) and (r−`, a, b) respectively, where ` := rank(v). Let us denote

∂`D := ∪v∈S`
B(v), 1 ≤ ` ≤ r. (1.1.22)

The sets ∂`D are the G-orbits on ∂D, and:

∂`D = G(u`) = {ϕ(u`);ϕ ∈ G}, (1.1.23)

where {ej}r
j=1) is the fixed frame and u` = e1 + · · ·+ e`. Thus

∂D = ∪r
`=1∂`D. (1.1.24)

and the orbits of G in D are ∂0D := D, ∂1D, . . ., and ∂r D = S. Let us denote also

v` = e− u` = e`+1 + · · ·+ er.

Then u`, v` are orthogonal tripotents of rank ` and r− ` respectively, and u` + v` = e. Z(`) :=
Z1(u`) is a JB∗-sub-algebra of Z with unit u`, real part

X(`) := {z ∈ Z(`); z∗ = z},

and associated symmetric cone

Ω(`) := {x2;x ∈ X(`), N`(x) 6= 0}. (1.1.25)

Let T ∈ D` be extended to a K(`)C
-invariant differential operator on Z0(v`). Given a tripotent

v ∈ Sr−l, we define a differential operator Tv on Z0(v) in the following way. Since K acts
transitively on Sr−`, there exists k ∈ K for which k(v`) = v. We define

Tv := C−1
k TCk, (1.1.26)
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where Ck(f) := f ◦ k. Tv is well-defined, i.e. independent of the particular k ∈ K for which
k(v`) = v. Indeed, if k1, k2 ∈ K satisfy k1(v`) = k2(v`) = v, then k−1

1 (k2(v`)) = v`, and so
k2 = k1k for some k ∈ K for which k(v`) = v`. As we remarked above, k ∈ K(`), and therefore

Ck2TCk2 = C−1
k1
C−1

k TCkCk1 = Ck1TCk1 .

For any function f on D and any tripotent v, the restriction of f to B(v) yields a function
fv on D0(v) via

fv(z) := f(v + z), z ∈ D0(v). (1.1.27)

For any 1 ≤ ` ≤ r let ν` be the unique K-invariant probability measure on S`, defined via∫
S`

f dν` :=
∫

K
f(k(u`)) dk. (1.1.28)

Our main result in this framework is the following theorem (compare Theorem 2.1.7)

Theorem Let 1 ≤ ` ≤ r − 1 and let λ > (`− 1)a
2 . Then there exists T = T (`,λ) ∈ D` so that

for every f, g ∈ H` a
2

which are analytic in a neighborhood of D,

< f, g >` a
2
=
∫

Sr−`

< Tvfv, gv >Hλ(D0(v)) dνr−`(v). (1.1.29)

For general f, g ∈ H` a
2

the integral (1.1.29) is an improper Riemann integral, namely

< f, g >` a
2
= lim

t↗1

∫
Sr−`

< Tv(f t)v, (gt)v >Hλ(D0(v)) dνr−`(v),

where f t(z) := f(tz), gt(z) := g(tz).

We remark that the case ` = 0 in the above theorem (and in subsequent results) is trivial since
H0 consists of constant functions.

1.2 Invariant differential operators on symmetric cones

In this section we review briefly the connection between the ring D = Diff(Ω)GL(Ω) of GL(Ω)-
invariant differential operators on Ω and the ring S of symmetric polynomials in r variables.
See [FK94] for more details and [He78] for the general theory.

We denote the half-sum of the strongly orthogonal positive roots by

ρ = (ρ1, ρ2, . . . , ρr) where ρj := (2j − r − 1)
a

4
, 1 ≤ j ≤ r. (1.2.1)

The L-spherical functions are the L-averages of the conical functions:

Φλ(x) :=
∫

L
Nλ(`(x)) d`. (1.2.2)

They are L-invariant and normalized by the condition Φλ(e) = 1. It is known that the Φλ are
the spherical functions associated with the Riemannian symmetric space Ω in the usual sense.
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The Weyl group Wr in this case is simply the permutation group, acting naturally on Cr and
thus on the Φλ‘s. It is known that Φλ = Φµ if and only if λ and µ are in the same orbit of
Wr.

For each partition m the function Φm is an L-invariant polynomial which belongs to Pm and
in particular extends to a polynomial on Z. Every L-invariant polynomial in Pm is proportional
to Φm. The ring

S = C[λ1, λ2, . . . , λr]Wr (1.2.3)

of symmetric (i.e. permutation invariant) polynomials in λ = (λ1, λ2, . . . , λr) is isomorphic to
the full polynomial ring C[σ1, σ2, . . . , σr] via the elementary symmetric polynomials {σj}r

j=1

defined by
σj(λ) :=

∑
1≤i1<i2<···<ij≤r

λi1λi2 · · ·λij . (1.2.4)

Thus, for each p ∈ S there is a unique polynomial q ∈ C[σ1, σ2, . . . , σr] so that

p(λ) = q(σ1(λ), σ2(λ), . . . , σr(λ)).

Thus, {σj}r
j=1 are algebraically independent generators of S.

A fundamental property of the spherical functions is that they are the joint eigenfunctions
of the operators in D.

Theorem 1.2.1 (i) The conical and the spherical functions are eigenfunctions of every
T ∈ D: For all λ ∈ Cr we have

T (Nλ+ρ) = γT (λ)Nλ+ρ , T (Φλ+ρ) = γT (λ)Φλ+ρ . (1.2.5)

(ii) γT (λ) is a symmetric polynomial in λ1, , λ2, , . . . , λr, thus γT ∈ S.

(iii) The map γ : D → S defined via D 3 T 7→ γT ∈ S is a surjective ring isomorphism, called
the Harish-Chandra isomorphism.

(iv) D is commutative.

Definition 1.2.2 For 1 ≤ j ≤ r we define ∆j := γ−1(σj). Namely, for every λ ∈ Cr:

∆j(Nλ+ρ) = σj(λ)Nλ+ρ , ∆j(Φλ+ρ) = σj(λ) Φλ+ρ . (1.2.6)

Corollary 1.2.3 The operators {∆j}r
j=1 are algebraically independent generators of D.

Since Ω = GL(Ω)/L is a Riemannian symmetric space (more precisely, a direct product of
R+ with an irreducible symmetric space Ω′ := {x ∈ Ω : N(x) = 1} of non-compact type), one
has a direct integral decomposition

L2(Ω) =
∫

Rr/Wr

Hλ |c(λ)|2 dλ (1.2.7)
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where c(λ) is Harish-Chandra’s c-function and Hλ is the Hilbert space completion of the space
spanned by all GL(Ω)-translates of Φλ, endowed with its natural inner product [He84]. Via
(1.2.7), the translation representation T of GL(Ω) on L2(Ω) has a decomposition

T =
∫

Rr/Wr

Tλ |c(λ)|−2dλ

where Tλ is the (irreducible) spherical representation of GL(Ω) on Hλ. For any continuous
Wr-invariant function F : Rr → R one can define a GL(Ω)-invariant self-adjoint operator F̂ on
L2(Ω) by the formula

F̂ f =
∫
F (λ) fλ |c(λ)|−2 dλ (1.2.8)

for
f =

∫
fλ|c(λ)|−2 dλ, fλ ∈ Hλ. (1.2.9)

The domain of F̂ is defined as the space of functions f such that∫
|F (λ)|2 ‖ fλ ‖2

λ |c(λ)|−2 dλ < +∞.

Thus F̂ is bounded if F is a bounded function. Let

σ := (σ1, . . . , σr) : Cr → Cr,

where the σj are defined by (1.2.4). The direct integral decomposition above diagonalizes
simultaneously the (commuting) operators ∆k. Writing

F = f ◦ σ

for some continuous bounded function f : Rr → R, the bounded operator F̂ can be expressed
as a function

F̂ = f(∆1, . . . ,∆r),

in the spectral-theoretic sense, of ∆1, . . . ,∆r.

Remark 1.2.4 There are many other natural choices of r algebraically independent generators
of S, and each such choice yields r algebraically independent generators of D via the Harish-
Chandra isomorphism. See [FK94], [N89], [M87], and [M95].

Lemma 1.2.5 Let U ⊂ Cr be a Wr-invariant domain, and let F be a Wr-invariant holomor-
phic function on U .

(i) The associated GL(Ω)-invariant operator T = F̂ satisfies

T (Φλ+ρ) = F (λ) Φλ+ρ ∀λ ∈ U. (1.2.10)

(ii) There exists a unique holomorphic function f on σ(U) so that F = f ◦ σ, i.e.

F (λ) = f(σ1(λ), σ2(λ), . . . , σr(λ)) ∀λ ∈ U.
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(iii) In terms of the L2-functional calculus associated with {∆j}r
j=1,

T = f(∆1,∆2, . . . ,∆r). (1.2.11)

The results described above are valid in the context of the cones Ω(`), 1 ≤ ` ≤ r. Thus the
ring S` := C[λ1, . . . , λ`]W` of the symmetric polynomials in λ(`) := (λ1, . . . , λ`) is isomorphic
to the full polynomial ring C[σ1, . . . , σ`], and the elementary symmetric polynomials

σ
(`)
j (λ(`)) :=

∑
1≤i1<i2<···<ij≤`

λi1λi2 · · ·λij 1 ≤ j ≤ ` (1.2.12)

are algebraically independent generators of S`. The spherical functions in the context of Ω(`)

are parametrized by C` and are defined as before via

Φ(`)

λ(`)(x) :=
∫

L(`)

N
λ(`)(k(x)) dk, x ∈ Ω(`).

The Harish-Chandra isomorphism between D` = Diff(Ω(`))GL(Ω(`)) and S` is given via

T (Φ(`)

λ(`)
+ρ(`)

) = γ(`)
T

(λ(`)) Φ(`)

λ(`)
+ρ(`)

, λ(`) ∈ C(`),

where
ρ(`) := (ρ(`)

1 , ρ
(`)
2 , . . . , ρ

(`)
` ), and ρ

(`)
j :=

a

4
(2j − `− 1). (1.2.13)

The algebraically independent generators of D` are

∆(`)
j := (γ(`))−1(σ(`)

j ), 1 ≤ j ≤ `. (1.2.14)

Lemma 1.2.5 is valid in the context of Ω(`) with obvious notational changes.

Consider the group of linear automorphisms of Ω(`)

GL(Ω(`)) := {g ∈ GL(X(`)); g(Ω(`)) = Ω(`)}

and the associated ring of GL(Ω(`))-invariant differential operators

D` := Diff(Ω(`))GL(Ω(`)). (1.2.15)

Thus, D` consists of all differential operators T on Ω(`) so that TCg = CgT for all g ∈ GL(Ω(`)),
where Cg(f) := f ◦ g. Let us denote

L(`) := {k ∈ K; k(u`) = u`}. (1.2.16)

Then k|Ω(`) ∈ GL(Ω(`)) ∀k ∈ L(`), and in particular T (f ◦ k) = (Tf) ◦ k for all T ∈ D` and
f ∈ C∞(Ω(`)). Let

K(`) := {k ∈ K; k(Zν(v`)) = Zν(v`), ν = 1,
1
2
, 0}. (1.2.17)

Clearly, {k ∈ K; k(v`) = v`} ⊂ K(`). Also, every triple-automorphism of Zν(v`) for some
ν = 1, 1

2 , 0 extends to a triple-automorphism of Z which preserves all the Zν(v`), i.e. to an

element of K(`). Let K(`)C
denote the complexification of K(`). We need the following technical

result.

12



Lemma 1.2.6 Every T ∈ D` extends uniquely to a holomorphic differential operator on Z0(v`)
which is invariant under the group K(`)C

.

Replacing Z0(v`) by Z it is enough to show

Lemma 1.2.7 Let Z = Z1(e) ⊕ Z1/2(e) be the Peirce decomposition of Z with respect to the
maximal tripotent e (cf. (1.1.6)). Then every GL(Ω)-invariant differential operator D on Ω
has a unique extension to a holomorphic differential operator D̃ on Z which is KC-invariant.

Proof: It is well-known that the ring Diff (Ω)GL(Ω) of all invariant differential operators on Ω
is a (commutative) polynomial algebra in r algebraically independent generators D1, . . . , Dr.
According to [N89, p. 130] we may assume

Dj = pj

(
x,

∂

∂x

)
(1 ≤ j ≤ r)

and

p2j−1(x, y) = ((Px Py)j−1 x | y)
p2j(x, y) = ((Px Py)j−1 x |Pyx)

where Px is the quadratic representation of X := {x ∈ Z1(e) : x∗ = x}. Let {uv∗w} denote
the Jordan triple product of Z and put

QZ w := {zw∗z} .

Define

q2j−1(z, w) := ((QZ Qw)j−1z|w) (1.2.18)

q2j(z, w) := ((QZ Qw)j−1z|Qw z) (1.2.19)

for z, w ∈ Z. Then we have
qm(x, y) = pm(x, y)

for all x, y ∈ X.

By [U85a, p. 297, (18.2.1)], we have

{a u∗ {a u∗ a}} = {a {u a∗ v}∗ a} .

We use this identity to show that

Qz Q
j
w z = (z�w∗)2j z (1.2.20)

for all j ≥ 1. In fact

Qz Qw z = {z {w z∗w}∗ z} = {z w∗ {z w∗ z}} = (z�w∗)2 z .

Now let j ≥ 1 and put
V := (z�w∗)2j−2 = (Qz Qw)j−1 z

13



and
u := (z�x∗)2j−1 z = {z w∗ v} .

Then we have by induction

Qz Qw v = (Qz Qw)j z = (z�w∗)2j z ,

Qw u = {w {z w∗ v}∗} = {w z∗ {w v∗w}} = {w z∗ (Qw v)}
Qz Qw u = {z {z{ww+ (Qw v)}∗ z} =
{z w∗{z(Qw v)∗ z}} = {z w∗ (Qz Qw v)} = (z�w∗)2j+1 z

and hence

(Qz Qw)j+1 z = Qz Qw ((z�w∗)2j z) = Qz Qw {z w∗ u}
= {z {w {z w+ u}∗w}∗ z} = {z {w z∗ {wu∗w}}∗ z}
= {z w∗ {z {w u∗w}∗ z}} = {z w∗ (Qz Qw u)}
= (z�w∗)2j+2 z .

This completes the induction and proves (1. ).

Combining (1. ) and (1. ), we see that

qm(z, w) = ((z�w∗)m−1 z |w)

for all m ≥ 1. In fact, (1. ) implies

q2j−1(z, w) = ((Qz Qw)j−1 z |w) = ((z�w∗)2j−2 z |w)

and

q2j(z, w) = ((Qz Qw)j−1 z |Qw z) =
((z�w∗)2j−2 z | {w z∗w}) = ({((z�w∗)2j−2 z)w∗ z} |w)
= ((z�w∗)2j−1 z |w)

since ({u v∗w}|z) = (u| {v w∗ z}) for all u, v, w, z ∈ Z. Now let b1, . . . , bk ∈ X and
bk+1, . . . , bn ∈ Z1/2(e) be orthonormal basis. Then

w =
n∑

i=1

(w|bi) bi

and hence

qm(z, w) =
∑

1≤im≤n

 ∑
1≤i≤n

(bi|w) z� b∗i

m−1

z
∣∣∣ bim

 (bim|w)

=
∑

1≤i1,...,im≤n

((z� b∗i1) · · · (z� b∗im−1
) z|bim)(bi1 |w) · · · (bim|w) .

It follows that

qm

(
z,

∂

∂z

)
=

∑
1≤i1,...,im≤n

((z� b∗i1) · · · (z� b∗im−1
) z|bim)

∂

∂zi1
· · · ∂

∂zim
.
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For x ∈ X we have
{x b∗i x} ∈ X (1 ≤ i ≤ k)

and
{x b∗i x} = 0 (k < i ≤ n)

by the Peirce multiplication rules. It follows that

((x� b∗i1) · · · (x� b∗im−1
)x | bim) = 0

unless i1, . . . , im ≤ k. This shows that the holomorphic differential operator

D̃m := qm

(
z,

∂

∂z

)
agrees with

Dm = pm

(
x,

∂

∂x

)
when restricted to X. Since qm (kz, kw) = qm (z, w) for all k ∈ K, D̃m is K-invariant and
hence, by holomorphicity, even KC-invariant.

1.3 Conialization of functions

In this section we study conialization (i.e. “conical polarization”) of functions on Z. The basic
fact used here is that every z ∈ Z admits a conical polar decomposition z = k(x) with k ∈ K

and a unique x ∈ Ω. Thus Z = K · Ω, and we have a formula for integration in conical polar
coordinates for functions f ∈ L1(Z,m):∫

Z
f(z) dm(z) = c0

∫
Ω

(∫
K
f(k(x

1
2 )) dk

)
N(x)b dx (1.3.1)

where m is Lebesgue measure, and c0 = πd/ΓΩ(d
r ). The function

f̃(x) :=
∫

K
f(k(x

1
2 )) dk, x ∈ Ω, (1.3.2)

is called the conialization of f . The map E(f)(x) := f̃(x2) can be considered as the averag-
ing projection (i.e. conditional expectation) from L1(Z,m) onto its subspace of K-invariant
functions.

Lemma 1.3.1 (i) For every partition m and every x ∈ Ω∫
K
|Φm(k(x

1
2 ))|2 dk =

Φm(x)
dm

, (1.3.3)

where dm := dim(Pm).

(ii) For every x ∈ Ω and all polynomials f =
∑

m fm and g =
∑

m gm with fm, gm ∈ Pm

for all m,
(̃fg)(x) =

∑
m

< fm, gm > d
r

Φm(x) (1.3.4)
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Proof: Formula (1.3.3) is proved in [FK94], Proposition XI.4.1 in the case where Z is a JB∗-
algebra, and in [FK90] in the case where Z is a JB∗-triple. Notice that (1.3.3) with x = e

yields for every m

‖Φm‖2
d
r

=
∫

K
|Φm(k(e))|2 dk =

1
dm

.

To prove (1.3.4), consider the K-invariant inner product

< f, g >x:= (̃fg)(x) =
∫

K
f(k(x

1
2 )) g(k(x

1
2 )) dk (1.3.5)

on P. Using the fact that the actions of K on the Pm are irreducible and pair-wise inequivalent,
we see that the Pm are pair-wise orthogonal with respect to < ·, · >x, and that there exist
positive constants cm(x) so that

< fm, gm >x= cm(x) < fm, gm > d
r
, ∀fm, gm ∈ Pm.

The proportionality constants are computed by taking fm = gm = Φm and using (1.3.3) for x
and e.

Let 1 ≤ ` ≤ r and denote the vectors in C` by λ(`) = (λ1, . . . , λ`). For notational simplicity
we shall adopt the convention that Φ

λ(`) = Φ(λ1,...,λ`,0,...,0), and similarly for the conical func-

tions. Recall that the spherical functions associated with the symmetric cone Ω(`) of X(`) are
denoted by Φ(`)

λ(`) .

Proposition 1.3.2 Let 1 ≤ ` ≤ r and let m(`) = (m1, . . . ,m`) ∈ N` be a partition. Then for
every x ∈ X(`)

Φm(`)(x) = γm(`) Φ(`)

m(`)(x), (1.3.6)

where

γm(`) =
(`a

2 )
m(`)

(r a
2 )

m(`)

=
ΓΩ(`)(r a

2 )
ΓΩ(`)(` a

2 )

∏̀
j=1

Γ(mj + (`+ 1− j)a
2 )

Γ(mj + (r + 1− j)a
2 )
. (1.3.7)

Proof: Recall that for every y ∈ X and λ ∈ C,

N(e− y)−λ =
∑
m

(λ)m
Φm(y)
‖Φm‖2

F

. (1.3.8)

Similarly, for x ∈ X(`) and λ ∈ C,

N(e− x)−λ = N`(u` − x)−λ
∑
m(`)

(λ)m(`)

Φ(`)

m(`)(x)

‖Φ(`)

m(`)‖2
F

. (1.3.9)

In order to continue the proof of the proposition, we need the following result.

Lemma 1.3.3 Let 1 ≤ ` ≤ r and let y ∈ X be an element of rank at most `. If n = (n1, . . . , nr)
is a partition with n`+1 ≥ 1, then Nn(y) = Φn(y) = 0.
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Proof: The condition n`+1 ≥ 1 guarantees that for some j > `, Nn is divisible by Nj to a
positive power. Notice that rank(P1(uj)y) ≤ rank(y) ≤ `. Hence, Nj(y) = Nj(P1(uj)y) = 0
(because in the Jordan algebra X(j) elements of rank smaller than j have zero determinant).
In particular, Nn(y) = 0. If k ∈ L then rank(k(y)) = rank(y) ≤ `, and therefore Nn(k(y)) = 0.
Finally, Φn(y) =

∫
LNn(k(y)) dk = 0.

Using Lemma 1.3.3 we see that (1.3.8) for x ∈ X(`) yields

N(e− x)−λ =
∑
m(`)

(λ)m(`)

Φm(`)(x)
‖Φm(`)‖2

F

. (1.3.10)

Since Φm(`) |Z0(v`)
∈ P (`)

m , we obtain by comparing the expansions (1.3.9) and (1.3.10) that

Φm(`)(x) =
‖Φm(`)‖2

F

‖Φ(`)

m(`)‖2
F

Φ(`)

m(`)(x) = γm(`) Φ(`)

m(`)(x) ∀x ∈ X(`).

In order to compute γm(`) we use the known fact (see [FK90]) that

‖Φm(`)‖2
F =

(d
r )m(`)

dm(`)

and ‖Φ(`)

m(`)‖2
F =

(d`
` )m(`)

d
(`)

m(`)

,

where d` := dim Z1(u`) = `+ `(`− 1)a
2 , dm(`) = dim(Pm(`)), and d(`)

m(`) has the same meaning
with respect to the algebra Z1(u`). Quite generally, the dimensions dm are expressed by

dm =
∏

1≤i<j≤r

B((j − i)a
2 ,

a
2 )

B(mi −mj + (j − i)a
2 ,

a
2 )

B((i− j)a
2 ,

a
2 )

B(mj −mi + (i− j)a
2 ,

a
2 )

(1.3.11)

where B(x, y) := Γ(x) Γ(y)/Γ(x+ y) is the ordinary Beta function. (see [U83] for the general
case, and [FK94], p. 315 for the case of JB∗-algebras).

A straightforward computation yields the expression (1.3.7) for γm(`) .

Remark 1.3.4 One can prove Proposition 1.3.2 using the connection between the spherical
polynomials and the Jack symmetric functions J (α)

m , where α := 2
a , and m ranges over all finite

partitions. (See [M87], [M95] and [St89] for the study of Jack symmetric functions). J (α)

λ
is

defined on all finite sequences (identified with infinite sequences which contain only finitely
many non-zero terms), and it is permutation invariant. The connecting formula is

Φm(
r∑

j=1

tjej) =
J

(α)
m (t1, . . . , tr, 0, . . . , 0, . . .)

