


Boundary Measures for Symmetric Domains and Integral
Formulas for the Discrete Wallach Points

Jonathan Arazy Harald Upmeier

Abstract

Let D be an irreducible hermitian symmetric domain of rank v in C* and let G =
Aut(D) be the group of all biholomorphic automorphisms of D. We construct explicit in-
tegral formulas for the G-invariant inner products on spaces of holomorphic functions on
D associated with the discrete Wallach points by means of integration on G-orbits in the
boundary 0D of D. These formulas avoid the somewhat unnatural ”shifting of parameters”
and extend to the infinite dimensional setting of Hilbert-Schmidt symmetric domains. Sim-
ilar results are obtained, in the bounded and unbounded case, for the ”dual” parameters oy
embedded in the continuous part of the Wallach set. The semi-invariant measures on the
boundary orbits are explicitly constructed, including a polar decomposition with respect to
a compact subgroup.
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0 Introduction

For an irreducible hermitian symmetric space D of non-compact type, the holomorphic au-
tomorphism group G = Aut(D) has a (scalar) holomorphic discrete series whose analytic
continuation is given by parameters forming the so-called ”Wallach set”. It is an important
problem to give explicit realizations of the corresponding irreducible representations of G in
terms of the (boundary) geometry of the underlying domain D. A standard reference using Lie
theoretic methods is [RV76]. In our previous works ([AU97] and [AU98]) we considered mainly
certain parameter values within the continuous part of the Wallach set and constructed real-
izations emphasizing the Jordan theoretic description of D [FK94]. In this paper we treat the
more difficult discrete part and find explicit integral formulas using Lassalle’s boundary mea-
sures [La87]. The paper contains also a new realization (and proof of existence) of Lassalle’s
measures, using only basic results from Jordan theory (Peirce decomposition).

The problem of concrete description of the analytic continuation of the holomorphic discrete
series by means of Sobolev-type integral formulas attracted the attention of many mathemati-
cians (see for instance [RV76], [O80], [A92-1], [A92-2], [FK90], [Y93], [AU97] and [AU98]). This
problem is intimately connected with the problem of the concrete description of the analytic
continuation of the Riesz distribution (see [Ri49], [Ga47], [O80], [Gi75] and [AU97]). One of the
oldest results on the description of the analytic continuity of the holomorphic discrete series is
the realization of Ha as the Hardy space H?(S) = L2(S,0) (where S is the Shilov boundary

of D and o is the unrique K-invariant probability measure on 5).

The shifting method of Yan (see [Y93] and [AU97]) enables one to give integral formulas of
the form

< f,g>a=<5xef,9 >x+e
for suitable ¢ € N and shifting operator Sy ¢ (which is a GL(2)-invariant differential operator).
In particular, if A\+¢ >p—1or A+ /= % one obtains integral formulas for < f,g > of the
desired type. However, these integral formulas are not best possible, in that

(i) They use unnecessary large numbers of parameters.
(i.e. the topological dimension of the set on which the integration is performed is bigger
than the Gelfand-Kirillov dimension of the representation).

(ii) They do not permit generalization to the infinite-rank case.

Our main goal here is to obtain explicit, Sobolev-type integral formulas for the invariant
inner products < -, - >y2 associated with the discrete Wallach points £§, £/ =0,1,2,...,7r -1,
by means of integration on the G-orbits on the boundary dD. These formulas use the optimal
number of parameters (i.e. the topological dimension of the set on which the integration is
performed is minimal), and furthermore allow the passage to the case of infinite rank domains.
The paper is a continuation of [AU97] and [AU98|, in which we develop the formulas of the
desired type for < f,g >a. The proofs in the general case given here, which are simpler
and more conceptual, use the Harish-Chandra isomorphism between the rings of invariant
differential operators and the symmetric polynomials.

There is another type of integral formulas for < -,- >, A € W(D) which use the Cayley
transform (which realizes D as a symmetric Siegel domain, denoted by T'(€2)) and the Fourier



transform (which realizes the weighted Bergman spaces on T'(§2) as weighted L2-spaces on ().
These formulas are also extended to the discrete Wallach points £5; they are quite natural but
do not allow to work directly with the data coming from D.