J
(α)
m (1r)

∀t1, . . . , tr > 0, (1.3.12)

where 1r := (1, . . . , 1, 0, . . . , 0, . . .) has r “1”. A similar formula is valid also for the spherical
functions Φ(`)

m(`) associated with Ω(`):

Φ(`)

m(`)(
∑̀
j=1

tjej) =
J

(α)

m(`)(t1, . . . , t`, 0, . . . , 0, . . .)

J
(α)

m(`)(1`)
∀t1, . . . , t` > 0, (1.3.13)
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It follows that for every t1, . . . , t` > 0,

Φm(`)(
∑`

j=1 tjej)

Φ(`)

m(`)(
∑`

j=1 tjej)
=
J

(α)

m(`)(1`)

J
(α)

m(`)(1r)
= γm(`) . (1.3.14)

The numbers J (α)
m (1ν), ν ∈ N, are known in full generality (see [St89] Th. 5.4 and [M95]):

J
(α)
m (1ν) =

`(m)∏
i=1

mi∏
j=1

(ν + 1− i+ α(j − 1)), (1.3.15)

where `(m) := max{k;mk 6= 0} is the length of m. It follows that if `(m) ≤ r and α = 2
a , then

J
(α)
m (1ν) = (

2
a
)
|m|

r∏
j=1

Γ(mj + (ν + 1− j)a
2 )

Γ((ν + 1− j)a
2 )

= (
2
a
)
|m|

(ν
a

2
)m.

In particular,

γm(`) =
J

(α)

m(`)(1`)

J
(α)

m(`)(1r)
=

(`a
2 )

m(`)

(r a
2 )

m(`)

=
ΓΩ(`)(r a

2 )
ΓΩ(`)(` a

2 )

∏̀
j=1

Γ(mj + (`+ 1− j)a
2 )

Γ(mj + (r + 1− j)a
2 )
, (1.3.16)

where ΓΩ(`) is the Gamma function associated with the cone Ω(`). The spectral theorem in X
[Lo77] and the fact that L acts transitively on the frames of primitive idempotents in X imply
that every spherical polynomial Φm is determined by its restriction to span{ej}r

j=1. Thus
(1.3.6) in general follows from (1.3.6) for x =

∑`
j=1 tjej , i.e. from (1.3.14).

Remark 1.3.5 Recall that the half sum of the strongly orthogonal positive roots associated
with Ω(`) is ρ(`) := (ρ(`)

1 , . . . ρ
(`)
` ), ρ

(`)
j := (2j−`−1) a

4 . For any partition m(`) = (m1, . . . ,m`)
define λ(`) = (λ1, . . . , λ`) via the “ρ(`)-shift”

λ(`) := m(`) − ρ(`), namely λj := mj − ρ
(`)
j = mj − (2j − `− 1)

a

4
, 1 ≤ j ≤ `.

Then γm(`) can be written as a symmetric function of λ(`) = (λ1, . . . , λ`):

γm(`) =
ΓΩ(`)(r a

2 )
ΓΩ(`)(` a

2 )

∏̀
j=1

Γ(λj + (`+ 1) a
4 )

Γ(λj + (2r − `+ 1) a
4 )
. (1.3.17)

This will be crucial in the sequel.

Recall that H` a
2

is the completion of P` (see (1.1.18)) with respect to the inner product
(1.1.20) with λ = ` a

2 .

Corollary 1.3.6 For all functions f, g ∈ H` a
2

with expansions f =
∑

m(`) fm(`) and g =∑
m(`) gm(`), and for every x ∈ Ω(`),

(̃fg)(x) =
∑
m(`)

< fm(`) , gm(`) > d
r

(`a
2 )

m(`)

(r a
2 )

m(`)

Φ(`)

m(`)(x)

=
ΓΩ(`)(r a

2 )
ΓΩ(`)(` a

2 )

∑
m(`)

∏̀
j=1

Γ(λj + (`+ 1) a
4 )

Γ(λj + (2r − `+ 1) a
4 )

Φ(`)

m(`)(x)

 < fm(`) , gm(`) > d
r

,
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where, as before,
λj = mj − ρ

(`)
j = mj − (2j − `− 1)

a

4
, 1 ≤ j ≤ `.

The point is that the coefficients of < fm(`) , gm(`) > d
r

in the expansion of (̃fg)(x) are symmetric

functions of λ` = (λ1, . . . , λ`).

1.4 Integration on K-orbits

In this section we will be interested in two sequences of K-orbits. The first sequence is the
G-orbits {∂jD}r

j=1 on ∂D. Notice that ∂r−`D = K(B(v`)), where v` = e`+1 + · · ·+ er. Recall
that u` = e1 + · · ·+ e`, and denote the open unit interval in the cone Ω(`) by

I(`) := Ω(`) ∩ (u` − Ω(`)) = {x ∈ X(`); 0 < x < u`}. (1.4.1)

The second sequence of K-orbits that we shall need is

O` := K(I(`)), 1 ≤ ` ≤ r. (1.4.2)

Note that ∂r−`D = K(v` + I(`)) and O` are the K-orbits of the opposite faces I(`) and v` + I(`)

of the unit interval I := Ω ∩ (e− Ω) of the cone Ω.

We shall use the subgroup

Gv`
:= {ϕ ∈ G;ϕ(v`) = v`} (1.4.3)

of G, identified naturally with Aut(D0(v`)), and the subgroups Kv`
:= K ∩Gv`

and

K(`) :=
{
k ∈ K; k(Zν(v`)) = Zν(v`), ν = 1,

1
2
, 0
}

of K.

We describe now a construction which assigns to a measure ν on I(`) measures µ̂ and µ̃

on the orbits ∂r−`D and O` respectively. The construction uses as an intermediate step a
construction of a measure µ on D0(v`).

Let ν be a measure on I(`), and define a measure µ (depending on ν) on D0(v`) via∫
D0(v`)

f dµ =
∫

I(`)

(∫
Kν`

f(k(x
1
2 )) dk

)
dν(x). (1.4.4)

We call ν the conical part of µ. Using µ we construct measures µ̃ and µ̂ on the K-orbits O`

and ∂r−`D in a canonical way.

Construction of µ̃: We define∫
O`

f dµ̃ :=
∫

D0(v`)

(∫
K
f(k(z)) dk

)
dµ(z)

=
∫

I(`)

(∫
K
f(k(x

1
2 )) dk

)
dν(x) =

∫
I(`)

f̃(x) dν(x).
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Example 1.4.1 Let λ > p` − 1 (where p` := (` − 1) a + 2 + b is the genus of D0(v`)), and
consider the probability measure

dµ
(`)
λ (z) := c(`) h`(z, z)λ−p` dm(z), c(`) =

ΓΩ(`)(λ)

π` ΓΩ(`)(λ− d(`)

` )
(1.4.5)

on D0(v`), where d(`) := dim Z0(v`) = `(`− 1) a
2 + `+ ` b, and

h`(k(x
1
2 ), k(x

1
2 )) = N`(u` − x), ∀x ∈ I(`), ∀k ∈ K(`).

The conical part of dµ(`)
λ is the probability measure

dν
(`)
λ (x) :=

1

BΩ(`)(d(`)

` , λ− d(`)

` )
N`(u` − x)λ−p` N`(x)b dm(x) (1.4.6)

on I(`), where BΩ(`) is the Beta function associated with the cone Ω(`) (see (1.1.14)).

Example 1.4.2 For λ = d(`)

` we consider the probability measure σ` on the Shilov boundary
∂`D0(v`) of D0(v`): ∫

∂`D0(v`)
f dσ` :=

∫
K(`)

f(k(u`)) dk. (1.4.7)

Its conical part is the Dirac measure δu`
.

Note that with respect to the measures µ(`)
λ and σ` considered in Examples 1.4.1 and 1.4.2,

we have

‖Φ(`)

m(`)‖2

L2(µ
(`)
λ )

=
1

d
(`)

m(`)

∫
I(`)

Φ(`)

m(`)(x) dν
(`)
λ (x) =

‖Φ(`)

m(`)‖2
F

(λ)m(`)

(1.4.8)

and

‖Φ(`)

m(`)‖2
L2(σ`)

=
‖Φ(`)

m(`)‖2
F

(d(`)

` )m(`)

=
1

(d(`)

` )m(`)

. (1.4.9)

Applying Corollary 1.3.6, and using (1.4.8) and (1.4.9), we obtain

Corollary 1.4.3 Let f, g ∈ P` have expansions f =
∑

m(`) fm(`) and g =
∑

m(`) gm(`). Then

(i)

< f, g >L2(O,µ̃) =
∑
m(`)

(` a
2 )m(`)

(r a
2 )m(`)

∫
I(`)

Φ(`)

m(`)(x) dν(x)
< fm(`) , gm(`) >F

(d
r )m(`)

. (1.4.10)

(ii) For any λ > p` − 1,

< f, g >
L2(O`,

g
µ

(`)
λ )

=
∑
m(`)

(` a
2 )m(`) (d(`)

` )m(`)

(r a
2 )m(`) (d

r )m(`)

< fm(`) , gm(`) >F

(λ)m(`)

. (1.4.11)

(iii)

< f, g >L2(O`,σ`) =
∑
m(`)

(` a
2 )m(`)

(r a
2 )m(`) (d

r )m(`)

< fm(`) , gm(`) >F . (1.4.12)
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Construction of µ̂: The K(`)-invariant measure µ on D0(v`) is used to define a measure µ̂
on ∂r−`D: ∫

∂r−`D
f dµ̂ =

∫
D0(v`)

(∫
K
f(k(v` + z)) dk

)
dµ(z). (1.4.13)

Obviously,∫
∂r−`D

f dµ̂ =
∫

I(`)

(∫
K
f(k(v` + x

1
2 )) dk

)
dν(x) =

∫
I(`)

f̃(v` + x) dν(x). (1.4.14)
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2 Integral Formulas for Invariant Inner Products

2.1 Discrete Wallach points for Cartan domains

In this section we obtain the formulas for the inner products < f, g >` a
2
, 1 ≤ ` ≤ r − 1, via

integration on the K-orbits ∂r−`D and O`.

Let {σ(`)
j }`

j=1 be the elementary symmetric polynomials (1.2.4) in the variables λ(`) =

(λ1, λ2, . . . , λ`), and let σ(`) be the vector map λ(`) 7→ (σ(`)
1 (λ(`)), . . . , σ(`)

` (λ(`))). Following
the remark after Lemma 1.2.5, let γ(`) : D` → S` be the Harish-Chandra isomorphism, and let

∆(`)
j =

(
γ(`)
)−1 (

σ
(`)
j

)
, 1 ≤ j ≤ `. (2.1.1)

We define also σ(`)
0 (λ(`)) ≡ 1, ∆(`)

0 = I, and let W` be the permutation group of the coordinates
in C`. Thus if U is a W`-invariant domain and f is an analytic function in σ(`)(U), then the
operator

f(∆(`)) = f(∆(`)
1 , . . . ,∆(`)

` ) (2.1.2)

(defined via the functional calculus analogous to Lemma 1.2.5) is GL(Ω(`))-invariant and sat-
isfies

f(∆(`))(Φ(`)

λ(`)
+ρ(`)

) = f(σ(`)(λ(`)))Φ(`)

λ(`)
+ρ(`)

(2.1.3)

for every λ(`) ∈ U , where ρ(`) is given by (1.2.13). In particular, for every partition m(`) =
(m1, . . . ,m`, 0, 0, . . . , 0) ≥ 0 we obtain

f(∆(`))(Φ(`)

m(`)) = f(σ(`)(λ(`)))Φ(`)

m(`) (2.1.4)

where λ(`) := m(`) − ρ(`).

Lemma 2.1.1 Let α > (`− 1)a
2 . Then for every partition m(`) = (m1, . . . ,m`, 0, 0, . . . , 0) we

have

ΓΩ(`)(α+ m(`)) = (2π)`(`−1)a
4

∏̀
j=1

Γ(λj + α− a

4
(`− 1)) (2.1.5)

where λj := mj − ρ
(`)
j = mj − (2j − ` − 1)a

4 . Thus ΓΩ(`)(α + m(`)) and (α)m(`) = ΓΩ(`)(α +
m(`))/ΓΩ(`)(α) are symmetric functions of λ(`) = (λ1, λ2, . . . , λ`). Moreover, for any s ∈ N

(α+ s)m(`)

(α)m(`)

=
s−1∏
ν=0

∏̀
j=1

(λj + α+ ν − a

4
(`− 1))

=
s−1∏
ν=0

∑̀
k=0

(α+ ν − a

4
(`− 1))`−kσ

(`)
k (λ(`)). (2.1.6)

Thus (α + s)m(`)/(α)m(`) is a symmetric polynomial in λ(`) = (λ1, λ2, . . . , λ`). Hence the
operator

T :=
s−1∏
ν=0

∑̀
k=0

(α+ ν − a

4
(`− 1))`−k∆(`)

k (2.1.7)
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belongs to D` and satisfies

T fm(`) =
(α+ s)m(`)

(α)m(`)

fm(`) (2.1.8)

for every m(`) = (m1, . . . ,m`, 0, . . . , 0) ≥ 0 and fm(`) ∈ Pm(`).

Proof: (2.1.5) is a consequence of (1.1.13) for the cone Ω(`). The first equality in (2.1.6) is
a consequence of (2.1.5) and the fact that Γ(z + 1) = zΓ(z), and the second is a well-known
property of the {σ(`)

k }`
k=0. The rest follows from (2.1.3).

Remark 2.1.2 For every β ∈ C define

D(`)(β) := Nβ+1
` ∂N`

N−β
` ∈ D` (2.1.9)

It is well-known (see [FK94] Chapter XIV and [AU97]) that

γ
(`)

D(`)(β)
(λ(`)) =

∏̀
j=1

(λj +
a

4
(`− 1)− β). (2.1.10)

It follows from (2.1.6) that if α > (`− 1)a
2 and s ∈ N then

(α+ s)m(`)

(α)m(`)

=
s−1∏
ν=0

γ
(`)

D(`)(a
2
(`−1)−α−ν)

(λ(`)).

Since γ(`) : D` → S` is a (surjective) ring isomorphism, it follows that the operator (2.1.7)
admits the following expression

T = N
a
2
(`−1)−α

` N`

(
d

dx

)s

N
α+s−a

2
(`−1)

` . (2.1.11)

Theorem 2.1.3 Let 0 ≤ ` ≤ r − 1 and let β > a
2 (` − 1). Then there exists an operator

T = T (`,β) on C∞(Ω(`)) which is invariant under GL(Ω(`)), so that for every f ∈ H` a
2

with
Peter-Weyl expansion f =

∑
m(`) fm(`),

Tf =
∑
m(`)

(β)m(`)

(`a
2 )m(`)

fm(`) . (2.1.12)

Hence, for all f, g ∈ H` a
2
,

< f, g >` a
2
=< Tf, g >β . (2.1.13)

Moreover, if β − `a
2 ∈ N then T ∈ D` (i.e. T is a GL(Ω(`))-invariant differential operator).

Remark 2.1.4 Strictly speaking, the meaning of (2.1.13) is that T
1
2 (defined in general

via the functional calculus (1.2.11), and for holomorphic functions via T
1
2 (
∑

m(`) fm(`)) =∑
m(`)(

(β)
m(`)

(` a
2
)
m(`)

)
1
2 fm(`)) maps H` a

2
isometrically into Hβ. Formula (2.1.13) is valid for all poly-

nomials f, g.

23



Proof: We define an operator T0 on holomorphic functions of the form f =
∑

m(`) fm(`) via

T0f =
∑

m(`)

(β)
m(`)

(` a
2
)
m(`)

fm(`) . Then T0 is well defined and continuous with respect to the topology

of uniform convergence on compact subsets of D (see [A96]). Notice that the eigenvalues
(β)m(`)/(`a

2 )m(`) are positive (since m`+1 = · · · = mr = 0 and β > a
2 (`−1)). If f =

∑
m(`) fm(`)

and g =
∑

m(`) gm(`) are polynomials then

< Tf, g >β=
∑
m(`)

1
(`a

2 )m(`)

< fm(`) , gm(`) >F =< f, g >` a
2
.

Thus T
1
2
0 maps H` a

2
into Hβ isometrically. Using the notation λ(`) = m(`) − ρ(`), Lemma

2.1.1 guarantees that there exists a symmetric function of λ(`) of the form p(σ(`)(λ(`))) =
p(σ(`)

1 (λ(`)), . . . , σ(`)
` (λ(`))), so that for all m(`) ≥ 0

(β)m(`)

(`a
2 )m(`)

= p(σ(`)(λ(`))).

Hence T := p(∆(`)) = p(∆(`)
1 , . . . ,∆(`)

` ) is a GL(Ω(`))-invariant operator whose restriction to
the holomorphic functions of the form

∑
m(`) fm(`) is T0. If n := β−`a

2 ∈ N, then (2.1.6) shows
that p is the polynomial

p(x1, . . . , x`) =
n−1∏
ν=0

(∑̀
k=0

(`
a

2
+ ν − a

4
(`− 1))`−kxk

)

where x0 := 1. Hence

T = p(∆(`)
1 , . . . ,∆(`)

` ) =
n−1∏
ν=0

(∑̀
k=0

(`
a

2
+ ν − a

4
(`− 1))`−k∆(`)

k

)

is a member of D` (i.e. a polynomial in the generators ∆(`)
1 , . . . ,∆(`)

` ).

Using (2.1.4) and Corollary 1.3.6 we obtain the following result.

Corollary 2.1.5 Let f, g ∈ H` a
2

have Peter-Weyl expansions f =
∑

m(`) fm(`) and g =∑
m(`) gm(`). Then for every symmetric function of λ(`) of the form

p(σ(`)(λ(`))) = p(σ(`)
1 (λ(`)), . . . , σ(`)

` (λ(`)))

the corresponding differential operator

p(∆(`)) = p(∆(`)
1 , . . . ,∆(`)

` ) ∈ D`

satisfies for every x ∈ Ω(`):(
p(∆(`))

(
f̃ ḡ
))

(x) = (2.1.14)

= c`
∑
m(`)

(`a
2 )m(`)

(r a
2 )m(`)(d

r )m(`)

p(σ(`)(m(`) − ρ(`))) < fm(`) , gm(`) >F Φ(`)

m(`)(x).
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If α > p` − 1 = (`− 1)a+ 1 + b, then∫
I`

p(∆(`))
(
f̃ ḡ
)
dν(`)

α = (2.1.15)

= c`
∑
m(`)

(`a
2 )m(`)(d`

` )m(`)

(r a
2 )m(`)(d

r )m(`)(α)m(`)

p(σ(`)(m(`) − ρ(`))) < fm(`) , gm(`) >F .

Here c` = ΓΩ(`)(`a
2 )/ΓΩ(`)(r a

2 ), d` = dimR(X1(u`)) = `(` − 1)a
2 + 1, and ν

(`)
α is the measure

defined in (1.4.6).

Notice that by Lemma 2.1.1 the coefficients of < fm(`) , gm(`) >F Φ(`)

m(`)(x) in (2.1.14) and
(2.1.15) are symmetric functions of λ(`) := m(`) − ρ(`).

Remark 2.1.6 (i) If one uses (2.1.14) with x = u`, one obtains (with T = p(∆(`)))

( ˜Tf · ḡ)(u`) = T (f̃ · ḡ)(u`) = (2.1.16)

= c`
∑
m(`)

(`a
2 )m(`)tm(`)

(r a
2 )m(`)(d

r )m(`)

< fm(`) , gm(`) >F .

(ii) If we choose T so that its eigenvalues satisfy

c`
(`a

2 )m(`)tm(`)

(r a
2 )m(`)(d

r )m(`)

=
1

(`a
2 )m(`)

then for every f, g ∈ H` a
2

T̃ f · ḡ(u`) =
∑
m(`)

< fm(`) , gm(`) >F

(`a
2 )m(`)

=< f, g >` a
2
.

Namely

< f, g >` a
2
=
∫

S`

(Tf · ḡ)(v) dσ`(v). (2.1.17)

This realizes H` a
2

as a Hardy-type space on S`

(iii) It would be interesting to exhibit T in concrete terms (not only via its eigenvalues). If
a is even then T ∈ D`, i.e. T is a polynomial in the generators ∆(`)

1 ,∆(`)
2 , . . . ,∆(`)

` of D`. It
would be interesting also to exhibit T as a linear combination of Yan’s operators (see [AU97]).
If a is odd then either D is of type IVn with n odd (a case which was considered in [AU97]
and [AU98] since ` = 1), or D is of type IIIr (with a = 1).

Theorem 2.1.7 Let 0 ≤ ` ≤ r − 1 and let α > p` − 1 = (`− 1)a+ 1 + b. Let p(σ(`)(λ(`))) be
the symmetric function of λ(`) = (λ1, λ2, . . . , λ`) so that

p(σ(`)(λ(`))) =
1
c`

(r a
2 )m(`)(d

r )m(`)(α)m(`)

(`a
2 )2

m(`)(
d`
` )m(`)

(2.1.18)
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for every λ(`) := m(`) − ρ(`). Let T = p(∆(`)
1 , . . . ,∆(`)

` ) be the GL(Ω(`))-invariant operator
defined via the functional calculus (Lemma 1.2.5). Then for every f, g ∈ H` a

2

< f, g >` a
2
=
∫

I`

T
(
f̃ ḡ
)
dν(`)

α , (2.1.19)

where ν
(`)
α is the measure defined in (1.4.6). Moreover, if s := α − `a

2 ∈ N, then p is a
polynomial in λ(`) and T ∈ D`, i.e. T is a GL(Ω(`))-invariant differential operator on Ω.

Proof: The right hand side of (2.1.18) is symmetric in λ(`) := m(`) − ρ(`) by Lemma 2.1.1.
Thus (2.1.14) yields for any f, g ∈ H` a

2
with Peter-Weyl expansions f =

∑
m(`) fm(`) and

g =
∑

m(`) gm(`) ,∫
I`

T
(
f̃ ḡ
)
dν(`)

α =
∑
m(`)

< fm(`) , gm(`) >F (α)m(`)

(`a
2 )m(`)(d`

` )m(`)

∫
I`

Φ(`)

m(`)(x) dν
(`)
α (x)

=
∑
m(`)

< fm(`) , gm(`) >F

(`a
2 )m(`)

=< f, g >` a
2
.