The paper is organized in the following way. Part 1 is devoted to the construction of the
tools needed to prove our results. In Section 1.2 we survey the Harish-Chandra isomorphism
between the rings of invariant differential operators on symmetric cones and of the symmetric
polynomials. Using spectral theory we extend this result to more general invariant operators.
In Section 1.3 we use the conical polar decomposition Z = K - ) to study K-averaging of
certain functions on D, (a process we call “conialization”). In Section 1.4 we construct for
each ¢ € {1,2,...,7 — 1} two K-orbits on D and natural measures on them.

After these preparatory sections we prove the above mentioned theorem, in section 1.4 (see
Theorem 2.1.7 for the exact formulation). Some related results are established as well.

Section 2.2 is devoted to the development of canonical integral formulas for the inner
products < -, - >ya, 1 < ¢ <r—1, in the framework of the symmetric Siegel domain T'(€2)
associated with the Cartan domain D via the Cayley transform. The case of symmetric Siegel
domains of type I (i.e. tubes over the symmetric cones ) is treated first, where we use in
an essential way the semi-invariant Lassalle measures on the boundary orbits 9y of the cone
Q). The development of the analogous integral formulas in the context of symmetric Siegel
domains of type II is technically harder and requires additional efforts. In Section 2.4 we use
the Lassalle measures to construct integral formulas for the invariant inner products associated
with the continuous Wallach points oy := % +£5,0 < ¢ <r—1, for symmetric Siegel domains
of type II, which generalize the analogous formulas for symmetric Siegel domains of type I
constructed in [AU97].

Finally, in Part 3 we present a new construction of the Lassalle measures. Unlike the
original construction of Lassalle (see [La87]) which uses local coordinates (coming from the
subgroup AN of GL(2)), our formulas use global coordinates and make the semi-invariance
apparent.



1 Extension of Invariant Operators on Boundary Orbits of
Symmetric Domains

1.1 Jordan algebra and symmetric domains

In this section we review some known results in analysis on Jordan algebras and triples and

on the associated symmetric domains, and establish the notation. For more information see

[Hu63], [Gi64], [Lo77], [US7], [FK94] and [A95].

Let D C C% be a Cartan domain, i.e. D is an irreducible bounded symmetric domain in
the Harish-Chandra realization. This is equivalent to saying that D is the open unit ball of
C? with respect to a certain norm || - ||, such that the group G := Aut(D) of all biholomorphic
automorphisms of D acts transitively on D. By [Lo77], [U87], there exists a triple product
{,,-}: C¥x C4x C¢— C?so that Z := (C%, || - ||,{,-,-}) is a Jordan-Banach *-triple (JB*-
triple). The mazimal compact subgroup of G is K := {p € G;¢(0) = 0} = G N GL(Z), and
D =G/K.

Let (r,a,b) be the type of D (or, of Z), where r is the rank and a, b are the characteristic
multiplicities. Thus the dimension d and the genus p are given by

(r—1)

d=r+ ™ Dahrs po24(-Dat (1.11)

A tripotent v € Z is an element satisfying {v,v,v} = v. The Peirce decomposition associated
with the tripotent v is
Z:Zl(v)@Z%(v)@Zo(v), (1.1.2)

where Z,(v) :={z € Z;{v,v,z} = vz}, v=1, %,0. The associated Peirce projection P,(v),
is the projection whose range is Z,(v) and whose kernel is the sum of the other two Peirce
subspaces. We denote also

Dy (v) := DN Zy(v). (1.1.3)

The spaces Z,(v) are sub-triples of Z, and the rank of the tripotent v is by definition the rank
of Z1(v). We define

S; = the set of tripotents of rank j, j=0,1,2,...,7. (1.1.4)
S := S, is the Shilov boundary of D. Let us choose a frame
€1,€2,...,€Ep, (1.1.5)

i.e. a maximal set of tripotents of rank one which are pairwise orthogonal, i.e. {e;,e;,e;} =0
whenever ¢ # j. The tripotent
e=e1+ex+...+e (1.1.6)

is mazimal (having rank r), and thus Zy(e) = 0. The stabilizer of e in K, namely

L:={k e K;k(e) = e}, (1.1.7)

will play an important role in the sequel. Notice that since K acts transitively on S, we have
S = K/L. More generally, K acts transitively on the frames, and in particular it is transitive



on each of the S;. The sub-triple Z;(e) has the structure of a JB*-algebra with respect to the
product z o w := {z,e,w} and the involution z* := {e, z, e}, and e is the unit of Z;(e). The
real part of Z;(e), i.e. the subset X = X (e) := {z € Zi(e);x* = x} of self-adjoint elements of
Z1(e) is a Fuclidean (or formally-real) Jordan algebra, with determinant (“norm”) and trace
polynomials

N(z) =det(z) and tr(z):=<z,e> (1.1.8)

respectively. Here (z,w) denotes the unique K-invariant scalar product on Z satisfying (e1,e1) =
1. The set
Q:={z*z € X,N(z) # 0} (1.1.9)

is the symmetric cone associated with X. The group L, restricted to X, coincides with the
Jordan-algebra automorphisms of X. In particular, it is transitive on the frames of orthogonal
minimal idempotents in X whose sum is the unit element e.