Assume that s := α− `a
2 ∈ N. If also n := (r − `)a

2 ∈ N then

r
a

2
− `

a

2
=
d

r
− d`

`
= n,

and Lemma 2.1.1 guarantees that p is a symmetric polynomial of degree `(s+2n) in (λ1, λ2, . . . , λ`).
If (r − `)a

2 /∈ N, then necessarily b = 0, and both

n1 := (r − `+ 1)
a

2
− 1 and n2 :=

d

r
− `

a

2
= (r − 1− `)

a

2
+ 1

are in N. Again, Lemma 2.1.1 guarantees that p is a polynomial of degree `(s + n1 + n2) in
(λ1, λ2, . . . , λ`). This completes the proof.

Remark 2.1.8 (i) Using Lemma 1.3.1 and Proposition 1.3.2 it follows that if T is a GL(Ω(`))-
invariant operator on C∞(Ω(`)), then for every f, g ∈ H` a

2

T
(
f̃ ḡ
)

= T̃ f · ḡ = f̃ · Tg. (2.1.20)

Theorems 2.1.3 and 2.1.7 can be reformulated accordingly. For instance, (2.1.19) can be
rewritten as

< f, g >` a
2
=
∫

I`

T̃ f · ḡ dν(`)
α =

∫
I`

f̃ · Tg dν(`)
α . (2.1.21)

(ii) Formula (2.1.18) can be rewritten as

< f, g >` a
2
=
∫

K

(∫
D0(v`)

(Tf · ḡ)(k(z))dµ(`)
α (z)

)
dk
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2.2 Discrete Wallach points for symmetric tube domains using Fourier trans-

form

In the following we develop integral formulas for the inner products in the spaces H` a
2
(T (Ω)),

(where T (Ω) is the symmetric Siegel associated to D via the Cayley transform) in terms of the
Fourier transform of the functions. We begin with the relatively simple case of a Siegel domain
of type I. The results presented below for the discrete Wallach points {`a

2}
r−1
`=0 will be somewhat

analogous to our earlier results [AU97] for the continuous Wallach points λ > (r − 1)a
2 . The

development of the integral formulas for a general symmetric Siegel domain of type II requires
additional machinery, and will be treated in the next section.

Assume that Z is a JB∗-algebra with a unit e. The open unit ball of Z is holomorphically
equivalent to the tube domain

T (Ω) = X + iΩ

via the Cayley transform c(z) = i(e+ z)(e− z)−1, z ∈ D. T (Ω) is a symmetric Siegel domain
of type I. For any λ ∈W (D) the operator V (λ)f = (f ◦ c−1)(J c−1)λ/p maps the space Hλ(D)
isometrically onto a Hilbert space of analytic functions on T (Ω), denoted by Hλ(T (Ω)). The
inner product in Hλ(T (Ω)) is defined by

〈f, g〉λ = 〈f, g〉Hλ(T (Ω)) = 〈V (λ)−1
(f), V (λ)−1

g〉Hλ(D) . (2.2.1)

The description of Hλ(T (Ω)) is therefore equivalent to the description of Hλ(D).

The reproducing kernel of Hλ(T (Ω)) is

Kλ(z, w) = N
(z − w∗

i

)−λ
, z, w ∈ T (Ω) . (2.2.2)

Namely, for all z, w ∈ T (Ω)

(J(c−1)(z)λ/p h(c−1(z), c−1(w))−λ (J c−1(w))
λ/p

= N
(z − w∗

i

)−λ
.

It is known that for λ > p− 1 Hλ(T (Ω)) is the weighted Bergman space

Hλ(T (Ω)) = L2
a(T (Ω),mλ) = L2(T (Ω),mλ) ∩ {analytic function}

where
dmλ(z) = cλ dx N(2y)λ−pdy, z = x+ iy, x ∈ X, y ∈ Ω

and
cλ =

ΓΩ(λ)
πd ΓΩ(y − d

r )

Also, the Shilov boundary of T (Ω) is X := {z ∈ Z; z∗ = z}, and H d
r
(T (Ω)) coincides with

the Hardy space H2(X) (consisting of all analytic functions f in T (Ω) for which ‖ f ‖2
H2(X):=

sup
y∈Ω

∫
X

|f(x+ iy)|2dx <∞).

Using the Fourier transform (with respect to x) one obtains the following result. Here for
λ > (r − 1)g

2 we consider on Ω the measure

d σλ(v) = βλN(v)
d
r
−λ dv, βλ = (2π)−2dΓΩ(λ). (2.2.3)
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Proposition 2.2.1 [AU97; Proposition 6.1] Let λ > (r − 1) a
2 , and let f be a holomorphic

function in T (Ω). Then the following are equivalent:

(i) f ∈ Hλ(T (Ω));

(ii) The boundary values f(x) := lim
Ω3y→0

f(x + iy) exist almost everywhere on X, and the

Fourier transform f̂ of f(x) is supported in Ω and belongs to L2(Ω, σλ);
Moreover, the map f 7→ f̂ is an isometry of Hλ(T (Ω)) onto L2(Ω, σλ). Consequently, for all
f, g ∈ Hλ(T (Ω))

〈f, g〉λ =
∫
Ω

f̂ ĝ d σλ (2.2.4)

Our goal here is to extend Proposition 2.2.1 to the discrete Wallach points `a
2 , ` = 0, 1, . . . , r−

1. With respect to the fixed frame {ej}r
j=1 of minimal, pairwise orthogonal idempotents, we

denote u` =
∑`

j=1 ej , v` =
∑r

j=`+1 ej , 0 ≤ ` ≤ r − 1. Recall that the orbits of GL(Ω) on ∂Ω
are

∂`Ω = GL(Ω)(u`) = {ϕ(u`); ϕ ∈ GL(Ω)} (2.2.5)

= {x ∈ Ω; rank(x) = `}, ` = 0, 1, 2, . . . , r − 1

The following fundamental fact is established in [RV76] and [La87]. An alternative direct
proof will be given in Section 3.1 below.

Theorem 2.2.2 Let 0 ≤ ` ≤ r − 1. There exists a unique measure µ` on ∂`Ω, having the
following properties:

dµ`(ϕ(x)) = Det(ϕ)` a
2
/

d1
r dµ`(x), ∀ϕ ∈ GL(Ω) (2.2.6)

where d1 = dim(Z1(e)) = r(r − 1)a
2 + r, and∫

∂`Ω
e−<x,y> dµ`(y) = γ` N`(x)−` a

2 ∀x ∈ Ω, (2.2.7)

where γ` = (2π)`(r−`)a
2 ΓΩ(`)(`a

2 ).

Let GL(Ω) = LNΩA be the Iwasawa decomposition. Then it is known that the set

NΩA(u`) = {x ∈ ∂`(Ω); N`(x) > 0} (2.2.8)

is open and dense in ∂` Ω and µ`(∂` Ω \NΩA(u`)) = 0. The following result is established in
[La87].

Lemma 2.2.3 An element x ∈ ∂` Ω belongs to NΩA(u`) if and only if in its Peirce decompo-
sition relative to u` : x = x1 + x1/2 + x0, x1 is invertible in X1(u`) and

x0 = 2 v`(x1/2(x1/2 x
−1
1 )) (2.2.9)
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The expression of µ` in the coordinates (x1, x1/2) of x ∈ NΩA(u`) is

dµ`(x) = N`(x1)` a
2
− d

r dx1 dx1/2 (2.2.10)

The properties of µ` enable us to describe the space H` a
2
.

Lemma 2.2.4 Fix w ∈ T (Ω) and 0 ≤ ` ≤ r − 1. Then the Fourier transform with respect to
x of the function K

(` a
2
)

w (x) = K(` a
2
)(x,w) = N(x−w∗

i )−` a
2 is the following measure with support

∂` Ω:
̂
K

(` a
2
)

w (t) =
(2π)d

γ`
e−i〈w∗|t〉 dµ`(t) (2.2.11)

where γ` = (2π)`(r−`)a
2 ΓΩ(`)(a

2 ), as in Theorem 2.2.2.

Proof: Theorem 2.2.2 and the fact that Ω is a set of uniqueness for holomorphic functions on
T (Ω) imply that for all z ∈ T (Ω)∫

∂`Ω

ei〈z|t〉dµ`(t) = γ` N(
z

i
)` a

2

It follows that for all z, w ∈ T (Ω)

K(` a
2
)(z, w) =

(
N
(z − w∗

i

))−` a
2

=
1
γ`

∫
Ω`

e−〈
z−w∗

i
|t〉 dµ`(t) .

Hence
K

(` a
2
)

w (x) =
1
γ`

∫
∂`Ω

ei〈x|t〉e−i〈w∗|t〉 dµ`(t), w ∈ T (Ω) (2.2.12)

Thus K
(` a

2
)

w (x) is the inverse Fourier transform of the measure (2π)d

γ`
e−i〈w∗|t〉 dµ`(t), which is

supported on ∂` Ω, and (2.2.11) follows.

Lemma 2.2.4 can be reformulated by saying that
̂
K

(` a
2
)

w is a measure supported in ∂` Ω
which is absolutely continuous with respect to µ`, with Radon-Nikodym derivative

d
̂
K

(` a
2
)

w

dµ`
(t) =

(2π)d

γ`
e−i〈w∗|t〉 (2.2.13)

Lemma 2.2.5 For every z, w ∈ T (Ω) and 0 ≤ ` ≤ r − 1

〈d ̂
K

(` a
2
)

w

dµ`
,
d

̂
K

(` a
2
)

z

dµ`

〉
L2(∂`Ω,µ`)

=
(2π)2d

γ`
K(` a

2
)(z, w) (2.2.14)

Proof: Both sides of (2.2.14) are holomorphic in z and anti-holomorphic in w. Therefore it
suffices to prove (2.2.14) for z = w = u+ iv, u ∈ X, v ∈ Ω. In this case we obtain by Lemma
2.2.3 ∣∣∣∣∣

∣∣∣∣∣d K̂(` a
2
)

dµ`

∣∣∣∣∣
∣∣∣∣∣
2

L2(∂`Ω,µ`)

=
(2π)2d

γ2
`

∫
∂` Ω

∣∣∣e−i〈w∗|t〉
∣∣∣2 dµ`(t) =

(2π)2d

γ2
`

∫
∂` Ω

e−i〈2v|t〉 dµ`(t)

=
(2π)2d

γ`
N(2v)−` a

2 =
(2π)2d

γ`
K(` a

2
)(w,w) .
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Fix 0 ≤ ` ≤ r − 1 and consider the space

H(0)
` a
2
(T (Ω)) := span

{
K

(` a
2
)

w ; w ∈ T (Ω)
}
. (2.2.15)

We define a map V (0)
` on H(0)

` a
2
(T (Ω)) via

V
(0)
` f =

γ
1
2
`

(2π)d

d f̂

d µ`
, (2.2.16)

where f̂ is the Fourier transform of the restriction of f to the Shilov boundary X, and d f̂
d µ`

is the Radon-Nikodym derivative of the measure f̂ with respect to µ`, which exists in view of
Lemma 2.2.4 and the fact that f ∈ H(0)

` a
2
(T (Ω)).

Lemma 2.2.6 V
(0)
` is an isometry of H(0)

` a
2
(T (Ω)) into L2(∂` Ω, µ`), and it has a dense range.

Proof: : Let f =
n∑

j=1
cj K

(` a
2
)

wj ∈ H(0)
` a
2
(TΩ). Then

‖ f ‖2
` a
2
=

n∑
i,j=1

ci cj 〈K
(` a

2
)

wi ,K
` a
2

wj 〉` a
2

=
n∑

i,j=1

ci cj K
(` a

2
)(wj , wi) .

Also, Lemma 2.2.5 implies

‖ V (0)
` ‖2

L2(∂` Ω µ`)
=

γ`

(2π)2d

n∑
i,j=1

ci cj

〈d ̂
K

(` a
2
)

wi

dµ`
,
d

̂
K

(` a
2
)

wj

dµ`

〉
L2(∂` Ω,µ`)

=
n∑

i,j=1

ci cj K
(` a

2
)(wj , wi) =‖ f ‖2

` a
2

Thus V (0)
` is an isometry. The range of V (0)

` contains all the functions

V
(0)
`

(
γ

1/2
` K

(` a
2
)

w

)
(t) = e−i〈w∗|t〉, w ∈ T (Ω) .

The linear span of these functions is a self-adjoint sub-algebra of C(∂` Ω), which separates
the points of ∂` Ω. Therefore V (0)

` (H(0)
` a
2
(T (Ω)) is dense in C0(∂` Ω) by the Stone-Weierstrass

theorem. Since µ` is mutually absolutely continuous with respect to Lebesgue measure on ∂` Ω,
the density of V (0)

` (H(0)
` a
2
(T (Ω)) in L2(∂`Ω, µ`) follows now by standard arguments.

It follows from Lemma 2.2.6 that V (0)
` extends an isometry V` ofH(0)

` a
2
(T (Ω)) onto L2(∂` Ω, µ`).

The exact statement is the following result.

Theorem 2.2.7 Let 0 ≤ ` ≤ r − 1 , and let f be a holomorphic function in T (Ω). The
following conditions are equivalent:

(i) f ∈ H` a
2
(T (Ω));
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(ii) The boundary values f(x) = lim
Ω3y→0

f(x + iy) exist almost everywhere on X, the Fourier

transform f̂ of f(x) is a measure with support in ∂` Ω which is absolutely continuous with
respect to µ`, and the Radon-Nikodym derivative d f̂

d µ`
belongs to L2(∂`Ω, µ`). Moreover, the

map V` f = d f̂
d µ`

is an isometry of H` a
2
(T (Ω)) onto L2(∂`Ω, µ`). Thus for all f, g ∈ H(0)

` a
2
(T (Ω))

〈f, g〉` a
2

=
ΓΩ(`)(`a

2 )
(2π)2δ`

∫
∂` Ω

d f̂

d µ`
(t)

d ĝ

d µ`
(t) dµ`(t) (2.2.17)

where δ` = d− `(r − `) a
2 .

Expressing µ` via (2.2.10) on NΩA(u`), we obtain

〈f, g〉` a
2

=
ΓΩ(`)(`a

2 )
(2π)2δ`

∫
NΩ A(u`)

d f̂

d µ`
(t)

d ĝ

d µ`
(t) N`(t1)` a

2
− d

r dt1 dt2 (2.2.18)

Remark 2.2.8 In the case where λ > (r − 1) a
2 , (2.2.4) can be written in the form

〈f, g〉λ =
ΓΩ(λ)
(2π)2d

∫
Ω

d f̂

d µλ
(t)

d ĝ

d µλ
(t) N(t)λ− d

r dt (2.2.19)

(where f̂ , ĝ are considered as the measures f̂(t) dt and ĝ(t) dt). Thus (2.2.18) is the right
analogue of (2.2.19), and therefore of (2.2.4). It is an interesting problem to obtain (2.2.18)
from (2.2.19) by analytic continuation in the parameter λ.

2.3 The case of a symmetric Siegel domain of type II

Assume now that e is a maximal tripotent in Z which is not unitary. Thus Z1(e) + Z1/2(e)
and Z1/2(e) 6= 0. Thus

d1 := dim Z1(e) = r + r(r − 1)
a

2
, d1/2 := dim Z1/2(e) = rb

(where 1 ≤ b ∈ N). Z1(e) is a JB∗-algebra which operates on Z1/2(e) via

R(z)w = 2{z, e, η}, z ∈ Z1(e), η ∈ Z1/2(e) . (2.3.1)

R : Z1(e) → End (Z1/2(e)) is a monomorphism of Jordan ∗-algebras, where the involution in
End (Z1/2(e)) is induced by the given K-invariant inner product 〈ξ|η〉 (see [Lo75], Lemma 8.1,
p.75). Let us denote

F (ξ, η) = {ξ, η, e}, ξ, η ∈ Z1/2(e) . (2.3.2)

Then F : Z1/2(e) × Z1/2(e) → Z1(e) is sesquilinear, and F (ξ, ξ) ∈ Ω for all ξ ∈ Z1/2(e). We
denote also F (ξ) := F (ξ, ξ). Let us define τ : Z × Z → Z1(e) by

τ(z, w) =
z1 − w∗1

i
− 2F (z1/2, w1/2) (2.3.3)

31



where z = z1 + z1/2, w = w1 +w1/2 (z1, w1 ∈ Z(e)
1 and z1/2, w1/2 ∈ Z1/2(e)). For convenience

we denote τ(z) = τ(z, z). The associated Siegel domain of type II is

T (Ω) := {z ∈ Z; τ(z) ∈ Ω} . (2.3.4)

It is known that the Cayley transform

c(z) = i
e+ z1
e− z1

+
√

2 R((e− z1)−1)(z1/2), z = z1 + z1/2 (2.3.5)

maps the Cartan domain D (i.e. the open unit ball of Z) biholomorphically onto T (Ω).
Again, for λ ∈W (D) the operator V (λ)f = (f ◦ c−1)(J c−1)λ/p maps Hλ(D) isometrically onto
Hλ(T (D)), which is endowed with the inner product (2.2.1). Also, the reproducing kernel of
Hλ(T (D)) is

K(λ)(z, w) = N(τ(z, w))−λ, z, w ∈ T (Ω) . (2.3.6)

Our main goal here is to describe the inner product of Hλ(T (D)) concretely.

The Shilov boundary of T (Ω) is the set

H = {z ∈ T (Ω); τ(z) = 0} = {x+ i F (ξ) + ξ; x ∈ X1(e) + ξ ∈ Z1/2(e)}. (2.3.7)

Proposition 2.3.1 Let ξ, η ∈ Z1/2(e). Then for every v ∈ Ω

|〈F (η, ξ)|v〉| ≤ 〈F (ξ|v)〉1/2〈F (η|v)〉1/2 ≤ 1
2
〈F (ξ) + F (η)|v〉. (2.3.8)

Thus
ReF (η, ξ) ≤ 1

2
〈(F (ξ) + F (η)). (2.3.9)

The straightforward proof is based on the positivity of F (i.e. the fact that F (ξ) ∈ Ω for all
ξ ∈ Z1/2(e)), and it is omitted.

Corollary 2.3.2 For all z, w ∈ T (Ω)

Re (τ(z, w)) ≥ 1
2
(τ(z) + τ(w)) . (2.3.10)

In particular Re (τ(z, w)) ∈ Ω, and this is true even if z ∈ H and w ∈ T (Ω).

Proof: Using (2.3.9) we have

2Rτ(z, w) =
z1 − z∗1

i
+
w1 − w∗1

i
− 4ReF (z1/2, w1/2)

≥ z1 − z∗1
i

+
w1 − w∗1

i
− 2F (z1/2)− 2F (w1/2) = τ(z) + τ(w) .

For λ > (r−1) a
2 consider the measure dµλ(x) = N(x)λ− d1

r dx on Ω. For λ = `a
2 , 0 ≤ ` ≤ r−1,

let µλ := µ` be the Lassalle measure (see Theorem 2.2.2 and Section 3.1 below). Then for all
λ ∈W (D) ∫

Ω
e−〈y|x〉 dµλ(x) = γλN(y)−λ, (2.3.11)

with γλ = ΓΩ(λ) for λ > (r−1)a
2 , and γλ = γ` = (2π)`(`−1)a

2 ΓΩ(`)(`a
2 ) for λ = `a

2
, 0 ≤ ` ≤ r−1.
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Corollary 2.3.3 Let z, w ∈ T (Ω) and let λ ∈W (D). Then

K(λ)(z, w) =
1
γλ

∫
Ω
e−〈τ(z,w)|t〉 dµλ(t) . (2.3.12)

The formula holds also for z ∈ H and w ∈ T (Ω).

Proof: Since Re τ(z, w) ∈ Ω, the integral converges absolutely, and uniformly on compact
subsets of T (Ω) × T (Ω). Therefore, the integral is holomorphic in z and anti-holomorphic in
w. Since K(λ)(z, w) is also sesqui-holomorphic, it is enough to show that (2.3.12) holds for
z = w ∈ T (Ω). Writing z = x + iy + ξ (x ∈ X, (e), y ∈ Ω, ξ ∈ Z1/2(e)), and using (2.3.11),
we obtain ∫

Ω
e−〈τ(z)|t〉 dµλ(t) = γλN(τ(z))−λ = γλK

(λ)(z, z) .

Thus (2.3.12) is established for all z, w ∈ T (Ω). Letting τ(z) → 0 in (2.3.12) for fixed w ∈ T (Ω)
(i.e. z → H), we obtain (2.3.12) also for z ∈ H and w ∈ T (Ω).

Lemma 2.3.4 Let λ ∈W (D), fix w = u+iv+η ∈ T (Ω) (with u ∈ X1(e), v ∈ Ω, η ∈ Z1/2(e))
and ξ ∈ Z1/2(e), and consider the function

K
(λ)
w,ξ(x) = K(λ)(x+ i F (ξ) + ξ, w), x ∈ X1(e) . (2.3.13)

Then the Fourier transform of K(λ)
w,ξ, considered as measure, has support in Ω, and is given by

K
(λ)
w,ξ(t) =

(2π)d1

γλ
exp {−〈F (ξ) + v − 2F (ξ, η) + iu|t〉} dµλ(t). (2.3.14)

Proof: Using (2.3.12) for w ∈ T (Ω) and z = x+ i F (ξ) + ξ ∈ H, we obtain

K
(λ)
w,ξ(x) =

1
γλ

∫
Ω
ei〈x|t〉 e−〈F (ξ)+v−2 F (ξ,η)+iu|t〉 dµλ(t) .

Thus K(λ)
w,ξ is the inverse Fourier transform of the measure γ−1

λ exp {−〈F (ξ) + v − 2F (ξ, η) +
iu|t〉} dµλ(t), whose support is contained in Ω. From this (2.3.14) follows by inverting the
Fourier transform.

For λ > (r − 1) a
2 we consider on Ω× Z1/2(e) the measure

d σλ(t, ξ) = N(t)b dµλ(t) dξ = N(t)λ− d1
r

+b dt dξ . (2.3.15)

Lemma 2.3.5 For every w ∈ T (Ω)

∫ ∫
Ω×Z1/2(e)

∣∣∣K̂(λ)
w,ξ

dµλ
(t)
∣∣∣2 d σλ(t, ξ) =

(2π)rp

ΓΩ(λ)
K(λ)(w,w) . (2.3.16)
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Proof: Writing w = u+ iv + η as in Lemma 2.3.4, we obtain µλ from (2.3.14)

∫
Z1/2(e)

∣∣∣d K̂(λ)
w,ξ

dµλ
(t)
∣∣∣2 dξ =

(2π)2d1

γ2
λ

e−2〈v|t〉
∫

Z1/2(e)

e−2〈F (ξ)−2 Re F (ξ,η)|t〉 dξ

=
(2π)2d1

γ2
λ

e−2〈v|t〉 e2〈F (η)|t〉
∫

Z1/2(e)

e−2〈F (ξ−η)|t〉 dξ

=
(2π)2d1

γ2
λ

e−〈τ(w)|t〉
∫

Z1/2(e)

e−‖R(t1/2)ξ‖2 dξ

=
(2π)2d1+rb

γ2
λ

N(t)−b e−〈τ(w)|t〉 .

Here we used the well-known formula

〈x|{y, z, w}〉 = 〈{x, y, z}|w〉, ∀ x, y, z, w ∈ Z (2.3.17)

to obtain

‖ R(t1/2) ξ ‖2= 〈ξ|R(t) ξ〉 = 〈ξ|2{t, e, ξ}〉 = 2〈{ξ, ξ, e}|t〉 = 2〈F (ξ)|t〉 .

It follows that ∫ ∫
Ω×Z1/2(e)

∣∣∣d K̂(λ)
w,ξ

dµλ
(t)
∣∣∣2 dξ N(t)b dµλ(t) =

=
(2π)rp

γ2
λ

∫
Ω
e−〈τ(w)|t〉 dµλ(t)

=
(2π)rp

ΓΩ(λ)
·N(τ(w))−λ =

(2π)rp

ΓΩ(λ)
K(λ)(w,w) .

Corollary 2.3.6 Let λ > (r − 1)a
2 . For all z, w ∈ T (Ω)

∫
Ω

∫
Z 1

2
(e)

dK̂
(λ)
w,ξ

dνλ
(t)
dK̂

(λ)
z,ξ

dνλ
(t) dσλ(t, ξ) =

(2π)rp

ΓΩ(λ)
K(λ)(z, w). (2.3.18)

Also, considering K̂(λ)
w,ξ(t) as a function, we have∫

Ω

∫
Z 1

2
(e)
K̂

(λ)
w,ξ(t) K̂

(λ)
z,ξ (t) dξ N(t)

d
r
−λ dt =

(2π)rp

ΓΩ(λ)
K(λ)(z, w). (2.3.19)

Proof: Both sides of (2.3.18) are sesqui-holomorphic in (z, w) and coincide on the “diagonal”
z = w by Lemma 2.3.5. Hence they coincide for all z, w ∈ T (Ω). (2.3.19) is an obvious
consequence of (2.3.18), since

dK̂
(λ)
w,ξ

dνλ
(t) ·N(t)λ− d

r = K̂
(λ)
w,ξ(t). (2.3.20)

The generalization of Proposition 2.2.1 to Siegel domains of type II is the following result.
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Theorem 2.3.7 Let T (Ω) be a symmetric Siegel domain of type II, let λ > (r − 1)a
2 , and let

f be a holomorphic function on T (Ω). Then the following conditions are equivalent

(i) f ∈ Hλ(T (Ω));

(ii) The boundary values of f at points z = x+ iF (ξ) + ξ (x ∈ X1(e), ξ ∈ Z 1
2
(e)) of the Shilov

boundary H, i.e.

fξ(x) = f(x+ iF (ξ) + ξ) = lim
Ω3y→0

f(x+ iy + iF (ξ) + ξ)

exist almost everywhere, the Fourier transform f̂ξ(t) is supported in Ω̄, and∫
Ω

∫
Z 1

2
(e)
|f̂ξ(t)|2 dξ N(t)

d
r
−λ dt <∞.

Moreover, the operator Vλ : Hλ(T (Ω)) → L2(Ω× Z 1
2
(e), N(t)

d
r
−λ dt dξ) defined by

(Vλf)(t, ξ) =
ΓΩ(λ)

1
2

(2π)
rp
2

f̂ξ(t) (2.3.21)

is an isometry of Hλ(T (Ω)) onto L2(Ω×Z 1
2
(e), N(t)

d
r
−λ dt dξ). In particular, for every f, g ∈

Hλ(T (Ω))

< f, g >λ=
ΓΩ(λ)
(2π)rp

∫
Ω

∫
Z 1

2
(e)
f̂ξ(t) ĝξ(t) dξ N(t)

d
r
−λ dt. (2.3.22)

The proof uses (2.3.19) and is analogous to the proofs of Proposition 2.2.1 (i.e. Proposition
6.1 and Theorem 6.1 of [AU97]) and to the proof of Theorem 2.2.7. Therefore we omit it. We
remark that in view of (2.3.18),(2.3.22) can be written in the form

< f, g >λ=
ΓΩ(λ)
(2π)rp

∫
Ω

∫
Z 1

2
(e)

df̂ξ(t)
dνλ

dĝξ(t)
dνλ

dσλ(t, ξ), (2.3.23)

where σλ is the measure defined by (2.3.15).

We turn now to the case where λ = `a
2 , 0 ≤ ` ≤ r − 1 (and for simplicity denote ν` a

2
= ν`

and γ` a
2

= γ`). Let t ∈ ∂`Ω, then its support idempotent s(t) has rank `. Thus Z 1
2
(e) is the

direct sum
Z 1

2
(e) =

(
Z 1

2
(e) ∩ Z 1

2
(s(t))

)
+
(
Z 1

2
(e) ∩ Z0(s(t))

)
. (2.3.24)

Let us denote
∂`

(
T̂ (Ω)

)
= {t+ ξ; t ∈ ∂`Ω, ξ ∈ Z 1

2
(e) ∩ Z 1

2
(s(t))}. (2.3.25)

(The notation is chosen as to indicate that the Fourier transforms of functions in H` a
2
(T (Ω))

are supported in ∂`

(
T̂ (Ω)

)
). ∂`

(
T̂ (Ω)

)
can be viewed as a bundle whose base is ∂`Ω,

and the fiber over t ∈ ∂`Ω is Z 1
2
(e) ∩ Z 1

2
(s(t)). Let us consider on ∂`

(
T̂ (Ω)

)
the measure µ̃`,

defined by ∫
∂`

�
T̂ (Ω)

� fdµ̃` =
∫

∂`Ω

∫
Z 1

2
(e)∩Z 1

2
(s(t))

f(t+ ξ) dξ

 dµ`(t). (2.3.26)
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For every t ∈ ∂`Ω let det(t) = NX1(s(t))(t) be the determinant of t in the Jordan algebra

X1(s(t)). We define a measure σ` on ∂`

(
T̂ (Ω)

)
via

∫
∂`

�
T̂ (Ω)

� fdσ` =
∫

∂`Ω

∫
Z 1

2
(e)∩Z 1

2
(s(t))

f(t+ ξ) dξ

 det(t)bdµ`(t), (2.3.27)

i.e., dσ`(t, ξ) = det(t)bdµ̃`(t, ξ). Namely, on the base ∂`Ω we use the measure µ` and at the
fiber above t ∈ ∂`Ω we use the measure det(t)bdξ. Notice the analogy between σ` and σλ for
λ > (r − 1)a

2 .

Lemma 2.3.8 Let 0 ≤ ` ≤ r − 1 and fix w = u+ iv + η ∈ T (Ω) (where u ∈ X1(e), v ∈ Ω and
η ∈ Z 1

2
(e)). Then the Fourier transform (with respect to x) of K

(` a
2
)

w,ξ (x) = K
(` a

2
)

w (x+ iF (ξ)+ξ)

is a measure on ∂`

(
T̂ (Ω)

)
which is absolutely continuous with respect to µ̃`, and

d
̂
K

(` a
2
)

w

dµ̃`
(t, ξ) =

(2π)d1

γ`
exp

(
−

〈
iu− 2i=F (ξ, η) +

1
2
τ(w) + F (ξ − η)

∣∣∣∣∣t
〉)

. (2.3.28)

Moreover, with χ` = (2π)2d1+`b−`(r−`)a
2 · 2−`b we have

∫
∂`

�
T̂ (Ω)

�
∣∣∣∣∣∣d

̂
K

(` a
2
)

w

dµ̃`

∣∣∣∣∣∣
2

dσ` =
χ`

γ`
K(` a

2
)(w,w). (2.3.29)

Proof: Using Lemma 2.3.4 for λ = `a
2 , we see that for t ∈ ∂`Ω and ξ ∈ Z 1

2
(e),

̂
K

(` a
2
)

w,ξ (t) =
(2π)d1

γ`
exp (−〈iu+ v + F (ξ)− 2F (ξ, η)|t〉) dµ`(t).

It is easy to see that for all ξ, η ∈ Z 1
2
(e)

〈F (ξ, η)|t〉 = 〈F (P 1
2
(s(t))ξ, P 1

2
(s(t))η)|t〉. (2.3.30)

Hence, the measure
̂
K

(` a
2
)

w is supported in ∂`

(
T̂ (Ω)

)
, it is absolutely continuous with respect

to µ̃`, and its Radon-Nikodym derivative with respect to µ̃` is given by (2.3.28). Next, using
(2.3.30) we see that for fixed t ∈ ∂`Ω∫

Z 1
2
(e)∩Z 1

2
(s(t))

∣∣∣∣∣∣d
̂
K

(` a
2
)

w

dµ̃`
(t, ξ)

∣∣∣∣∣∣
2

dξ =
(2π)2d1

γ2
`

e−〈τ(w)|t〉
∫

Z 1
2
(e)∩Z 1

2
(s(t))

e−2〈F (ξ)|t〉dξ

=
(2π)2d1π`b

γ2
`

e−〈τ(w)|t〉 det(t)−b.

Hence, using Corollary 2.3.3, we obtain

∫
∂`

�
T̂ (Ω)

�
∣∣∣∣∣∣d

̂
K

(` a
2
)

w

dµ̃`
(t, ξ)

∣∣∣∣∣∣
2

dσ`(t, ξ) =
(2π)2d1π`b

γ2
`

∫
∂`Ω

e−〈τ(w)|t〉dµ`(t)

=
χ`

ΓΩ(`)(`a
2 )
N(τ(w))−` a

2 =
χ`

ΓΩ(`)(`a
2 )
K(` a

2
)(w,w).
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Corollary 2.3.9 Let 0 ≤ ` ≤ r − 1. For every z, w ∈ T (Ω),

∫
∂`

�
T̂ (Ω)

� d
̂
K

(` a
2
)

w

dµ̃`
· d

̂
K

(` a
2
)

z

dµ̃`
dσ` =

χ`

ΓΩ(`)(`a
2 )
K(` a

2
)(z, w). (2.3.31)

Proof: Both sides of (2.3.31) are holomorphic in z and anti-holomorphic in w, and they
coincide on the “diagonal” z = w. Hence they coincide for all z, w ∈ T (Ω).

Theorem 2.3.10 Let T (Ω) be a symmetric Siegel domain of type II, let 0 ≤ ` ≤ r − 1, and
let f be a holomorphic function on T (Ω). The following conditions are equivalent

(i) f ∈ H` a
2
(T (Ω));

(ii) The boundary values of f

fξ(x) = f(x+ iF (ξ) + ξ) = lim
Ω3y→0

f(x+ iy + iF (ξ) + ξ)

exist for almost all points x + iF (ξ) + ξ of the Shilov boundary H, the Fourier trans-
form f̂ξ(t) :=

∫
X1(e) e

−i〈x|t〉fξ(x)dx is a measure with support in ∂`

(
T̂ (Ω)

)
which is

absolutely continuous with respect to µ̃`, and the Radon-Nikodym derivative ∂f̂
∂µ̃`

belongs

to L2
(
∂`

(
T̂ (Ω)

)
, σ`

)
.

Moreover, the operator V` : H` a
2
(T (Ω)) → L2

(
∂`

(
T̂ (Ω)

)
, σ`

)
defined via

(V`f)(t, ξ) =
(

ΓΩ(`)(`a
2 )

χ`

) 1
2 ∂f̂

∂µ̃`
(t, ξ) (2.3.32)

is a surjective isometry. Thus, for all f, g ∈ H` a
2
(T (Ω)),

< f, g >` a
2

=
ΓΩ(`)(`a

2 )
χ`

∫
∂`

�
T̂ (Ω)

� ∂f̂

∂µ̃`
· ∂ĝ
∂µ̃`

dσ` (2.3.33)

=
ΓΩ(`)(`a

2 )
χ`

∫
∂`Ω

∫
Z 1

2
(e)∩Z 1

2
(s(t))

∂f̂

∂µ̃`
(t, ξ) · ∂ĝ

∂µ̃`
(t, ξ) det(t)b dξ

 dν`(t).

The proof of Theorem 2.3.10 uses Lemma 2.3.8 and Corollary 2.3.9, as well as the standard
arguments used in the proofs of Proposition 2.2.1 and Theorem 2.2.7; it is therefore omitted.

Although the bundle ∂`

(
T̂ (Ω)

)
and the measure σ` give natural and canonical description

of the space H` a
2

and its inner product (Theorem 2.3.10), they are not easy to use in some
concrete computation. We therefore develop now a formula for < f, g >` a

2
analogous to (2.3.33)

with more concrete space and measure, which are however not invariant.

Recall that u` =
∑`

j=1 ej , v` =
∑r

j=`+1 ej . We write

Z
( 1
2
)

1
2

= Z 1
2
(e) ∩ Z 1

2
(u`), Z

(0)
1
2

= Z 1
2
(e) ∩ Z0(u`). (2.3.34)
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Thus Z 1
2
(e) = Z

( 1
2
)

1
2

+ Z
(0)
1
2

. Recall also (see Lemma 2.2.3) that every t ∈ NΩA(u`) ⊂ ∂`Ω has

Peirce decomposition t = t1 +t 1
2
+t0, where t1 ∈ X1(u`) positive and invertible, t 1

2
∈ X 1

2
(u`) =

X 1
2
(v`), and t0 ∈ X1(v`) depends on t1 and t 1

2
via

t0 = 2v`(t 1
2
(t 1

2
t−1
1 )), (2.3.35)

where t−1
1 is the inverse of t1 in X1(u`).

Lemma 2.3.11 For every ξ = ξ 1
2

+ ξ0 ∈ Z 1
2

(with ξ 1
2
∈ Z

( 1
2
)

1
2

and ξ0 ∈ Z
(0)
1
2

) and every

t = t1 + t 1
2

+ t0 ∈ NΩA(u`),

2〈F (ξ)|t〉 = ‖R(t
1
2
1 )ξ 1

2
+R(t

− 1
2

1 )R(t 1
2
)ξ0‖2 (2.3.36)

where t
− 1

2
1 is the inverse of t

1
2
1 in X1(u`).

Proof: (2.3.36) will follow as soon as we prove that

2〈{ξ 1
2
, ξ 1

2
, u`}|t1〉 = ‖R(t

1
2
1 )ξ 1

2
‖2 (2.3.37)

2〈{ξ0, ξ 1
2
, u`}|t 1

2
〉 = 〈R(t

− 1
2

1 )R(t 1
2
)ξ0|R(t

1
2
1 )ξ 1

2
〉 (2.3.38)

2〈{ξ 1
2
, ξ0, v`}|t 1

2
〉 = 〈R(t

1
2
1 )ξ 1

2
|R(t

− 1
2

1 )R(t 1
2
)ξ0〉 (2.3.39)

and

2〈{ξ0, ξ0, v`}|t0〉 = ‖R(t
− 1

2
1 )R(t 1

2
)ξ0‖2. (2.3.40)

Indeed, by the “Peirce calculus” and orthogonality of the Peirce spaces

2〈F (ξ)|t〉 = 2〈{ξ 1
2

+ ξ0, ξ 1
2

+ ξ0, u` + v`}|t1 + t 1
2

+ t0〉
= 2〈{ξ 1

2
, ξ 1

2
, u`}|t1〉+ 2〈{ξ0, ξ0, v`}|t0〉

+2〈{ξ0, ξ 1
2
, u`}|t 1

2
〉+ 2〈{ξ 1

2
, ξ0, v`}|t 1

2
〉.

Using the fact that R : Z1(e) → End(Z 1
2
(e)) is a monomorphism of Jordan-∗-algebras, (see

[Lo75], Lemma 8.1, p. 75), we see that R|Z1(u`) : Z1(u`) → Z
( 1
2
)

1
2

is also a monomorphism of

Jordan-∗-algebras. In particular, for every ξ 1
2
∈ Z( 1

2
)

1
2

,

R(t
1
2
1 )R(t

1
2
1 )ξ 1

2
= R(t1)ξ 1

2
and R(t

− 1
2

1 )R(t
1
2
1 )ξ 1

2
= R(u`)ξ 1

2
= ξ 1

2
.

It follows that

‖R(t
1
2
1 )ξ 1

2
‖2 = 〈ξ 1

2
|R(t

1
2
1 )∗R(t

1
2
1 )ξ 1

2
〉 = 〈ξ 1

2
|R(t1)ξ 1

2
〉

= 2〈ξ 1
2
|{ξ 1

2
, u`, t1}〉, since t1 is orthogonal to v`

= 2〈{ξ 1
2
, ξ 1

2
, u`}|t1〉, by (2.3.17),
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and (2.3.37) is established. Using similar arguments and the fact that R(t 1
2
)Z(0)

1
2

⊂ Z
( 1
2
)

1
2

, we

obtain

〈R(t
1
2
1 )ξ 1

2
|R(t

− 1
2

1 )R(t 1
2
)ξ0〉 = 〈ξ 1

2
|R(t

1
2
1 )∗R(t

− 1
2

1 )R(t 1
2
)ξ0〉 = 〈ξ 1

2
|R(t 1

2
)ξ0〉

= 2〈ξ 1
2
|{ξ0, v`, t 1

2
}〉, since ξ0 is orthogonal to u`

= 2〈{ξ 1
2
, ξ0, v`}|t 1

2
〉.

This establishes (2.3.39). The proof of (2.3.38) is similar and is therefore omitted. To prove
(2.3.40), notice first that

‖R(t
− 1

2
1 )R(t 1

2
)ξ0‖2 = 〈ξ0|R(t 1

2
)R(t

− 1
2

1 )∗R(t
− 1

2
1 )R(t 1

2
)ξ0〉

= 〈ξ0|R(t 1
2
)R(t−1

1 )R(t 1
2
)ξ0〉.

Next, since R is a Jordan homomorphism, it preserves the “quadratic representation” operator
P (x) := 2M(x)2 −M(x2) (where M(x)y := xy = {x, e, y} ∀x, y ∈ Z1(e)). Thus

R(t 1
2
)R(t−1

1 )R(t 1
2
) = R(P (t 1

2
)t−1

1 )

= 2R(M(t 1
2
)2t−1

1 )−R(M(t21
2

)t−1
1 ).

Now, M(t 1
2
)2t−1

1 = t 1
2
(t 1

2
t−1
1 ) ∈ X1(u`) +X1(v`), hence

2R(M(t 1
2
)2t−1

1 )ξ0 = 4{t 1
2
(t 1

2
t−1
1 ), v`, ξ0}, since ξ0 is orthogonal to u`

= 4{v`(t 1
2
(t 1

2
t−1
1 )), v`, ξ0}

= 2{t0, v`, ξ0}, by (2.3.35).

Next, t21
2

∈ X1(u`) +X1(v`). Hence M(t21
2

)t−1
1 ∈ X1(u`), and therefore R(M(t21

2

)t−1
1 )ξ0 = 0. It

follows that

‖R(t
− 1

2
1 )R(t 1

2
)ξ0‖2 = 〈ξ0|2R(M(t 1

2
)2t−1

1 )ξ0 −R(M(t21
2

)t−1
1 )ξ0〉

= 2〈ξ0|{ξ0, v`, t0}〉 = 2〈{ξ0, ξ0, v`}|t0〉

and (2.3.40) is established. This completes the proof of Lemma 2.3.11.

Let us define a measure σ̃` on the set NΩA(u`)× Z
( 1
2
)

1
2

via

∫
NΩA(u`)

∫
Z

( 1
2 )

1
2

f dσ̃` =
∫

NΩA(u`)

∫
Z

( 1
2 )

1
2

f(t+ ξ 1
2
)dξ 1

2

N`(t1)bdµ`(t). (2.3.41)

Notice the analogy between σ̃` and σ` (and the fact that they use the same number of variables.
The advantage of σ̃` is that it uses fixed coordinates (t1, t1/2, ξ1/2) ∈ Ω1(u`)×X1/2(u`)×Z

(1/2)
1/2 .

Lemma 2.3.12 Let 0 ≤ ` ≤ r − 1 and w ∈ T (Ω). Then

∫
NΩA(u`)

∫
Z

( 1
2 )

1
2

∣∣∣∣∣∣∣∣
d

̂
K

(` a
2
)

w,ξ 1
2

dµ`
(t)

∣∣∣∣∣∣∣∣
2

dσ̃`(t, ξ 1
2
) =

χ`

ΓΩ(`)(`a
2 )
K(` a

2
)(w,w), (2.3.42)

where χ` is as in Lemma 2.3.8.
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Proof: Write w = u + iv + η with u ∈ X1(e), v ∈ Ω and η ∈ Z 1
2
, and fix t ∈ NΩA(u`) with

Peirce decomposition t = t1 + t 1
2

+ t0 with tα ∈ Xα(u`) and t0 given by (2.3.35). Then

∣∣∣∣∣∣∣∣
d

̂
K

(` a
2
)

w,ξ 1
2

dµ`
(t)

∣∣∣∣∣∣∣∣
2

=
(2π)2d1

γ2
`

e−〈τ(w)|t〉e
−2〈F (ξ 1

2
−η)|t〉

,

and in view of Lemma 2.3.11,∫
Z

(1/2)
1/2

e−2〈F (ξ1/2−η)|t〉 dξ1/2 =
∫

Z
(1/2)
1/2

e−‖R(t
1/2
1 )(ξ1/2−η1/2)−R(t

−1/2
1 )R(t1/2)η0‖2 dξ1/2

=
∫

Z
(1/2)
1/2)

e−‖z1/2‖2 d(R(t−1/2
1 )z1/2) = π`bN`(t1)−b .

Using this and the knowledge of the Laplace transform of µ` (see Theorem 2.2.2), we obtain

∫
N`A(u`)

∫
Z

(1/2)
1/2

∣∣∣∣∣d
̂
K

(` a
2
)

w,ξ1/2

dµ`
(t)

∣∣∣∣∣
2

dξ1/2 N`(t1)b dµ`(t) =

=
(2π)2d1+`b

γ2
`

∫
NΩA(u`)

e−〈τ(w)|t〉 dµ`(t)

=
(2π)2d1+`b

γ` 2`b
N(τ(w))−` a

2 =
χ`

ΓΩ(`)(`a
2 )
K(` a

2
)(w,w) .