For 1 <j <r, let uj =e; +...4+¢; and let N; denote the determinant polynomial of the
Jordan sub-algebra ZU) := Z;(u;), extended to all of Z via N;(z) := N;(Py(uj)z). Note that
N, = N. The conical function associated with s = (s1, $2,...,5,) € C" is defined by

Ny(w) := Ni(2)*17%2 Ny(2)*27%% -~ N,_1(2)* 17 N, (2)*, Va € Q. (1.1.10)

A partition is a sequence m = (mq, mo, ..., m,) of integers so that my > ms > ... > m, > 0.
Note that for any partition m, Ny, is a polynomial (called conical), and it extends to all of Z.
Let us denote

P, :=span{Nmy o k; k € K}. (1.1.11)

A fundamental theorem [Sch69], (see also [U86]) says that the spaces Pp, are irreducible and
mutually inequivalent with respect to the action 7(k)(f) := f o k=% of K, and that the space
‘P of all holomorphic polynomials on Z is their direct sum: P = Zg Pp. Thus the Py, are
mutually orthogonal with respect to any K-invariant inner-product on P. The Fischer-Fock
inner-product on P is given by

< f,g>p= 71:'ld/cd j’"(z)@e*‘z|2 dm(z), (1.1.12)

where | - | is the Euclidean norm, and dm(z) is the Lebesgue measure. The reproducing kernel
of Py with respect to < -,- >, is denoted by Km(z,w). Thus, > Km(z,w) = e<*"~.

The Gindikin-Koecher Gamma function associated with the cone (2 is defined for s =
(51,52,...,5:) € C" with Rs; > (j — 1)§ by the convergent integral

To(s) i /Q 1) N, (2) dpo (), (1.1.13)

d
where duq(z) == N(ac)_T1 dm(x) is the (unique up to a multiplicative constant) measure on €2

which is invariant under the group GL(Q2) := {g € GL(X);¢(Q2) = Q}, and d; := dim, (X) =

w a+r. It is known that ' can be expressed as a product of ordinary Gamma functions:

4

Pa(s) = (2m) 7 [[T(s; — G - 1),
j=1




and this allows the extension of I'g to a meromorphic function on all of C". The Beta function
associated with the cone € is related to the Gamma function via

Ta(p) Pa(q)
Ba(p,q) := ————=. 1.1.14
(p.a) = O (1114
For A € C and any partition m we denote
To(A+m) , a
Mm:'=———+—-= A= —=D=)m,, 1.1.1
== = 0= G050 (1.1.15)

where (t)p, :==t(t+1)(t+2)---(t+m —1).
Let h(z,w) be the unique K-invariant irreducible polynomial, which in holomorphic in z,
anti-holomorphic in w, and satisfies h(z,r) = N(e — 2?) Vo € X. It is known that

h(zw) ™ = (NmKm(z,w), Vz,weD, VAEC, (1.1.16)

m
and the series converges absolutely and uniformly on compact subsets of D x D x C. The
fundamental formula (1.1.16) (called the “binomial expansion”) was proved in special cases in
[Hu63] and [La86], and in full generality in [FK94]. The Wallach set W (D) of D consists of
all those A € C for which (z,w) — h(z,w)™ is positive definite. Using the expansion (1.1.16)

one sees that

W (D) = {0, % 2%, (= 1)%} U((r— 1)%, ). (1.1.17)

This result was established by several authors using various techniques: [Be75], [RV76] (in the
context of Siegel domains), [W79], [La87] and [FK90]. For each A € W (D) we denote by Hy
the completion of span{h(-,w)™*;w € D} with respect to the unique inner-product < -, >

determined by
< h(,w) A h(42) 7 >a=h(z,w) ™, Vz,w e D.