Theorem 2.3.13 Let T (Ω) be a symmetric Siegel domain of type II. Let 0 ≤ ` ≤ r − 1, and
let f be a holomorphic function on T (Ω). Then the following conditions are equivalent:

(i) f ∈ H` a
2
(T (Ω));

(ii) The boundary values of f at points of the Shilov boundary H:

fξ(x) := f(x+ i F (ξ) + ξ) lim
Ω3y→0

f(x+ iy + i F (ξ) + ξ)

exist almost everywhere on H, the Fourier transform f̂ξ(t) is a measure with support in ∂` Ω

which is absolutely continuous with respect to µ`, and the Radon-Nikodym derivative d f̂ξ

d µ`
(t)

satisfies ∫
∂`(Ω)

∫
Z

(1/2)
1/2

∣∣∣∣∣d f̂ξ1/2

dµ`
(t)

∣∣∣∣∣
2

dσ̃` (t, ξ1/2) < ∞ .

Moreover, the operator V` : H` a
2
(T (Ω)) → L2(∂`Ω× Z

(1/2)
1/2 , σ̃`) defined via

(V f)(t, ξ1/2) =
(

ΓΩ(`)(`a
2 )

χ`

) 1
2 d f̂ξ1/2

dµ`
(t) (2.3.43)
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is a surjective isometry. Thus, for all f, g ∈ H` a
2
(T (Ω)),

〈f, g〉` a
2

=
ΓΩ(`)(`a

2 )
χ`

∫
NΩA(u`)

∫
Z

(1/2)
1/2

df̂ξ1/2

dµ`
(t)

dĝξ1/2

dµ`
(t) dξ1/2 N`(t1)` a

2
+b− d1

r dt1 dt1/2 . (2.3.44)

The proof relies on Lemma 2.3.12 and standard techniques (as in the proof of earlier Theorems
in this section); it is therefore omitted.

Remark 2.3.14 (1) ∂`( ̂(T (Ω)) should not be confused with the boundary orbit ∂`(T (Ω)) of
T (Ω):

∂`(T (Ω)) = {z ∈ T (Ω); τ(z) ∈ ∂`Ω} (2.3.45)

(2) There is a representation ϕ 7→ ϕ̃ of GL(Ω`) on Z1/2(e), defined on the generators of GL(Ω)
via

P̃ (x) = R(x), x ∈ Ω, and ˜̀= `, ` ∈ L .

One has
ϕ(F (ξ, η)) = F (ϕ̃(ξ), ϕ̃(η)), ϕ ∈ GL(Ω), ξ, η ∈ Z1/2(e).

GL(Ω) acts also on ∂`

(
T̂ (Ω)

)
via

ϕ.(t, ξ) = (ϕ(t), ϕ̃(ξ)), ϕ ∈ GL(Ω), t ∈ ∂`(Ω), ξ ∈ Z1/2(e) ∩ Z1/2(s(t)) .

In particular, ϕ̃(ξ) ∈ Z1/2(e)∩Z1/2(s(ϕ(t))). The proof of Lemma 2.3.8 yields the transforma-
tion formula

σ` ◦ ϕ = (Detϕ)(b+` a
2
)/

d1
r σ` ∀ϕ ∈ GL(Ω) (2.3.46)

as well as the Laplace transform formula∫
∂`(T̂ (Ω))

e−〈v+F (ξ)|t〉dσ`(t, ξ) = (2π)b`+(r−`)` a
2 ΓΩ(`)(`

a

2
) N(v)−` a

2 (2.3.47)

for all v ∈ Ω. These properties are analogous to the corresponding properties of µ` (see
Theorem 2.2.2).

2.4 Realization of Hα`
(T (Ω)) and Hα`

(D)by boundary integration

In this section our main concern will be the Wallach points

α` = `
a

2
+
d

r
, 0 ≤ ` ≤ r − 1. (2.4.1)

Let D be a Cartan domain and let T (Ω) be the associated symmetric Siegel domain (as in the
previous section). We assume that T (Ω) is of type II; the analysis in the type I case is easier
and will follow from the general case.

For 0 ≤ ` ≤ r − 1 consider the set

∂`(T (Ω)) = {z ∈ T (Ω) ; τ(z) ∈ ∂`Ω}. (2.4.2)
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Thus ∂`(T (Ω)) consists of all points

z = x+ iy + iF (ξ) + ξ, x ∈ X1(e), ξ ∈ Z 1
2
, y ∈ ∂`Ω. (2.4.3)

Hence ∂`(T (Ω)) is the direct sum of the Shilov boundary H and i ∂`Ω:

∂`(T (Ω)) = H + i ∂`Ω. (2.4.4)

We endow ∂`(T (Ω)) with the measure

dM
T (Ω)
` (z) = ε−1

` dx dξ dµ`(y), (2.4.5)

where z = x+ iy + iF (ξ) + ξ as in (2.4.3) and

ε` = 2d1−`2 a
2 πd+`(`−r)a

2
ΓΩ(`)(`a

2 )
ΓΩ(`)(α`)

. (2.4.6)

The reason for including the constant ε−1
` in the measure will be clarified by the next lemma.

Thus MT (Ω)
` is a constant multiple of the product measure MT (Ω)

` = mH × µ`, where

dmH(x+ iF (ξ) + ξ) = dx dξ (2.4.7)

is the Haar measure of H.

Lemma 2.4.1 Fix w = u+ iv + η ∈ T (Ω), with u ∈ X1(e), v ∈ Ω and η ∈ Z 1
2
(e). Then∫

∂`(T (Ω))

∣∣∣K(α`)
w

∣∣∣2 dMT (Ω)
` = K(α`)(w,w). (2.4.8)

Proof: Let z ∈ ∂`(T (Ω)) have the decomposition (2.4.3). Then∣∣∣K(α`)
w (z)

∣∣∣2 =
∣∣∣∣N(x− u+ 2=F (ξ, η) + i (y +

1
2
τ(w) + F (ξ − η)))

∣∣∣∣−2α`

.

Hence, as in [AU97, Theorem 6.3]∫
X

∣∣∣K(α`)
w (z)

∣∣∣2 dx =
∫
X

∣∣∣∣N (x+ i

(
y +

1
2
τ(w) + F (ξ − η)

))∣∣∣∣−2α`

dx

= cN

(
y +

1
2
τ(w) + F (ξ − η)

)−2α`+
d1
r

,

where d1 = dimRX1(e) = r(r − 1)a
2 + r and

c = 4d1−rα`πd1
ΓΩ(2α` − d1

r )
ΓΩ(α`)2

.

Next, using the formula

N(s)−2α`+
d1
r =

1
ΓΩ(2α` − d1

r )

∫
Ω

e−〈s|t〉N(t)2α`−2
d1
r dt
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with s = y + 1
2τ(w) + F (ξ − η), we obtain∫

Z 1
2
(e)

∫
X

∣∣∣K(α`)
w (z)

∣∣∣2 dxdξ =
c

ΓΩ(2α` − d1
r )

∫
Ω

e−〈y+ 1
2
τ(w)|t〉N(t)2α`−2

d1
r dt

∫
Z 1

2
(e)

e−〈F (ξ−η)|t〉dξ

=
(2π)rbc

ΓΩ(2α` − d1
r )

∫
Ω

e−〈y+ 1
2
τ(w)|t〉N(t)2α`−2

d1
r
−b dt.

Thus, ∫
∂`(T (Ω))

∣∣∣K(α`)
w (z)

∣∣∣2 dMT (Ω)
` (z) =

=
ε−1
` (2π)rbc

ΓΩ(2α` − d1
r )

∫
Ω

e−〈
1
2
τ(w)|t〉N(t)2α`−2

d1
r
−b dt

∫
∂`Ω

e−〈y|t〉 dµ`(y)

=
ε−1
` (2π)rbc γ`

ΓΩ(2α` − d1
r )

∫
Ω

e−〈
1
2
τ(w)|t〉N(t)α`−

d1
r dt

=
ε−1
` (2π)rbc γ` ΓΩ(α`)

ΓΩ(2α` − d1
r )

N

(
1
2
τ(w)

)−α`

= K(α`)(w,w).

For 0 ≤ ` ≤ r − 1 we consider the Hardy-type space

H2 (∂`(T (Ω))) = H2
(
∂`(T (Ω)), MT (Ω)

`

)
consisting of all holomorphic functions f on (T (Ω)) for which

‖f‖2
H2(∂`(T (Ω))) := sup

t∈Ω

∫
∂`(T (Ω))

|f(z + it)|2 dMT (Ω)
` (z) (2.4.9)

is finite. Standard arguments show that for f ∈ H2 (∂`(T (Ω))) the boundary values

f(z) := lim
Ω3t→0

f(z + it), z ∈ ∂`(T (Ω)) (2.4.10)

exist almost everywhere, and

‖f‖2
H2(∂`(T (Ω))) = lim

Ω3t→0

∫
∂`(T (Ω))

|f(z + it)|2 dMT (Ω)
` (z) (2.4.11)

=
∫

∂`(T (Ω))

|f(z)|2 dMT (Ω)
` (z).

See the proof of Theorem 6.3 in [AU97].

Theorem 2.4.2 For 0 ≤ ` ≤ r − 1 we have Hα`
= H2(∂`(T (Ω))), and moreover

‖f‖α`
= ‖f‖2

H2(∂`(T (Ω))), ∀f ∈ Hα`
(T (Ω)). (2.4.12)
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Thus, for all f, g ∈ Hα`

< f, g >α`
= lim

Ω3t→0

∫
∂`(T (Ω))

f(z + it) g(z + it) dMT (Ω)
` (z). (2.4.13)

Theorem 2.4.2 is the generalization of Theorem 6.3 of [AU97] to symmetric Siegel domains
of type II. The proof uses Lemma 2.4.1 (which yields (2.4.12) and (2.4.13) for functions in
Hα`

(T (Ω))(0) = span{K(α`)
w ; w ∈ T (Ω)}) as well as the standard arguments used in the proofs

of the theorems in Section 6 and in the proof of Theorem 6.3 in [AU97].

Notice that, in particular, the reproducing kernel of H2(∂`(T (Ω))) is

K(α`)(z, w) = N(τ(z, w))−α` , z ∈ ∂`(T (Ω)), w ∈ T (Ω). (2.4.14)

Consider the inverse Cayley transform c−1 : T (Ω) → D,

c−1(w) :=
w1 − ie

w1 + ie
+
√

2i R((w1 + ie)−1)w 1
2

(2.4.15)

(where w = w1 +w 1
2
, w1 ∈ Z1(e), w 1

2
∈ Z 1

2
(e)). c−1 extends to ∂(T (Ω)) = {w ∈ T (Ω); τ(w) ∈

∂Ω}, and it maps holomorphic boundary components of T (Ω) to holomorphic boundary com-
ponents of D, and preserves the rank of the boundary components. But not every holomorphic
boundary component B(v) = v + D0(v) of D is obtained in this way, since c(B(v)) = ∞ if
e− v is not invertible in Z1(e). Thus

c−1 (∂`(T (Ω))) =
⋃

v∈Sr−`
e−v invertible

B(v) $ ∂r−`(D). (2.4.16)

On the set c−1 (∂`(T (Ω))) consider the measure

dMD
` (z) := |Jc(z)|−

2α`
p dM

T (Ω)
` (c(z)). (2.4.17)

Then MD
` is absolutely continuous with respect to the volume measure on c−1 (∂`(T (Ω))).

Since ∂r−`(D)\c−1 (∂`(T (Ω))) is a lower dimensional subset of ∂r−`(D), its volume measure is
zero. This consideration enables us to consider MD

` as an absolutely continuous measure on all
of ∂r−`(D) in a unique way. In Section 3.5 this boundary measure will be constructed directly
and analyzed in more detail.

The Hardy space

H2(∂r−`(D)) = H2
(
∂r−`(D), MD

`

)
(2.4.18)

is the space of all holomorphic functions in D for which

‖f‖2
H2(∂r−`(D)) := sup

0<t<1

∫
∂r−`(D)

|f(tz)|2 dMD
` (z) (2.4.19)

is finite. By standard arguments, for each f ∈ H2(∂r−`(D)) the radial limit (here ft(z) :=
f(tz))

f1(z) = lim
t→1−

ft(z), z ∈ ∂r−`(D) (2.4.20)
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exists in L2(∂r−`(D)) and almost everywhere on ∂r−`(D). Moreover

‖f‖H2(∂r−`(D)) = lim
t→1−

‖ft‖L2(∂r−`(D))‖f1‖L2(∂r−`(D)). (2.4.21)

Recall that the operator
f 7→ (f ◦ c)(Jc)α`/p

maps Hα`
(T (Ω)) isometrically onto Hα`

(D). Therefore Theorem 2.4.2 enables us to obtain the
following result.

Theorem 2.4.3 For 0 ≤ ` ≤ r − 1 we have Hα`
(D) = H2

(
∂r−`(D), MD

`

)
and

‖f‖α`
= ‖f‖H2(∂r−`(D), MD

` ) ∀f ∈ Hα`
(D). (2.4.22)

Thus, for all f, g ∈ Hα`
(D)

< f, g >α`
= lim

t→1−

∫
∂r−`(D)

f(tz) g(tz) dMD
` (z). (2.4.23)

Theorems (2.1.3) and (2.4.3) combine to yield the following result.

Theorem 2.4.4 Let 0 ≤ ` ≤ r − 1 and, as before, let α` = `a
2 + d

r . Then there exists an
operator T on C∞(D ∪ ∂r−`(D)) which is GL(Ω(`))-invariant, so that

(i) For every f ∈ H` a
2
(D) with Peter-Weyl expansion f =

∑
m(`) fm(`), one has

Tf =
∑
m(`)

(α`)m(`)

(`a
2 )m(`)

fm(`) . (2.4.24)

(ii) For all f, g ∈ H` a
2
(D),

< f, g >` a
2

= < Tf, g >H2(∂r−`(D))= lim
t→1−

∫
∂r−`(D)

T (fg) dMD
` . (2.4.25)

The volume measure m on ∂r−`(D) is given by∫
∂r−`(D)

f dm =
∫

Sr−`

dνr−`(v)
∫

D0(v)

fv(z) dmv(z) (2.4.26)

where mv is the Lebesgue measure on D0(v). Let us consider the Radon-Nikodym derivative

ω(z) =
dMD

`

dm
(z), z ∈ ∂r−`(D).

Then formula (2.4.25) can be written in the form

< f, g >` a
2

=
∫

Sr−`

dνr−`(v)
∫

D0(v)

Tv(fv)(z) gv(z)ω(v + z) dmv(z)

=
∫

Sr−`

dνr−`(v)
∫

D0(v)

Tv(fv gv)(z)ω(v + z) dmv(z). (2.4.27)
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3 Semi-invariant Measures on Boundary Orbits

The main results of Section 2 are mostly expressed as boundary integration formulas for in-
variant inner products, using canonical ”semi-invariant” measures supported on the various
group orbits in the boundary of the underlying domain. In the following Sections we analyze
these boundary measures and their main features (existence, polar decomposition etc.) in
more detail, using only the basic properties of Jordan algebras and triples. In the unbounded
setting of Siegel domains and tube domains, the boundary measures were constructed by Las-
salle [La87], but here we emphasize the corresponding polar decomposition which makes the
symmetry properties more transparent. In the bounded case, the relevant boundary measures
are also constructed from first principles avoiding extensive use of the Cayley transform. As
an application we obtain an independent proof of the main result of Section 2.4 in the bounded
setting (cf. Theorem 3.4.6).

3.1 General formulas for homogeneous spaces

In the following we consider locally compact groups G, with left Haar measure denoted by µG

and modulus function denoted by ∆G. For f ∈ Cc(G) let

(`g f)(x) := f(g−1x) (3.1.1)

and
(δg f)(x) := f(xg) (3.1.2)

denote left and right translation by g ∈ G, resp. Throughout, we will use the concept of
”quotient measures” on homogeneous spaces [Bou63, p. 44, Définition 1].

Proposition 3.1.1 Let G be a locally compact group, with closed subgroups P ⊂ Q ⊂ G ⊃ K

such that G = KQ and
∆K(k) = ∆K∩Q(k) ∀ k ∈ K ∩Q (3.1.3)

and
∆Q(p) = ∆P (p) ∀ p ∈ P . (3.1.4)

i) Let χ : G→ R> be a continuous function satisfying

δpχ =
∆P (p)
∆G(p)

χ ∀ p ∈ P (3.1.5)

and
`kχ = χ ∀ k ∈ K . (3.1.6)

Then the (well-defined) quotient measures

µK/K∩Q :=
µK

µK∩Q
on K/K ∩Q ,

µQ/P :=
µQ

µP
on Q/P , (3.1.7)

µG/P :=
χµG

µP
on G/P (3.1.8)
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yield a decomposition∫
G/P

dµG/P f =
∫

K/K∩Q

dµK/K∩Q(k K ∩Q) ·
∫

Q/P

dµQ/P (q P ) f(kq P )
χ(q) ∆G(q)

∆Q(q)
(3.1.9)

for all f ∈ Cc(G/P ).

ii) Let χ be a positive character of G satisfying

χ(p) =
∆P (p)
∆G(p)

∀ p ∈ P (3.1.10)

and
χ(k) = 1 ∀ k ∈ K . (3.1.11)

Then (3.1.5) and (3.1.6) hold, and µG/P is relatively invariant with multiplier χ.

Proof: By (3.1.3) and (3.1.6), K/K ∩Q carries a K-invariant measure

µK/K∩Q =
µK

µK∩Q
. (3.1.12)

Since G/Q ≈ K/K ∩Q, there exists a function ρ : G→ R> satisfying

δq ρ =
∆Q(q)
∆G(q)

ρ ∀ q ∈ Q (3.1.13)

giving rise to the quotient measure
ρ µG

µQ
= µK/K∩Q (3.1.14)

[Bou63, p. 56, Lemme 5]. By K-invariance, we have

`kρ = ρ ∀ k ∈ K . (3.1.15)

It follows that

ρ(g) =
∆Q(q)
∆G(q)

(3.1.16)

whenever g ∈ G, q ∈ Q satisfy g−1K = q−1K. By (3.1.4) and [Bou63, p. 59, Corollaire],
Q/P carries a Q-invariant measure

µQ/P =
µQ

µP
. (3.1.17)

In view of (3.1.4) and (3.1.13), the quotient measure ρµG/µP on G/P exists and, by [Bou63,
p.63, Proposition 12], there is a decomposition∫

G/P

d

(
ρµG

µP

)
f =

∫
G/Q

dµK/K∩Q(g Q)
∫

Q/P

dµQ/P `g−1 f =

∫
G/Q

dµK/K∩Q(g Q)
∫

Q/P

dµQ/P (q P ) f(g q P ) = (3.1.18)

∫
K/K∩Q

dµK/K∩Q (k K ∩Q)
∫

Q/P

dµQ/P (q P ) f(k q P )
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for f ∈ Cc(G/P ). By (3.1.5), (3.1.13) and (3.1.4) we have

δp
χ

ρ
=
δp χ

δp ρ
=

∆P (p)χ ·∆G(p)
∆G(p) ∆Q(p) ρ

=
χ

ρ
(3.1.19)

for all p ∈ P ⊂ Q. Therefore, χ/ρ is a function on G/P and we have

µG/P =
χ µG

µP
=
χ

ρ

ρ µG

µP
(3.1.20)

as measures on G/P . Applying (3.1.18) to f χ/ρ ∈ Cc(G/P ) one obtains∫
G/P

dµG/P f =
∫

G/P

d

(
ρ µG

µP

)
χ

ρ
f =

∫
K/K∩Q

dµK/K∩Q(k K ∩Q)
∫

Q/P

dµQ/P (qP ) ϕ(k q P )
χ(kq)
ρ(kq)

. (3.1.21)

Since χ(kq) = χ(q) by (3.1.6) and

ρ(kq) =
∆Q(q)
∆G(q)

ρ(k) =
∆Q(q)
∆G(q)

ρ(e) (3.1.22)

by (3.1.13) and (3.1.15), the assertion follows if we normalize ρ(e) = 1.

Proposition 3.1.2 Let g ∈ G, q ∈ Q satisfy g−1K = q−1K. Then the Radon-Nikodym
density is given by

dµK/K∩Q(gQ)
dµK/K∩Q(Q)

=
∆Q(q)
∆G(q)

. (3.1.23)

Proof: By [Bou63, p. 54, Lemme 4] we have∫
K/K∩Q

d
(
g−1
∗ µK/K∩Q

)
f =

∫
K/K∩Q

dµK/K∩Q `g f =
∫

K/K∩Q

d

(
ρ µG

µQ

)
`g f (3.1.24)

=
∫

K/K∩Q

d

(
ρ µG

µQ

)
`g−1 ρ

ρ
f =

∫
K/K∩Q

dµK/K∩Q

`g−1 ρ

ρ
f .

Therefore
dµK/K∩Q(g xQ)
dµK/K∩Q(xQ)

=
`g−1 ρ

ρ
(xQ) =

ρ(gx)
ρ(x)

(3.1.25)

for all x ∈ G. Since g = kq for some k ∈ K, we obtain

dµK/K∩Q(g Q)
dµK/K∩Q(Q)

= ρ(g) = ρ(kq) = (δq ρ)(k) =
∆Q(q)
∆G(q)

ρ(k) =
∆Q(q)
∆G(q)

. (3.1.26)
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Proposition 3.1.3 Let G be a (not necessarily connected) Lie group having a compact sub-
group K such that G/K is connected. Let

g =
∑
α

⊕
gα = g0 ⊕

∑
α 6=0

⊕
gα (3.1.27)

be a direct sum decomposition of g satisfying

[gα, gβ ] ⊂ gα+β ∀ α, β (3.1.28)

and
g0 = a⊕m , (3.1.29)

with
m ⊂ k . (3.1.30)

Let χ : G→ R> be a character satisfying

dχ|gα = 0 ∀ α 6= 0 (3.1.31)

and
tr adg(γ) = c dχ(γ) ∀ γ ∈ a (3.1.32)

where c is a fixed constant. Then

∆G(g) = χ(g)−c ∀ g ∈ G . (3.1.33)

Proof: By (3.1.28) we have
tr adg(γ) = 0 (3.1.34)

for all γ ∈ gα such that α 6= 0. Consider the character

η(g) := χ(g)c ∆G(g) . (3.1.35)

Since η(K) ⊂ R> is a compact subgroup it follows that η|K = 1. With (3.1.30) this implies

dη|m = 0 . (3.1.36)

Applying [Dieu74, (19.16.4.3)] we have

∆G(exp γ)−1 = Det Adg(exp γ) = Det exp adg(γ) = exp tr adg(γ) (3.1.37)

for all γ ∈ g. Therefore
dη(γ) = c · dχ(γ)− tr adg(γ) , (3.1.38)

and hence dη|gα = 0 by (3.1.31) and (3.1.34), whereas dη|a = 0 by (3.1.32). In view of (3.1.27)
it follows that dη = 0. Now let g ∈ G. Since G/K is connected, there exists k ∈ K such that
g k−1 ∈ G0 (identity component). Writing

g k−1 = exp (γ1) · · · exp (γn) (3.1.39)

for suitable γ1, . . . , γn ∈ g, we obtain

η(g) = η(exp (γ1)) · · · η(exp (γn)) η(k) = exp (dη(γ1)) · · · exp (dη(γn)) = 1 . (3.1.40)

In the following these elementary results will be applied to various homogeneous spaces related
to Jordan algebras and symmetric domains.
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3.2 Boundary orbits of symmetric cones

Let X be an irreducible euclidean Jordan algebra of rank r, with open positive cone Ω and
unit element e. Then

G := GL(Ω) (3.2.1)

is a reductive Lie group, with Lie algebra denoted by g = gl(Ω). A maximal compact subgroup
is

K = Aut (X) = {g ∈ G : g(e) = e} , (3.2.2)

with Lie algebra k = aut (X) consisting of all Jordan algebra derivations. Using the Jordan
triple product, put

(u � v∗)x := {u v∗ x} (3.2.3)

for all u, v, x ∈ X. Let ∆ be the norm function (”determinant”) of X, and let (x|y) be the
K-invariant inner product, normalized by (e|e) = r.

Lemma 3.2.1 χ(g) := ∆(ge) defines a character of G, with differential

dχ(γ) = (e|γe) ∀ γ ∈ g . (3.2.4)

Proof: Since ∆(gx) = ∆(ge) ∆(x) for all g ∈ G and x ∈ X, we have ∆(g1 g2 e) = ∆(g1 e) ∆(g2 e)
for all g1, g2 ∈ G. Thus χ is a character. Since ∆′(e)x = (e|x) for all x ∈ X, its differential is

dχ(γ) =
d

dt

∣∣∣
t=0

χ(exp tγ) =
d

dt

∣∣∣
t=0

∆(exp (tγ) e) = ∆′(e) γ e = (e|γ e) . (3.2.5)

Fix a frame {e1, . . . , er} of minimal orthogonal idempotents in X, and consider the associated
Peirce decomposition

X =
∑

1≤i≤j≤r

⊕
Xij . (3.2.6)

With respect to the Cartan subspace

a := 〈ek �
∗
ek : 1 ≤ k ≤ r〉 (real span) , (3.2.7)

g has a real root decomposition

g = a ⊕ m ⊕
∑

1≤i<j≤r

(
g+

j−i ⊕ g−j−i

)
(3.2.8)

where

m := {δ ∈ aut (X) : δ ek = 0 ∀ 1 ≤ k ≤ r}
g+

j−i := {a �
∗
ei = ej �

∗
a : a ∈ Xij} , (3.2.9)

g−j−i := {a �
∗
ej = ei �

∗
a : a ∈ Xij} .

For m ∈ {i, j} we have

[ek �
∗
ek, em �

∗
a] = {ek

∗
ek em} �

∗
a− em � {a ∗ek ek}∗

= δmk em �
∗
a−

δik + δjk
2

em�
∗
a =

(
δmk −

δik + δjk
2

)
em�

∗
a , (3.2.10)
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as follows from the Jordan triple identity [U87]. Therefore gκ
j−i is the root space corresponding

to the root κ
2 (δj − δi) defined by

κ
δj − δi

2
(ek �

∗
ek) := κ

δjk − δik
2

∀ k . (3.2.11)

We now turn to the Iwasawa decomposition

G = GL (Ω) = Aut (X) AN (3.2.12)

of the (reductive) Lie group GL (Ω). The Lie algebra of N is given by

n =
∑

1≤i<j≤r

g+
j−i . (3.2.13)

Similarly,
n =

∑
1≤i<j≤r

g−j−i . (3.2.14)

AN and AN act (simply) transitively on Ω.

Lemma 3.2.2 Let γ =
∑
k

γk ek �
∗
ek ∈ a. Then

tr ada⊕ n(γ) = tr adn(γ) =
a

2

∑
k

γk (2k − r − 1) . (3.2.15)

Proof: Counting with multiplicity, we obtain

tr adn(γ) = a
∑
i<j

γj − γi

2
=
a

2

∑
k

γk (2k − r − 1) (3.2.16)

Proposition 3.2.3 AN has the modulus function

∆A N (g) = ∆−2 ρ(g e) , (3.2.17)

where
ρk :=

a

4
(2k − r − 1) . (3.2.18)

Proof: For 1 ≤ k ≤ r, the minors ∆k satisfy

∆k(gx) = ∆k(ge) ∆k(x) (3.2.19)

for all g ∈ AN . Therefore ∆k (g1 g2 e) = ∆k (g1 e) ∆k (g2 e) for all g1, g2 ∈ AN , showing that

χk(g) := ∆k (ge) (3.2.20)

defines a character of AN . For γ ∈ a ⊕ n, its differential is

dχk(γ) =
d

dt
|t=0 χk (exp (tγ)) =

d

dt
|t=0 ∆k (exp (tγ) e) = ∆′

k(e)(γe) = (e1 + · · ·+ ek|γ e) (3.2.21)
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since ∆′
k(e)x = (e1 + · · ·+ ek|x) for all x ∈ X. It follows that

χ(g) := ∆−2 ρ(g e) = χr(g)−
a
2

(r−1)
∏
k<r

χk(g)a (3.2.22)

defines a character of AN , with differential

dχ(γ) =
∑
k<r

a dχk(γ)−
a

2
(r − 1) · dχr(γ) =

a
∑
k<r

(e1 + · · ·+ ek|γ e)−
a

2
(r − 1)(e|γ e) = −a

2

r∑
k=1

(2k − r − 1)(ek|γ e) . (3.2.23)

If i < j and a ∈ Xij , then γ := ej �
∗
a ∈ g+

j−i and (ek|γ e) = (ek|{ej
∗
a e}) = 1

2 (ek|a) = 0. If

γ =
∑
j
γj ej �

∗
ej ∈ a then γ e =

∑
j
γj ej and Lemma 3.2.2 implies

dχ(γ) = −a
2

r∑
k=1

(2k − r − 1) γk = −tr ada⊕ n(γ) . (3.2.24)

Now apply Proposition 3.1.3 to G := AN and K := {1}.

Fix 0 ≤ ` < r and put u` = e1 + · · ·+ e`. Then

∂` Ω := {x ∈ ∂ Ω : rank (x) = `} = G · u` (3.2.25)

is a G-orbit, i.e., we may identify

G/P 3 g P 7→
≈
g u` ∈ ∂` Ω , (3.2.26)

where
P := {p ∈ G : p u` = u`} (3.2.27)

is a closed subgroup of G, with Lie algebra

℘ := {γ ∈ g : γ u` = 0} . (3.2.28)

Let Π` denote the compact manifold of all idempotents of rank ` in X. For u ∈ Π`, let Ω1(u)
denote the positive cone of the euclidean Jordan algebra X1(u) of rank `. Then

∂` Ω =
·⋃

u∈Π`

Ω1(u) (disjoint union). (3.2.29)

Since G permutes the fibres of (3.2.29), there exists a (non-linear) action g 7→ g̃ of G on Π`

satisfying
gΩ1(u) = Ω1(g̃(u)) (3.2.30)

for all u ∈ Π`. This action is transitive, and hence there exists a diffeomorphism

G/Q 3 g Q 7→ g̃(u`) ∈ Π` (3.2.31)
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where
Q = {q ∈ G : q̃(u`) = u`} = {q ∈ G : q u` ∈ Ω1(u`)} (3.2.32)

is a closed subgroup of G containing P , with Lie algebra

q = {γ ∈ g : γ u` ∈ X1(u`)} . (3.2.33)

If q ∈ Q∩K then q u` ∈ Π`∩Ω1(u`) = {u`} and hence q ∈ P . Thus Q∩K = P ∩K. Evaluating
at u`, we obtain

δ u` =
∑
k≤`

δ ek = 0 for all δ ∈ m , (3.2.34)

whereas for a ∈ Xij we have

{ek e∗k u`} =

{
ek k ≤ `

0 k > `
,

{ej
∗
a u`} =

{
a
2 ` ≥ i < j

0 ` < i < j
, (3.2.35)

{a ∗
ej u`} =

{
a
2 i < j ≤ `

0 i < j > `
.

It follows that

℘ = m ⊕ 〈ek �
∗
ek : k > `〉 ⊕

∑
`<i<j

g+
j−i ⊕

∑
i<j>`

g−j−i , (3.2.36)

q = ℘ ⊕ 〈ek �
∗
ek : k ≤ `〉 ⊕

∑
1≤i<j≤`

(
g+

j−i ⊕ g−j−i

)
. (3.2.37)

This implies q ⊃ a ⊕ n and Q ⊃ AN .

Lemma 3.2.4 Q has the modulus function

∆Q(q) = ∆(q e)(`−r) a/2 ∆r−` (q e)r a/2 . (3.2.38)

Proof: χ(q) := ∆(q e)`−r ∆r−`(q e)r defines a character of AN ⊂ Q, with differential

dχ(γ) = (`− r) ∆′(e) γ e+ r ∆r−`(e) γ e

= (`− r)(e|γe) + r(e`+1 + · · ·+ er|γe) (3.2.39)

for all γ ∈ a ⊕ n. If γ = a �
∗
ej ∈ n, then γe = a

2 and dχ(γ) = 0 since i < j. If γ =∑
k

γk ek �
∗
ek ∈ a then γe =

∑
k

γk ek and

dχ(γ) = (`− r)
∑
k≤r

γk + r
∑
k>`

γk = (`− r)(γ1 + · · ·+ γ`) + `
∑
k>`

γk . (3.2.40)

On the other hand, (3.2.36) and (3.2.36) imply

tr adqγ =
∑

`<i<j

a
2 (γj − γi) +

∑
i<j>`

a
2 (γi − γj)±

∑
1≤i<j≤`

a
2 (γj − γi) (3.2.41)
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= a
2

∑
i≤`<j

(γj − γi) = a
2

[
(γ1 + · · ·+ γ`)(r − `)− (γ`+1 + · · ·+ γr) `

]
= −a

2 dχ(γ).

By Proposition 3.1.3 it follows that

∆Q(g) = χ(g)a/2 (3.2.42)

for all g ∈ AN ⊂ Q. Now let q ∈ Q. Then qe = ge for some (unique) g ∈ AN , and hence
q = g k, where k ∈ Q ∩K. It follows that

∆Q(q) = ∆Q(g k) = ∆Q(g) ∆Q(k) = ∆Q(g) = χ(g)a/2

= ∆(g e)(`−r) a/2 ∆r−`(g e)r a/2 = ∆(qe)(`−r) a/2 ∆r−`(qe)r a/2 . (3.2.43)

Corollary 3.2.5 The Jacobian of g ∈ G, for the action (3.2.30) at u` ∈ Π` is

ρΠ`
(g) = ∆(g−1 e)(r−`) a/2 ∆r−`(g−1 e)−r a/2 . (3.2.44)

Proof: Write g = k q with k ∈ K, q ∈ Q. Then g−1e = q−1 k−1 e = q−1 e and hence

ρΠ`
(g) = ρΠ`

(k q) = (δq ρΠ`
)(k) =

∆Q(q)
∆G(q)

ρΠ`
(k) =

∆Q(q) = ∆−1
Q (q−1) = ∆(q−1 e)(r−`) a/2 ∆r−`(q−1 e)−r a/2 . (3.2.45)

Theorem 3.2.6 For 0 ≤ ` < r, define the character

χ∂`Ω(g) := ∆(g e)` a/2 (3.2.46)

on G. Then the (well-defined) quotient measure

µ∂` Ω := χ∂` Ω · µG/µP (3.2.47)

on G/P ≈ ∂` Ω is relatively G-invariant with multiplier χ∂` Ω and has a decomposition∫
∂` Ω

dµ∂` Ω f =
∫
Π`

du

∫
Ω1(u)

dµΩ1(u)(ξ) ∆(ξ + e− u)r a/2f(ξ) (3.2.48)

for all f ∈ Cc(∂` Ω). Here du denotes the K-invariant measure on Π`, and

dµΩ1(u)(ξ) = dµX1(u)(ξ) ∆(ξ + e− u)−1−a(`−1)/2 (3.2.49)

is the invariant measure on Ω1(u).

Proof: For every q ∈ Q, the restriction
∨
q := q|X1(u`) belongs to GL (Ω1(u`)) and we may

identify

Q/P 3 q P 7→
≈
q u` =

∨
q u` ∈ Ω1(u`) (3.2.50)
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in an equivariant way. It follows that Q/P carries a Q-invariant measure

d

(
µQ

µP

)
(q P ) = dµΩ1(u`)(q u`) , (3.2.51)

and [Bou63, p.59, Corollaire 2] implies

∆P (p) = ∆Q(p) ∀ p ∈ P . (3.2.52)

Since p e = p(u` + e− u`) = p u` + p(e− u`) = u` + p(e− u`), we have ∆r−`(pe) =
∆r−`(u` + p(e− u`)) = ∆(u` + p(e− u`)) = ∆(pe). Hence P has the modulus function

∆P (p) = ∆(p e)` a/2 ∀ p ∈ P . (3.2.53)

Since G is unimodular, Proposition 3.1.1 (ii) shows that µ∂` Ω is a well-defined K-invariant
measure on G/P ≈ ∂` Ω which is relatively G-invariant with multiplier χ∂` Ω. For q ∈ Q we
have

∆(q e) = ∆(q∗ e) = ∆`(q∗ e) ∆r−`(q e) (3.2.54)

and
∆`(q∗ e) = ∆(q u` + e− u`) . (3.2.55)

With (3.2.38), this implies

χ∂` Ω(q)
∆Q(q)

=
[

∆(q e)
∆r−` (qe)

]r a/2

= ∆ (q u` + e− u`)r a/2 . (3.2.56)

Applying Proposition 3.1.1, we obtain∫
∂` Ω

dµ∂` Ω f =
∫
K

dk

∫
Ω1(u`)

dµΩ1(u`)(x) ∆(x+ e− u`)r a/2 f(kx) (3.2.57)

for all f ∈ Cc(∂` Ω). Putting u = k u` ∈ Π` and ξ = kx ∈ Ω1(u), the assertion follows.

3.3 Boundary orbits of symmetric Siegel domains

For an irreducible hermitian Jordan triple Z, with maximal tripotent e, let Z = U ⊕ V be the
Peirce decomposition

U = Z1(e), V = Z1/2(e) (3.3.1)

with respect to e. Put X := {x ∈ U : x∗ = x} and define τ : Z → X by

τ(u, v) :=
u+ u∗

2
− Φ(v, v) , (3.3.2)

where Φ(v1, v2) := {v1v∗2e} for all v1, v2 ∈ V . Then τ(e) = e, and

D := {(u, v) ∈ Z : τ(u, v) ∈ Ω} (3.3.3)

is a symmetric Siegel domain. Let Aut(D) be the holomorphic automorphism group of D.
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For (a, b) ∈ iX × V , the ”quasi-translations”

ta,b(u, v) := (u+ a+ Φ(b, b) + 2Φ(v, b), v + b) (3.3.4)

belong to Aut(D), since τ(ta,b(u, v)) = τ(u, v). Moreover, the relation

ta1,b1 ta2,b2 = ta1+a2+Φ(b2,b1)−Φ(b1,b2),b1+b2 (3.3.5)

implies that
Σ := {ta,b : a ∈ iX, b ∈ V } (3.3.6)

is a nilpotent (hence unimodular) subgroup of Aut(D), with Haar measure

dµΣ(ta,b) = dµiX(a) dµV (b) (3.3.7)

given by the product of the Lebesgue measures on iX and V . The group GL(D) := Aut(D)∩
GL(Z) consists of all linear transformations

h(u, v) = (h1u, h2v) (3.3.8)

on Z = U⊕V such that h1 ∈ GL(Ω) ⊂ GL(U) (by complexification), and h2 ∈ GL(V ) satisfies

Φ(h2v, h2b) = h1 Φ(v, b) (3.3.9)

for all v, b ∈ V . Therefore
τ(hz) = h1 τ(z) (3.3.10)

for all z ∈ D, and the homomorphism

GL(D) 3 h 7→ h1 ∈ GL(Ω) (3.3.11)

has a compact kernel. Using [Bou63, p.61, Corollaire] it follows that

∆GL(D)(h) = ∆GL(Ω)(h1) = 1 (3.3.12)

for all h ∈ GL(D). For a ∈ iX, b ∈ V and h = h1 × h2 ∈ GL(D), we have

h ta,b h
−1 = th1a,h2b . (3.3.13)

Thus we may consider the semidirect product

Aff(D) = Σ ·GL(D) ⊂ Aut(D) (3.3.14)

consisting of all affine transformations of D. The symmetry se of D around e satisfies

seh
−1se = h∗ ∈ GL(D) (3.3.15)

for all h ∈ GL(D). This can also be written as

(seh
−1se)′(0) = h∗ ∈ GL(Z) . (3.3.16)
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Lemma 3.3.1 For h ∈ GL(D) the automorphism ih(t) := h−1t h of Σ has the modulus

∆Σ(ih) = ∆(he)−n/r (3.3.17)

where ∆ is the Jordan determinant of X.

Proof: The commuting diagram

ta,b ∈ Σ
i−1
h−→ Σ

↑ ≈↑ ↑≈

(a, b) ∈ iX × V −→
h1×h2

iX × V

(3.3.18)

implies

∆Σ(i−1
h ) = ∆iX×V (h1 × h2) = |DetX h1| · |DetV h2|2

= |DetX h1| ·
|DetZ h|2

|DetUh1|2
=
|DetZ h|2

|DetX h1|
. (3.3.19)

Since h1 ∈ GL(Ω), we have
|DetX h1| = ∆(he)n1/r , (3.3.20)

where n1 = dim U . On the other hand, every g ∈ Aut(D) satisfies

|DetZ g′(e)|2 = ∆(τ(g(e)))p (3.3.21)

since ∆(τ(z, w))−p is the Bergman kernel of D. Therefore

|DetZ h|2 = ∆(τ(he))p = ∆(he)p . (3.3.22)

Since p = n1+n
r , it follows that

∆Σ(i−1
h ) =

∆(he)p

∆(he)n1/r
= ∆(he)n/r . (3.3.23)

Corollary 3.3.2 Aff(D) has the modulus function

∆Aff(D)(g) = ∆(τ(g(e)))−n/r . (3.3.24)

Proof: Write g ∈ Aff(D) as g = th, with t ∈ Σ and h ∈ GL(D). Since τ(g(e)) = h1e, [Bou63,
p.61, Corollaire], (3.3.7) and Lemma 3.3.1 imply

∆Aff(D)(g) = ∆Σ(ih) ∆GL(D)(h) = ∆Σ(ih) = ∆(h1e)−n/r = ∆(τ(g(e)))−n/r (3.3.25)

We now turn to the Iwasawa decomposition

Aut(D) = NAK (3.3.26)
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of the (semi-simple) Lie group Aut(D). We have

NA = Σ · (NA ∩GL(D)) ⊂ Aff(D) (3.3.27)

(semi-direct product), and

NA ∩GL(D) 3 h 7→ h1 ∈ NΩAΩ (3.3.28)

is a group isomorphism.

Proposition 3.3.3 NA has the modulus function

∆NA(g) = ∆−2ρ(τ(g(e))) , (3.3.29)

where 2ρk = a(k − 1) + 1 + b.

Proof: Write g = th ∈ NA, with t ∈ Σ and h ∈ NA ∩ GL(D). Then τ(g(e)) = τ(he) = h1e

and [Bou63, p.61, Corollaire] and Lemma 3.3.1 and Proposition 3.2.3 imply

∆NA(th) = ∆Σ(ih) ∆NA∩GL(D)(h)

= ∆(h1e)−n/r ∆−2ρΩ(h1e) = ∆−n
r
−2ρΩ

(h1e) (3.3.30)

with n
r + 2(ρΩ)k = 1 + a

2 (r − 1) + b+ a
2 (2k − r − 1) = a(k − 1) + 1 + b.

Fix 0 ≤ ` < r and put u` = e1 + · · ·+ e`. Then

∂`D = Σ · ∂`Ω = {tx : t ∈ Σ, x ∈ ∂`Ω} = Aff(D)(u`) (3.3.31)

is an Aff(D)-orbit, i.e., we may identify

Aff(D)/P 3 gP 7→ g(u`) ∈ ∂`D , (3.3.32)

where
P := {g ∈ Aff(D) : g(u`) = u`} (3.3.33)

is a closed subgroup of Aff(D), with Lie algebra

℘ := {γ ∈ aff(D) : γ(u`) = 0} . (3.3.34)

For u ∈ Π`, let
D1(u) = Σ1(u) · Ω1(u) ⊂ Z0(e− u) (3.3.35)

denote the Siegel domain associated with u ∈ Z0(e− u). Here

Σ1(u) := {ta,b ∈ Σ : a ∈ iX1(u), b ∈ V1/2(u)} (3.3.36)

is a closed subgroup of Σ. One can show [U85], that

∂`D =
·⋃

u∈Π`

D1(u) (disjoint union) . (3.3.37)
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Theorem 3.3.4 Let µ∂`Ω denote the Lassalle measure on ∂`Ω (cf. Theorem 3.2.6). Then the
product measure

dµ∂`D(tx) := dµΣ(t) · dµ∂`Ω(x) (3.3.38)

on ∂`D is relatively invariant under Aff(D), with multiplier

χ∂`D(g) := ∆(τ(g(e)))α` (3.3.39)

for all g ∈ Aff(D). Here α` = n
r + ` a

2 . Moreover there is a decomposition∫
∂`D

dµ∂`D f =
∫
Π`

du

∫
Σ/Σ1(u)

dt

∫
D1(u)

dµD1(u)(ω) ∆(τ(ω + e− u))α` f(tω) (3.3.40)

for all f ∈ Cc(∂`D), where

dµD1(u)(ω) = dµZ0(u−e)(ω) ·∆(τ(ω + e− u))−(2+a(`−1)+b) (3.3.41)

is the invariant measure on D1(u).

Proof: Write g ∈ Aff(D) as g = t0 h, where t0 ∈ Σ and h = h1×h2 ∈ GL(D). Then we have∫
∂`D

d(g−1
∗ µ∂`D) f =

∫
∂`D

dµ∂`D f ◦ g−1 =
∫
Σ

dµΣ(t)
∫

∂`Ω

dµ∂`Ω(x) f(h−1 t−1
0 tx) =∫

Σ

dµΣ(t)
∫

∂`Ω

dµ∂`Ω(x) f(h−1 tx) =
∫
Σ

dµΣ(t)
∫

∂`Ω

dµ∂`Ω(x) f(ih(t)h−1
1 x) =

∆(h1e)` a/2
∫
Σ

dµΣ(t)
∫

∂`Ω

dµ∂`Ω(x) f(ih(t)x) =

∆(h1e)` a/2 ∆−1
Σ (ih)

∫
Σ

dµΣ(t)
∫

∂`Ω

dµ∂`Ω(x) f(tx) =

∆(h1e)` a/2 ∆(h1e)n/r
∫

∂`D

dµ∂`D f = ∆(h1e)α`
∫

∂`D

dµ∂`D f .