Point evaluations are continuous linear functionals on H)y and the corresponding reproducing
kernel is h(z,w) ™.

If A > (r —1)§ then H) contains P as a dense subspace. On the other hand, for the
discrete Wallach points (which are our main concern in this paper) £5, 0 </ <r —1, Hg% is
the completion of

Py = > P (1.1.18)
mi12-me20=myp1=--=mr
Since K acts irreducibly on each Py,, every K-invariant inner product on Py, is proportional
to the Fischer inner product. The computation of the proportionality constants for the inner
products < -,- > is one of the major steps in the proof of (1.1.16). Thus for every A € W (D)
and every partition m for which Py, C H),

< f,9>p
Mm

This implies for all functions f =) fm and g = >, gm in Hy (with fm, gm € Pm Vm),

< f,g>\= Vf,g € Pn. (1.1.19)

<fg>=) W. (1.1.20)

m



Let us define an action of G on functions on D via

UV D)) = Fp(2) (Jp(2))?, ¢ G, (1.1.21)

where Jop(z) := Det(¢/(z)). Then, for A € W(D), UM is a projective representation of G' on
H.

It is well known that for A > p — 1 H, is the weighted Bergman space L2(D, ), i.e. the
space of all analytic functions in L?(D, y1), where

dia(2) = e W2 ), ey~

T

The representations {Uo‘); A > p — 1} form the holomorphic discrete series of representations

of G.

We now turn to the structure of the boundary 0D and introduce some more notation. The
boundary component associated to a tripotent v is the set B(v) := v + Dg(v) (see (1.1.3)). Its
closure is a face of D and all the faces arise in this way. Notice that Dj(v) and Dgy(v) are
Cartan domains of type (¢, a,0) and (r — ¢, a, b) respectively, where £ := rank(v). Let us denote

0yD := Uyes,B(v), 1<0<r. (1.1.22)
The sets 9pD are the G-orbits on 0D, and:
O D = G(ug) = {p(ur); ¢ € G}, (1.1.23)
where {e;}7_;) is the fixed frame and uy = e + -+ + e;. Thus
0D = Ujp_,0,D. (1.1.24)
and the orbits of G in D are 99D := D, 01 D, ..., and 9, D = S. Let us denote also
Vg =¢€—Up =€py1 + -+ e

Then ug, vy are orthogonal tripotents of rank ¢ and r — £ respectively, and uy + vy = e. Z(0) :=
Z1(ug) is a JB*-sub-algebra of Z with unit wu,, real part

X©O .= {z € 70, 2 = z},
and associated symmetric cone

QO .= {2z € XU Ny(z) £ 0}. (1.1.25)

Let T' € Dy be extended to a K (e)c—invariant differential operator on Zy(v,). Given a tripotent
v € S,_;, we define a differential operator T, on Zy(v) in the following way. Since K acts
transitively on S,_y, there exists k € K for which k(v;) = v. We define

T, == C; 'TCy, (1.1.26)



where Cy(f) := fok. T, is well-defined, i.e. independent of the particular k € K for which
k(ve) = v. Indeed, if ki, ko € K satisty kyi(vg) = ka(ve) = v, then ki (k2(ve)) = vg, and so
ko = kik for some k € K for which k(v;) = vy. As we remarked above, k € K(), and therefore

Cr,TCr, = ;.. C ' TCyCy,y = C,, TC, .

For any function f on D and any tripotent v, the restriction of f to B(v) yields a function
fv on Dg(v) via
fo(2) == f(v+2), =z& D). (1.1.27)

For any 1 < /¢ < r let vy be the unique K-invariant probability measure on Sy, defined via
fdvg = / f(k(up)) dk. (1.1.28)
Sy K
Our main result in this framework is the following theorem (compare Theorem 2.1.7)

Theorem Let1</{<r—1andlet \> ({—1)5 . Then there exists T = TN € Dy so that
for every f,g € Hg% which are analytic in a neighborhood of D,

< f,9 >pa= / < Tofvs Go >H, (Do (v)) dvy_¢(v). (1.1.29)

S’r—l
For general f,g € Hg% the integral (1.1.29) is an improper Riemann integral, namely

< fag >Z%: %% S, < Tfu(ft)m (gt)v >H>\(Do(v)) dVr—Z(U)v

where fi(z2) := f(t2), g'(z) := g(tz).
We remark that the case ¢ = 0 in the above theorem (and in subsequent results) is trivial since
‘Hy consists of constant functions.