(3.3.42)

Since τ(g(e)) = τ(t0(he)) = τ(he) = h1e, it follows that µ∂`D is Aff(D)-relatively invariant
with multiplier given by (3.3.39). For every u ∈ Π`, we have

Z0(u− e) = Z1/2(u)⊕ Z1(u) = Σ1(u) ·X1(u) (3.3.43)

where
Σ1(u) := {ta,b : a ∈ iX1(u), b ∈ V1/2(u)} . (3.3.44)

Therefore the respective Lebesgue measures satisfy

dµZ0(u−e)(tξ) = dµΣ1(u)(t) dµX1(u)(ξ) . (3.3.45)

Similarly,
D1(u) = Σ1(u) · Ω1(u) (3.3.46)

and

dµD1(u)(tξ) ∆(τ(tξ + e− u))α` =

dµZ0(u−e)(tξ) ∆(τ(tξ + e− u))α`−(2+a(`−1)+b) =

dµΣ1(u)(t) dµX1(u)(ξ) ∆(ξ + e− u)−1+a
2

(r−`+1) = (3.3.47)

dµΣ1(u)(t) dµΩ1(u)(ξ) ∆(ξ + e− u)ar/2
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since τ(tξ + e− u) = ξ + e− u. Therefore Theorem 3.2.6 yields∫
∂`D

dµ∂`D f =
∫
Σ

dµΣ(t)
∫

∂`Ω

dµ∂`Ω(x) f(tx) =

∫
Σ

dµΣ(t)
∫
Π`

du

∫
Ω1(u)

dµΩ1(u)(ξ) ∆(ξ + e− u)ar/2 f(tξ) =

∫
Π`

du

∫
Σ/Σ1(u)

dṫ

∫
Σ1(u)

dµΣ1(u)(t0)
∫

Ω1(u)

dµΩ1(u)(ξ) ∆(ξ + e− u)ar/2 f(t t0 ξ) (3.3.48)

=
∫
Π`

du

∫
Σ/Σ1(u)

dṫ

∫
D1(u)

dµD1(u)(ω) ∆(τ(ω + e− u))α` f(tω)

by putting ω = t0 ξ.

3.4 Boundary orbits of Cartan domains

Let Z be an irreducible hermitian Jordan triple of rank r, with open unit ball B. Then

G := Aut (B) (3.4.1)

is a semi-simple Lie group, with Lie algebra

g = aut (B) (3.4.2)

consisting of all completely integrable holomorphic vector fields

f(z)
∂

∂z
(3.4.3)

on B, under the commutator[
f(z)

∂

∂z
, g(z)

∂

∂z

]
= (f ′(z) g(z)− g′(z) f(z))

∂

∂z
. (3.4.4)

For a ∈ Z, we abbreviate

a− {∗a} := (a− {z ∗a z}) ∂

∂z
∈ g . (3.4.5)

G has a maximal compact subgroup

K = Aut (Z) = {g ∈ G : g(0) = 0} (3.4.6)

consisting of linear transformations (in fact, Jordan triple automorphisms), and its Lie algebra

k = {λz ∂

∂z
: λ ∈ aut (Z)} (3.4.7)

consists of all Jordan triple derivations λ regarded as linear vector fields λz ∂
∂z . Since, by

(3.4.4), for all λ, µ ∈ aut (Z) [
λz

∂

∂z
, µz

∂

∂z

]
= [λ, µ] z

∂

∂z
(3.4.8)
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we will identify λ ∈ aut (Z) with the corresponding linear vector field λz ∂
∂z . Then

[λ, a− {∗a}] = λa− {(λa)∗} (3.4.9)

for all λ ∈ k and a ∈ Z. Fix a frame {e1, . . . , er} of tripotents in Z, and consider the associated
Peirce decomposition

Z =
∑

0≤i≤j≤r

⊕
Zij . (3.4.10)

With respect to the Cartan subspace

a := 〈 ek − { ∗ek} : 1 ≤ k ≤ r 〉 (real span) , (3.4.11)

we obtain a real root decomposition

g = m⊕ a⊕
∑

1≤i<j≤r

(
g+

j−i ⊕ g−j−i

)
⊕

∑
0≤i≤j≤r

(
g+

j+i ⊕ g−j+i

)
. (3.4.12)

Here
m := {δ ∈ aut (Z) : δek = 0 ∀ 1 ≤ k ≤ r} (3.4.13)

and, for κ = ± and ε = ±1, gκ
j−ε i consists of all vector fields of the form

γ = a− {∗a}+ κ #ij(ej �
∗
a−a �

∗
ej)

with a ∈ Zij and
∗
a = εa (if i > 0). Here

#ij :=

{
2 i 6= j

1 i = j .
(3.4.14)

For the commutator, one obtains

[ek − { ∗ek}, γ] = 2(ek �
∗
a−a �

∗
ek) + κ #i,j(b− {

∗
b}) , (3.4.15)

where b = {a ∗
ej ek} − {ej

∗
a ek}. We claim that for all 1 ≤ k ≤ r

#i,j({a
∗
ej ek} − {ej

∗
a ek}) = (δj

k − ε δi
k) a (3.4.16)

and
2(ek �

∗
a−a �

∗
ek) = (δj

k − ε δi
k) #i,j (ej�

∗
a−a �

∗
ej) . (3.4.17)

For k /∈ {i, j}, this is trivial. Now assume k ∈ {i, j}. Assume first 0 ≤ i < j ≤ r. Then

2({a ∗
ej ej} − {ej

∗
a ej}) = 2{a ∗

ej ej} = a , (3.4.18)

(3.4.17) is trivial for k = j, and in case i ≥ 1

2({a ∗
ej ei} − {ej

∗
a ei}) = −2{ej

∗
a ei} = − ∗

a = −ε a (3.4.19)

and
2(ei �

∗
a−a �

∗
ei) = 2(

∗
a�

∗
ej −ej � (

∗
a)∗) = 2 ε(a �

∗
ej −ej �

∗
a) . (3.4.20)
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Thus (3.4.16) and (3.4.17) hold if i < j. Now let 1 ≤ i = j ≤ r. Then ε = −1 and hence

{a ∗
ej ej} − {ej

∗
a ej} = a− ∗

a = (1− ε) a (3.4.21)

and (3.4.17) is trivial for k = j since 1− ε = 2. Thus (3.4.16) and (3.4.17) hold for i = j also.
It follows that

[ek − { ∗ek}, γ] = κ(δj
k − ε δi

k) γ (3.4.22)

showing that gκ
j−ε i is the root space belonging to the root κ(δj − ε δi) defined by

κ(δj − ε δi)(ek − { ∗ek}) := κ(δj
k − ε δi

k) . (3.4.23)

Lemma 3.4.1 Let G = Aut (B) and, for some o ∈ B ⊂ Z, put

P := {p ∈ G : p(o) = o} . (3.4.24)

Then
χ(p) := |DetZ p′(o)| (3.4.25)

is a character of P , with differential

dχ(γ) = Re trZ γ′(o) ∀ γ ∈ ℘ . (3.4.26)

Proof: The group G acts on the compact dual space M of B which contains Z as an open
dense subset. Since o ∈ Z it follows that Z ∩ p−1(Z) is an open neighborhood of o for each
p ∈ P . Therefore p′(o) ∈ GL (Z) is well-defined, and

(p1p2)′(o) = p′1(o) p
′
2(o) (3.4.27)

for all p1, p2 ∈ P since p2(o) = o. Thus (3.4.25) defines a character of P . Now let γ ∈ ℘. Then
gt(z) := expB (tγ)(z) satisfies

∂gt(z)
∂t

= γ(gt(z)) (3.4.28)

and hence
∂g′t(o)
∂t

= (γ ◦ gt)′(o) = γ′(gt(o)) g′t(o) = γ′(o) g′t(o) . (3.4.29)

It follows that (expB tγ)′(o) = expZ tγ
′(o) and therefore

χ(expB(tγ)) = |DetZ expB(tγ)′(o)| = |Det expZ tγ
′(o)|

= |exp trZ tγ′(o)| = exp (Re trZ t γ′(o)) . (3.4.30)

Hence
dχ(γ) =

d

dt

∣∣∣
t=0

χ(expB (tγ)) = Re trZ γ
′(o) . (3.4.31)

Fix 0 ≤ ` < r and put u` − e = −e`+1 − · · · − er. Consider the G-orbit

∂`B := G(u` − e) ⊂ ∂B . (3.4.32)
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Then there is a diffeomorphism

G/P 3 g P 7→ g(u` − e) ∈ ∂`B , (3.4.33)

where
P := {p ∈ G : p(u` − e) = u` − e} 3 g P 7→ g(u` − e) ∈ ∂`B (3.4.34)

is a closed subgroup of G, with Lie algebra

℘ := {γ ∈ g : γ(u` − e) = 0} . (3.4.35)

Let Sr−` denote the compact manifold of all tripotents of rank r− ` in Z. For every v ∈ Sr−`,
the unit ball

B0(v) ⊂ Z0(v) (3.4.36)

is a symmetric ball of rank `, and there is a fibration

∂`B =
·⋃

v∈Sr−`

v +B0(v) . (3.4.37)

Since G permutes the fibres of (3.4.37), there exists an action g 7→ g̃ of G on Sr−` satisfying

g(v +B0(v)) = g̃(v) +B0(g̃(v)) (3.4.38)

for all v ∈ Sr−`. This action is transitive, and hence there exists a diffeomorphism

G/Q 3 gQ 7→ g̃(u` − e) ∈ Sr−` (3.4.39)

where

Q := {q ∈ G : q̃(u` − e) = u` − e}
= {q ∈ G : q(u` − e) ∈ u` − e+B0(u` − e)} (3.4.40)

is a closed subgroup containing P , with Lie algebra

q := {γ ∈ g : γ(u` − e) ∈ Z0(u` − e)} . (3.4.41)

If q ∈ Q ∩ K then q ∈ Sr−` ∩ (u` − e + B0(u` − e)) = {u` − e} and hence q ∈ P . Thus
Q ∩K = P ∩K. Evaluating at u` − e, we have

δ(u` − e) = −
∑
k>`

δ ek = 0 for all δ ∈ m , (3.4.42)

whereas

ek − {(u` − e)
∗
ek (u` − e)} =

{
ek k ≤ `

0 k > `
(3.4.43)

and

a− {(u` − e)
∗
a (u` − e)}+ κ #i,j ({ej

∗
a (u` − e)} − {a ∗

ej (u` − e)} =
a− ∗

a+2κ
(
−a∗

2 + a
2

)
= (1 + κ)(1− ε) a ` < i < j

a− ∗
a+κ(− ∗

a+a) = (1 + κ)(1− ε) a ` < i = j

a+ 2κ
(

a
2

)
= (1 + κ) a 0 ≤ i ≤ ` < j

a 0 ≤ i ≤ j ≤ `

(3.4.44)
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for all a ∈ Zij with
∗
a = εa (if i > 0). It follows that

℘ = m⊕ 〈ek − { ∗ek} : k > `〉 ⊕
∑

i<j>`

g−j−i ⊕
∑

`<i<j

g+
j−i ⊕

∑
0≤i≤j>`

g+
j+i , (3.4.45)

g = ℘⊕ 〈ek − { ∗ek} : k ≤ `〉 ⊕
∑

1≤i<j≤`

(
g+

j−i ⊕ g−j−i

)
⊕

∑
0≤i≤j≤`

(
g+

j+i ⊕ g−j+i

)
. (3.4.46)

This implies q ⊃ a⊕ n and Q ⊃ AN . Therefore

Q/Q ∩K ≈ Q(0) = AN(0) = B = G(0) , (3.4.47)

showing that G = QK.

Lemma 3.4.2 P has the modulus function ∆P (p) = |DetZ p′(u` − e)|2α`/p.

Proof: Since P fixes u` − e, Lemma 3.4.1 shows that χ(p) := |DetZ p′(u` − e)| defines a
character of P , with differential

dχ(γ) = Re trZ γ′(u` − e) (3.4.48)

for all γ ∈ ℘. Now let

γ = a− {∗a}+ κ #ij (ej �
∗
a−a �

∗
ej) ∈ ℘ , (3.4.49)

where a ∈ Zij . Then

γ′(u` − e) = −2 (u` − e) �
∗
a+κ #ij (ej �

∗
a−a �

∗
ej) (3.4.50)

satisfies
2
p
Re trZ γ′(u` − e) = −2(u` − e|a) + κ #ij ((ej |a)− (a|ej)) (3.4.51)

since trZ u � v∗ = p
2 (u|v) for all u, v ∈ Z. This vanishes if i < j. For i = j > `, we have

κ = −1 and

2
p
Re trZ γ′(u` − e) = 2(ej |a)− ((ej |a)− (a|ej)) = (ej |a) + (a|ej) = 0 (3.4.52)

since a∗ = −a. Now let γ =
∑
k

γk(ek − { ∗ek}) ∈ a . Then

γ′(u` − e) = −2
∑

k

γk (u` − e) �
∗
ek (3.4.53)

satisfies
2
p
Re trZ γ′(u` − e) = −2

∑
k

γk (u` − e|ek) = 2
∑
k>`

γk . (3.4.54)

Since tr ad℘ γ = tr adq γ = −2α`
∑
k>`

γk, Proposition 3.1.3 implies ∆P (p) = χ(p)2 α`/p provided

P/P ∩K is connected. Since P ∩K = Q ∩K, and Q/Q ∩K ≈ B and Q/P ≈ B0(u` − e) are
simply connected, this follows from the exact homotopy sequence applied to the fibration

P/P ∩K → Q/P ∩K → Q/P . (3.4.55)
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For g ∈ G, v ∈ Sr−` and ζ ∈ B0(v), we write

g(v + ζ) = g̃(v) + gv(ζ) , (3.4.56)

where
gv : B0(v) → B0(g̃(v)) (3.4.57)

is biholomorphic. Specializing to v = u` − e, we obtain a group homomorphism

Q 3 q 7→ qu`−e ∈ Aut B0(u` − e) (3.4.58)

determined by
q(u` − e+ ζ) = u` − e+ qu`−e(ζ) (3.4.59)

for all ζ ∈ B0(u` − e).

Proposition 3.4.3 Q has the modulus function

∆Q(q) =

[
|DetZ q′(u` − e)2/p|

∆(qu`−e(0), qu`−e(0))

]α`

. (3.4.60)

Proof: The identification

Q/P 3 q P 7→ qu`−e(0) ∈ B0(u` − e) (3.4.61)

yields a Q-invariant measure

d

(
µQ

µP

)
(q P ) = dµB0(u`−e)(qu`−e(0)) . (3.4.62)

By [Bou63, p.59, Corollaire 2], this implies

∆Q(p) = ∆P (p) ∀ p ∈ P . (3.4.63)

The Lie algebra aut B0(u` − e) consists of all vector fields

X = ({a b∗ ζ} − {b a∗ ζ}+ c− {ζ c∗ ζ}) ∂

∂ζ
(3.4.64)

on B0(u` − e), where a, b, c ∈ Z0(u` − e) are arbitrary. Moreover, the vector field

Y := ({a b∗ z} − {b a∗ z}+ c− {z c∗ z}) ∂

∂z
(3.4.65)

on B belongs to q, and there is a Lie algebra homomorphism

π : aut B0(u` − e) → q (3.4.66)

satisfying π(X) = Y for all a, b, c ∈ Z0(u` − e) ⊂ Z. Since aut B0(u` − e) is a simple Lie
algebra, it follows that

d∆Q

(
({a b∗ z} − {b a∗ z}+ c− {z c∗ z}) ∂

∂z

)
= 0 . (3.4.67)

65



For c ∈ Z0(u` − e), define

qc := expB

(
(c− {z c∗ z}) ∂

∂z

)
∈ exp q ⊂ Q . (3.4.68)

Then (3.4.67) implies
∆Q (qc) = 1 . (3.4.69)

Since

qc
u`−e = expB0(u`−e)

(
(c− {ζ c∗ ζ}) ∂

∂ζ

)
∈ Aut B0(u` − e) , (3.4.70)

it follows that for every q ∈ Q there is a (unique) c ∈ Z0(u`− e) such that qu`−e(0) = qc
u`−e(0).

Then q(u` − e) = u` − e+ qu`−e(0) = u` − e+ qc
u`−e(0) = qc(u` − e), showing that q = qc p for

some p ∈ P . Using (3.4.63) and Lemma 3.4.2 we obtain

|DetZ q′(u` − e)|2 α`/p

∆Q(q)
=
|DetZ (qc p)′(u` − e)|2 α`/p

∆Q(qc p)
=
|DetZ (qc)′(u` − e)|2 α`/p ∆P (p)

∆Q(qc) ∆Q(p)

=
|DetZ (qc)′(u` − e)|2 α`/p

∆Q(qc)
= |DetZ (qc)′(u` − e)|2 α`/p . (3.4.71)

For 0 ≤ θ < 1 we have θ(u` − e) ∈ B and

qc(θ (u`−e)) = expB (c−{∗c})(θ (u`−e)) = θ (u`−e)+qc
u`−e(0) = θ (u`−e)+qu`−e(0) (3.4.72)

since c and u` − e are orthogonal. This implies

∆(qc(θ (u` − e)), qc(θ (u` − e))) = ∆(θ (u` − e), θ (u` − e)) ·∆(qu`−e(0), qu`−e(0)) . (3.4.73)

Since ∆(z1, z2)−p is the Bergman kernel of B, it follows that

|DetZ (qc)′(θ (u` − e))|2/p =
∆(qc(θ (u` − e)), qc(θ (u` − e)))

∆(θ (u` − e), θ (u` − e))
= ∆(qu`−e(0), qu`−e(0)) .

(3.4.74)
Letting θ → 1, we obtain

|DetZ q′(u` − e)|2 α`/p

∆Q(q)
= |DetZ (qc)′(u` − e)|2 α`/p = ∆(qu`−e(0), qu`−e(0))α` . (3.4.75)

Lemma 3.4.4 The Jacobian of g ∈ G, for the action (3.4.38) at u` − e ∈ Sr−` is

ρSr−`
(g) =

dµSr−`
(g̃(u` − e))

dµSr−`
(u` − e)

=
|DetZ g′(u` − e)|2 α`/p

∆(gu`−e(0), gu`−e(0))α`
. (3.4.76)

Proof: Write g̃(u` − e) = k (u` − e) for some k ∈ K. Then (k−1g)∼(u` − e) = k−1 g̃(u` − e) =
u` − e, showing that q := k−1 g ∈ Q. Since g−1K = q−1K, Proposition 3.1.2 implies

dµSr−`
(g̃(u` − e))

dµSr−`
(u` − e)

=
dµK/K∩Q(g Q)
dµK/K∩Q(Q)

= ∆Q(q) =
|DetZ q′(u` − e)|2 α`/p

∆(qu`−e(0), qu`−e(0))α`
. (3.4.77)

Since g = k q implies g′(u` − e) = k q′(u` − e) with |DetZ k| = 1, and gu`−e(0) = k qu`−e(0) im-
plies ∆(gu`−e(0), gu`−e(0)) = ∆(k qu`−e(0), k qu`−e(0)) = ∆(qu`−e(0), qu`−e(0)) , the assertion
follows.
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Lemma 3.4.5 Let g ∈ G. Then

χ(g) :=
|DetZ q′(u` − e+ ζ)|2/p

∆(gu`−e(ζ), gu`−e(ζ))
∆(ζ, ζ) (3.4.78)

is independent of ζ ∈ B0(u` − e).

Proof: Suppose first g ∈ Q. Write ζ = qu`−e(0) for some q ∈ Q. Then (3.4.60) implies

|DetZ g′(u` − e+ ζ)|2/p

∆(gu`−e(ζ), gu`−e(ζ))
∆(ζ, ζ) ∆Q(q)1/α` =

|DetZ g′(q(u` − e))|2/p |DetZ q′(u` − e)|2/p

∆(gu`−e(ζ), gu`−e(ζ))
=

|DetZ (gq)′(u` − e)|2/p

∆((g q)u`−e(0), (g q)u`−e(0))
= ∆Q(g q)1/α` = ∆Q(g)1/α` ∆Q(q)1/α` . (3.4.79)

This shows

|DetZ g′(u` − e+ ζ)|2/p

∆(gu`−e(ζ), gu`−e(ζ))
∆(ζ, ζ) = ∆Q(g)1/α` =

|DetZ g′(u` − e)|2/p

∆(gu`−e(0), gu`−e(0))
(3.4.80)

whenever g ∈ Q. If g ∈ G then g̃(u` − e) = k (u` − e) for some k ∈ K. Therefore g = k q for
some q ∈ Q and we obtain

|DetZ g′(u` − e+ ζ)|2/p

∆(gu`−e(ζ), gu`−e(ζ))
∆(ζ, ζ) =

|DetZ k|2/p |DetZ q′(u` − e+ ζ)|2/p

∆(qu`−e(ζ), qu`−e(ζ))
∆(ζ, ζ)

=
|DetZ q′(u` − e)|2/p

∆(qu`−e(0), qu`−e(0))
=

|DetZ g′(u` − e)|2/p

∆(gu`−e(0), gu`−e(0))
(3.4.81)

since |DetZ k| = 1 and ∆(kz, kz) = ∆(z, z) for all k ∈ K.

Theorem 3.4.6 Define a C∞-function χ∂` B : G→ R> by

χ∂` B(g) := |DetZ g′(u` − e)|2 α`/p (3.4.82)

where α` := n
r + ` a

2 . Then the (well-defined) measure

µ∂` B := χ∂` B µG/µP (3.4.83)

on G/P is K-invariant and gives rise to the Uα`
-invariant inner product

(ϕ|ψ)α`
=
∫

∂` B

dµ∂` B ϕψ (3.4.84)

for ϕ,ψ ∈ Hα`
. Moreover, there is a decomposition∫

∂` B

dµ∂` B f =
∫

Sr−`

dv

∫
B0(v)

dµB0(v)(ζ) ∆(ζ, ζ)α` f(v + ζ) (3.4.85)

for all f ∈ Cc(∂`B). Here dv denotes the K-invariant measure on Sr−`, and

dµB0(v)(ζ) = dµZ0(v)(ζ) ∆(ζ, ζ)−(2+a(`−1)+b) (3.4.86)

is the invariant measure on B0(v).
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Proof: For all g ∈ G, p ∈ P and k ∈ K we have

χ∂` B(gp) = |DetZ (gp)′(u` − e)|2α`/p = |DetZ g′(u` − e)|2α`/p |DetZ p′(u` − e)|2α`/p

= χ∂` B(g) ∆P (p) (3.4.87)

and

χ∂` B(kg) = |DetZ (kg)′(u` − e)|2α`/p = |DetZ k|2α`/p |DetZ g′(u` − e)|2α`/p

= |DetZ g′(u` − e)|2α`/p = χ∂` B(g) . (3.4.88)

Hence Proposition 3.1.1 shows that µ∂` B is a well-defined measure on G/P ≈ ∂`B which is
K-invariant. Since (3.4.60) yields for all q ∈ Q

χ∂` B(q)
∆Q(q)

= ∆(qu`−e(0), qu`−e(0))α` , (3.4.89)

Proposition 3.1.1 gives a decomposition∫
∂` B

dµ∂` B f =
∫

Sr−`

dµSr−`
(k (u` − e))

∫
B0(u`−e)

dµB0(u`−e) (qu`−e(0))·

·ϕ (k(u` − e+ qu`−e(0)) ∆(qu`−e(0), qu`−e(0))α`

=
∫

Sr−`

dµSr−`
(k (u` − e))

∫
B0(u`−e)

dµB0(u`−e)(ζ) ϕ(k(u` − e+ ζ)) ∆(ζ, ζ)α` (3.4.90)

=
∫

Sr−`

dµSr−`
(v)

∫
B0(v)

dµB0(v)(ζ) ϕ(v + ζ) ∆(ζ, ζ)α`

for all f ∈ Cc (∂`B). Now let g, γ ∈ G and put z := γ(u` − e) ∈ ∂`B. Then(
`g−1 χ∂` B

χ∂` B

)
(γ P ) =

χ∂` B(g γ)
χ∂` B(γ)

=
|DetZ (g γ)′(u` − e)|2α`/p

|DetZ γ′(u` − e)|2α`/p

= |DetZ g′(γ(u` − e))|2α`/p = |DetZ g′(z)|2α`/p . (3.4.91)

According to [Bou63, p.57] we have for the image measure∫
∂` B

d(g−1
∗ (µ∂` B)) f =

∫
∂` B

dµ∂` B `g f =
∫

∂` B

d

(
χ∂` B µG

µP

)
`g f =

∫
∂` B

d

(
χ∂` B µG

µP

)
`g−1 χ∂` B

χ∂` B
· f =

∫
dµ∂` B |DetZ g′|2α`/p f . (3.4.92)

It follows that
g−1
∗ (µ∂` B) = |DetZ g′|2α`/p · µ∂` B . (3.4.93)

If g ∈ G and ϕ,ψ ∈ Hα`
, then

Uα`
(g)ϕ Uα`

(g)ψ = |DetZ (g−1)′|2α`/p ϕ ◦ g−1 ψ ◦ g−1 = (|DetZ g′|−2α`/p ϕ ψ) ◦ g−1 (3.4.94)
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as functions on ∂`B ≈ G/P . With (3.4.93) it follows that∫
∂` B

dµ∂` B Uα`
(g)ϕ Uα`

(g)ψ =
∫

∂` B

d (g−1
∗ µ∂` B) |DetZ g′|−2α`/p ϕ ψ =

∫
∂` B

dµ∂` B ϕψ ,

(3.4.95)
showing that µ∂` B induces the Uα`

-invariant inner product on Hα`
.

Remark 3.4.7 Integration formulas such as (3.4.84) were proved in [AU98, Theorem 6.3] in
the somewhat simpler setting of (unbounded) Siegel domains. In the bounded case, the two
extreme cases α0 = n

r (Hardy space) and αr−1 = p− 1 were also proved in [AU98].

3.5 Restricted boundaries of symmetric domains

Let Z = U ⊕ V denote the Peirce decomposition for the maximal tripotent e = e1 + · · ·+ er.
Let U 3 a 7→ Ra ∈ End (V ) denote the canonical representation of U on V . The ”Cayley
transform”

c(u, v) := ((e+ u) ◦ (e− u)−1,
√

2R(e−u)−1v) (3.5.1)

defines a biholomorphic mapping c : B → D, with inverse

c−1(u, v) := ((u− e) ◦ (u+ e)−1,
1√
2
·R(u+e)−1v) . (3.5.2)

Note that c(0) = e and c(−e) = 0. Since Aff(D) ⊂ Aut(D) is the stabilizer of c(e) (in the
compact dual of B), it follows that

Ge := {g ∈ G : g(e) = e} = c−1 Aff(D) c = G+
e G

0
e , (3.5.3)

where G+
e := c−1Σ c, G0

e := c−1GL(D) c.

Proposition 3.5.1 If g ∈ Ge then g′(e)|X ∈ GL(Ω) and

τ((c g−1 c−1)(x)) = g′(e)|∗Xx (3.5.4)

for all x ∈ Ω, where h 7→ h∗ is the involution in GL(Ω). Moreover

|DetZ (c g c−1)′(w)| = ∆(g′(e)e)−p/2 (3.5.5)

for all w ∈ D.

Proof: Let ta,b ∈ Σ and put t := c−1 ta,b c ∈ Ge. Since

t′a,b(u, v)(u̇, v̇) = (u̇+ 2 Φ(v̇, b), v̇) (3.5.6)

for all w = (u, v) ∈ D and (u̇, v̇) ∈ Z, we obtain

DetZ (c t c−1)′(w) = DetZ t
′
a,b(w) = DetZ

[
idU 2 Φ(−, b)
0 idV

]
= 1 . (3.5.7)
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Moreover t′a,b(w)x = x for all x ∈ X. If 0 ≤ θ < 1, then c(θe) ∈ D and c′(θe)x ∈ X. Therefore

c′(t(θe)) t′(θe)x = (c t)′(θe)x = (ta,bc)′(θe)x = t′a,b(c (θe)) c′(θe)x = c′(θe)x . (3.5.8)

Letting θ → 1 and using t(e) = e, we obtain

t′(e)x = x (3.5.9)

for all x ∈ X. Now let h ∈ GL(D). The commuting diagram

B
s0−→ B

c−1 h−1 c−→ B
s0−→ B

c ↓ c ↓ ↓ c ↓ c
D −→

se

D −→
h−1

D −→
se

D

(3.5.10)

for the symmetries s0 = −idB and se around 0 ∈ B and e ∈ D, resp., shows that

h∗ = (se h
−1 se)′(0) = (c s0 (c−1 h−1 c) s0 c−1)′(0) =

c′(−e) s′0(e)(c−1 h−1 c)′(e) s′0(−e)(c−1)′(0) = (c−1 h−1 c)′(e) (3.5.11)

since c′(−e) = (c−1)′(0) is scalar and s′0(e) = s′0(−e) = −id. Since

|DetZ h| = ∆(he)p/2 (3.5.12)

we obtain for all w ∈ D

|DetZ h′(w)| = |DetZ h| = |DetZ (c−1 h−1 c)′(e)∗| =

∆((c−1 h−1 c)′(e)∗ e)p/2 = ∆((c−1 h c)′(e)∗ e)−p/2 = ∆((c−1 h c)′(e) e)−p/2 .
(3.5.13)

Now let g = t(c−1 h c) with c t c−1 ∈ Σ and h ∈ GL(D). Then

(g−1)′(e)x = (c−1 h−1 c)′(e)(t−1)′(e)x = (c−1 h−1 c)′(e)x = h∗1 x (3.5.14)

showing that
(g−1)′(e)|∗X = h1 . (3.5.15)

On the other hand,
τ((c g c−1)(x)) = τ(c t c−1(hx)) = h1 x . (3.5.16)

This proves (3.5.4). Now let w ∈ D. Then hw ∈ D and

|DetZ (c g c−1)′(w)| = |DetZ (c t c−1)′(hw)| · |DetZ h′(w)| = |DetZ h′(w)|
= ∆((c−1 h c)′(e) e)−p/2 = ∆(g′(e) e)−p/2 .

Now (3.5.5) follows since (3.5.9) implies

g′(e) e = t′(e)(c−1 h c)′(e) e = (c−1 h c)′(e) e . (3.5.17)

Proposition 3.5.2 Ge has the modulus function

∆Ge(g) = ∆(g′(e) e)n/r . (3.5.18)
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Proof: By Corollary 3.3.2 and Proposition 3.5.1

∆Ge(g) = ∆Aff(D)(c g c
−1) = ∆(τ((c g c−1)(e))−n/r

= ∆((g−1)′(e)∗e)−n/r = ∆(g′(e)∗e)n/r = ∆(g′(e)e)n/r . (3.5.19)

Proposition 3.5.3 NA has the modulus function

∆NA(g) = ∆−2ρ(g′(e)∗e) (3.5.20)

where 2ρk = a(k − 1) + 1 + b.

Proof: Since NA ⊂ Ge and cNAc−1 = NDAD, we may apply Proposition 3.3.3 and Propo-
sition 3.5.7 and obtain

∆NA(g) = ∆NDAD
(c g c−1) = ∆−2ρ(τ(c g c−1(e))) = ∆−2ρ(g′(e)∗ e) . (3.5.21)

Lemma 3.5.4 Let z ∈ B satisfy ∆(e− z) 6= 0. Then c(z) ∈ D ⊂ Z and
DetZ c

′(z) = 2rp/2 ∆(e− z)−p.

Proof: The derivative at z = (u, v) is given by

c′(z)(u̇, v̇) = (2P−1
e−u u̇,

√
2 (R(e−u)−1 v̇ +RP−1

e−uu̇ v)) . (3.5.22)

Being of ”block-triangular” form, c′(z) has determinant

DetZ c
′(z) = DetU 2P−1

e−u ·DetV
√

2R(e−u)−1

= 2dim U+dim V/2DetZ R(e−u)−1 . (3.5.23)

Since R(e−u)−1 := (P−1
e−u, R(e−u)−1) ∈ GL(D), we have

DetZ R(e−u)−1 = ∆(R(e−u)−1 e)p/2 = ∆(e− u)−p = ∆(e− z)−p . (3.5.24)

Now the assertion follows, since

dim U +
1
2

dim V = r +
r(r − 1)

2
a+

rb

2
=
rp

2
. (3.5.25)

Corollary 3.5.5 If ∆(e− z) 6= 0, then

∆(τ(c(z))) =
∆(z, z)

|∆(e− z)|2
. (3.5.26)
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Proof: Since c : B → D is biholomorphic, we have

|DetZ c′(z)|2KD(c(z), c(z)) = KB(z, z) (3.5.27)

for all z ∈ B, where KB and KD denote the respective Bergman kernels. This implies

a
∆(τ(c(z)))p

∆(z, z)p
= |DetZ c′(z)|2 = 2rp |∆(e− z)|−2p (3.5.28)

where a is a fixed constant. Evaluating at z = 0 yields a = 2rp.

Now fix 0 ≤ ` < r and put u` − e = −e`+1 − · · · − er. Then the ”restricted” boundary orbit

∂′`B = {z ∈ ∂`B : ∆(e− z) 6= 0} = c−1(∂`D) = Ge(u` − e) (3.5.29)

is an open dense subset of ∂`B. We may identify

Ge/Pe 3 g Pe 7→ g(u` − e) ∈ ∂′`B , (3.5.30)

where
Pe = Ge ∩ P ⊂ Go

e . (3.5.31)

In terms of the fibration (3.4.37), we put

S′r−` := {v ∈ Sr−` : ∆(e− v) 6= 0} = {v ∈ Sr−` : v +B0(v) ⊂ ∂′`B} (3.5.32)

as a dense open subset of Sr−`, which is Ke-invariant and contains Π` − e. Note that
S′r−` ∩ Πr−` = ∅. By definition, S′r−` is a Ge-orbit for the action (3.4.38), i.e. there is a
diffeomorphism

Ge/Qe 3 g 7→ g̃(u` − e) ∈ S′r−` , (3.5.33)

where
Qe = Ge ∩Q = Q+

e Q
o
e (3.5.34)

is a closed subgroup of Ge and we put

Q+
e := Q ∩G+

e , Qo
e := Q ∩G0

e . (3.5.35)

Theorem 3.5.6 Under the mapping c−1 : ∂`D → ∂′`B, the measure µ∂`D constructed in
(3.3.38) has the image measure

µ∂′`B
:= c−1

∗ (µ∂`D) (3.5.36)

on ∂′`B, which is relatively invariant under Ge with multiplier

χ∂′`B
(g) := ∆(g′(e) e)−α` (3.5.37)

for all g ∈ Ge. Moreover, µ∂′`B
has a decomposition∫

∂′`B

dµ∂′`B
f =

∫
Π`

du

∫
Σ/Σ1(u)

dṫ

∫
B0(u−e)

dµB0(u−e)(ζ)
∆(ζ, ζ)α`

|∆(e− ζ)|2α`
f(tc(ζ + u− e)) (3.5.38)

for all f ∈ Cc(∂′`B), where tc := c−1 t c ∈ G+
e and

dµB0(u−e)(ζ) = 2` p` dµZ0(u−e)(ζ) ∆(ζ, ζ)−p` (3.5.39)

is the invariant measure on B0(u− e), with p` := 2 + a(`− 1) + b.
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Proof: For g ∈ Ge we have c g c−1 ∈ Aff(D), and Theorem 3.3.4 and Proposition 3.5.1 imply

g∗ (µ∂′`B
) = c−1

∗ (c g c−1)∗(c∗ (µ∂′`B
)) = c−1

∗ (c g c−1)∗ (µ∂`D) =

∆(τ(c g−1 c−1(e)))α` c−1
∗ (µ∂`D) = ∆(g′(e)∗ e)α` µ∂′`B

= ∆(g′(e) e)α` µ∂′`B
. (3.5.40)

This shows that µ∂′`B
is relatively invariant under Ge, with multiplier given by (3.5.37). For

any u ∈ Π`, let cu : B0(u − e) → D1(u) denote the ”partial” Cayley transform relative to
u ∈ Z0(u− e). Then

c(ζ + u− e) = cu(ζ) , cu(ζ) + e− u = c(ζ) (3.5.41)

for all ζ ∈ B0(u− e). Moreover

(cu)∗ (µB0(u−e)) = µD1(u) (3.5.42)

for the respective invariant measures. Applying Theorem 3.3.4, it follows that∫
∂′`B

dµ∂′`B
f =

∫
∂`D

dµ∂`D(w) f(c−1(w)) =∫
Π`

du
∫

Σ/Σ1(u)

dṫ
∫

D1(u)

dµD1(u)(ω) ∆(τ(ω + e− u))α` ϕ(c−1(tω)) =∫
Π`

du
∫

Σ/Σ1(u)

dṫ
∫

B0(u−e)

dµB0(u−e)(ζ) ∆(τ(cu(ζ) + e− u))α` ϕ(c−1(t cu(ζ))) .

Now the assertion follows from the identities

∆(τ(cu(ζ) + e− u)) = ∆(τ(c(ζ))) =
∆(ζ, ζ)

|∆(ζ − e)|2
, (3.5.43)

c−1(t cu(ζ)) = c−1(t c(ζ + u− e)) = tc(ζ + u− e) . (3.5.44)

We will now express the relationship between the relatively invariant measure µ∂′`B
on ∂′`B,

and the K-invariant measure µ∂`B on ∂`B constructed in Theorem 3.4.6, giving rise to the
invariant inner product for parameter α`.

Proposition 3.5.7 On ∂′`B ⊂ ∂`B we have

|∆(e− z)|2α` · dµ∂′`B
(z) = 2r α` · dµ∂`B(z) . (3.5.45)

Proof: By Proposition 3.5.1, we have for all g ∈ Ge

|DetZ c′(g(z))DetZ g′(z)|2α`/p = |DetZ (cg)′(z)|2α`/p =

|DetZ (c g c−1)′(c(z))DetZ c′(z)|2α`/p = χ∂′`B
(g) · |DetZ c′(z)|2α`/p . (3.5.46)

Using (3.4.93) this implies

g−1
∗ (|DetZ c′|2α`/p µ∂`B) = |DetZ c′ ◦ g|2α`/p g−1

∗ (µ∂`B) =
|DetZ c′ ◦ g|2α`/p |DetZ g′|2α`/p µ∂`B = χ∂′`B

(g) |DetZ c′|2α`/p µ∂`B .
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This shows that |DetZ c′|2α`/p µ∂`B is relatively invariant under Ge, with multiplier χ∂′`B
. Using

Lemma 3.5.4, we obtain, up to a constant factor,

dµ∂′`B
(z) = |DetZ c′(z)|2α`/p dµ∂`B(z) = 2r α` |∆(e− z)|−2α` dµ∂`B(z) . (3.5.47)

Theorem 3.5.8 For 0 ≤ ` < r and f ∈ Cc(S′r−`), we have

2r α`

∫
S′r−`

dv f(v) =
∫
Π`

du

∫
Σ/Σ1(u)

dṫ f(t̃c(u− e))
|∆(e− tc(u− e))|2α`

∆(tcu−e(0), tcu−e(0))α`
. (3.5.48)

Here we put tc := c−1t c for t ∈ Σ, and decompose tc(u` − e) = t̃c(u` − e) + tcu`−e(0) according
to (3.4.56).

Proof: By (3.5.7), DetZ t
′(w) = 1 for all t ∈ Σ. Therefore Lemma 3.5.4 implies for all u ∈ Π`

and ζ ∈ B0(u− e)

DetZ (tc)′(u− e+ ζ) = DetZ (c−1 t c)′(u− e+ ζ)

= DetZ (c−1)′(t(c(u− e+ ζ)) DetZ c′(u− e+ ζ)

= DetZ c
′(tc(u− e+ ζ))−1 DetZ c

′(u− e+ ζ) (3.5.49)

= ∆(e− tc(u− e+ ζ))p ∆(e− (u− e+ ζ))−p

= 2p(`−r) ∆(e− tc(u− e+ ζ))p ∆(e− ζ)−p ,

since ∆(e − (u − e + ζ)) = 2r−` ∆(e − ζ). Applying Lemma 3.4.5 to tc and setting ζ = 0, we
obtain

∆(ζ, ζ)
∆(tcu−e(ζ), tcu−e(ζ))

|∆(e− tc(u− e+ ζ))|2

|∆(e− ζ)|2
=

4r−` ∆(ζ, ζ)
∆(tcu−e(ζ), tcu−e(ζ))

|DetZ (tc)′(u− e+ ζ)|2/p =
|∆(e− tc(u− e))|2

|∆(tcu−e(0), tcu−e(0))
.

Since α` − p` = a
2 (r − `+ 1)− 1 ≥ a− 1 ≥ 0, there exists a constant c such that∫

B0(v)

dµB0(v)(w) ∆(w,w)α` = c (3.5.50)

for all v ∈ Sr−`. Since tcu−e : B0(u− e) → B0(t̃c(u− e)) is biholomorphic, we have

(tcu−e)∗ (µB0(u−e)) = µB0(etc(u−e)) (3.5.51)

and hence ∫
B0(u−e)

dµB0(u−e)(ζ) ∆(tcu−e(ζ), t
c
u−e(ζ))

α` = c . (3.5.52)

Applying Theorem 3.4.6, Proposition 3.5.7 and Theorem 3.5.6, we obtain for f ∈ Cc(S′r−`)
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c 2r α`

∫
S′r−`

dv f(v) = 2r α`

∫
S′r−`

dv

∫
B0(v)

dµB0(v)(w) f(v) ∆(w,w)α`

= 2r α`

∫
∂′`B

dµ∂`B(v + w) f(v) =
∫

∂′`B

dµ∂′`B
(v + w) f(v) |∆(e− (v + w))|2α` (3.5.53)

=
∫
Π`

du

∫
Σ/Σ1(u)

dṫ f(t̃c(u− e))
∫

B0(u−e)

dµB0(u−e)(ζ)
∆(ζ, ζ)α`

|∆(e− ζ)|2α`
|∆(e− tc(u− e+ ζ))|2α`

=
∫
Π`

du

∫
Σ/Σ1(u)

dṫ f(t̃c(u− e))
|∆(e− tc(u− e))|2α`

∆(tcu−e(0), tcu−e(0))α`
·
∫

B0(u−e)

dµB0(u−e)(ζ) ∆(tcu−e(ζ), t
c
u−e(ζ))

α`

c

∫
Π`

du

∫
Σ/Σ1(u)

dṫ f(t̃c(u− e))
|∆(e− tc(u− e))|2α`

∆(tcu−e(0), tcu−e(0))α`
.

Example 3.5.9 For ` = 0, Sr = S is the Shilov boundary. If B is of tube type, we have

S′r = c−1(iX) . (3.5.54)

For t ∈ Σ set a = t(0). Then

tc(−e) = c−1 t c(−e) = c−1 t(0) = c−1 (a) = (a− e) ◦ (a+ e)−1 (3.5.55)

and hence e− tc(−e) = 2(a+ e)−1. It follows that

|∆(e− tc(−e))| = 2r |∆(a+ e)|−1 = 2r ∆(e− a2)−1/2 . (3.5.56)

Theorem 3.5.8 yields for all f ∈ Cc(S′)

2n

∫
S′

dv f(v) =
∫
Σ

dt f(tc(−e)) |∆(e−tc(−e))|2n/r = 4n

∫
iX

da f(c−1(a))∆(e−a2)−n/r , (3.5.57)

i.e. we obtain the well-known formula [FK94]∫
S′

dv f(v) = 2n

∫
iX

da f(c−1(a))∆(e− a2)−n/r . (3.5.58)

References

[A92-1] J. Arazy, Realization of the invariant inner products on the highest quotients of the
composition series, Arkiv Mat. 30 (1992), 1-24.

75



[A92-2] J. Arazy, Integral formulas for the invariant inner products in spaces of analytic
functions in the unit ball, Lect. Notes in Pure and Applied Math., Vol.136, Marcel
Dekker (1992), 9-23.

[A95] J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded sym-
metric domains, Contemp. Math. 185 (1995), 7-65.

[A96] J. Arazy, Boundedness and compactness of generalized Hankel operators on bounded
symmetric domains J. Funct. Anal. 137 (1996), 97-151.

[AU97] J. Arazy and H. Upmeier, Invariant inner products in spaces of holomorphic functions
on bounded symmetric domains, Documenta Math. 2 (1997), 213-261.

[AU98] J. Arazy and H. Upmeier, Discrete series representations and integration over bound-
ary orbits of symmetric domains, Contemp. Math. 214 (1998), 1-22.

[Be75] F. Berezin, Quantization in complex symmetric spaces, Math. USSR-Izv. 9 (1975),
341-379.
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