1.2 Invariant differential operators on symmetric cones

In this section we review briefly the connection between the ring D = Diff(Q)GL(Q) of GL(Q)-
invariant differential operators on €} and the ring & of symmetric polynomials in r variables.
See [FK94] for more details and [He78] for the general theory.

We denote the half-sum of the strongly orthogonal positive roots by
p=(p1,p2,...,pr) where p;:=(2j —r— 1)%, 1<j<r (1.2.1)
The L-spherical functions are the L-averages of the conical functions:
By (2) = /LNA(e(x)) . (1.2.2)

They are L-invariant and normalized by the condition @y (e) = 1. It is known that the ®y are
the spherical functions associated with the Riemannian symmetric space {2 in the usual sense.



The Weyl group W, in this case is simply the permutation group, acting naturally on C" and
thus on the ®y‘s. It is known that ®y = &, if and only if A and p are in the same orbit of
W,.

For each partition m the function @y, is an L-invariant polynomial which belongs to Py, and
in particular extends to a polynomial on Z. Every L-invariant polynomial in Py, is proportional
to ®,. The ring

S=C[A, day ..., AW (1.2.3)
of symmetric (i.e. permutation invariant) polynomials in A = (A1, Ag, ..., A;) is isomorphic to
the full polynomial ring Clo1,09,...,0,] via the elementary symmetric polynomials {Uj}§:1
defined by

oj(A) = > Ai Nig -+ A (1.2.4)
1<d <ig <o <4 <r
Thus, for each p € S there is a unique polynomial g € Clo1,09,...,0,] so that

p(>\) = Q(Ul(A)ﬂTQ()‘)? <o 7Ur()‘))’

Thus, {o; };7:1 are algebraically independent generators of S.

A fundamental property of the spherical functions is that they are the joint eigenfunctions
of the operators in D.

Theorem 1.2.1 (i) The conical and the spherical functions are eigenfunctions of every
T € D: For all A € C" we have

T(Nxip) =1 MNx p: T(®x,p) =1 Ny, - (1.2.5)

(i) v, (A) is a symmetric polynomial in Ai,, X2, , ..., A\r, thus vy, € S.

(iii) The map v : D — S defined via D 5T +— ~y, € S is a surjective ring isomorphism, called
the Harish-Chandra isomorphism.

(iv) D is commutative.

Definition 1.2.2 For 1 < j <r we define Aj :=~"Y(0;). Namely, for every X € C":
Aj(N)\+p) =0;(A) N>\+p , Aj(<I>)\+p) =0j(A) <I>>\+p . (1.2.6)

Corollary 1.2.3 The operators {Aj};:1 are algebraically independent generators of D.

Since Q = GL(Q2)/L is a Riemannian symmetric space (more precisely, a direct product of
R4 with an irreducible symmetric space ' := {z € Q: N(z) = 1} of non-compact type), one
has a direct integral decomposition

L*(Q) = / Hy |e(N)[*dX (1.2.7)
R" /W,

10



where ¢(\) is Harish-Chandra’s c-function and H ) is the Hilbert space completion of the space
spanned by all GL(Q)-translates of @y, endowed with its natural inner product [He84]. Via
(1.2.7), the translation representation T of GL(2) on L?(Q2) has a decomposition

T / Ty [e(A)|%dA
R IW,

where Ty is the (irreducible) spherical representation of GL(2) on Hy. For any continuous
W,-invariant function F : R” — R one can define a GL(Q)-invariant self-adjoint operator F' on
L?(2) by the formula

Ff= /F()\) £ leW)] 72 dx (1.2.8)

for
fo /f,\\c<,\)\—2 i\, fy € Hy (1.2.9)

The domain of F is defined as the space of functions f such that

/ FOR [ £y I3 Je) 2 dA < +oo.

Thus F is bounded if F is a bounded function. Let
o:=(o1,...,00):C" = C",

where the o; are defined by (1.2.4). The direct integral decomposition above diagonalizes
simultaneously the (commuting) operators Ay. Writing

F=foo

for some continuous bounded function f : R” — R, the bounded operator F can be expressed
as a function

F=f(A,...,A),

in the spectral-theoretic sense, of Aq,..., A,.

Remark 1.2.4 There are many other natural choices of r algebraically independent generators
of §, and each such choice yields r algebraically independent generators of D via the Harish-
Chandra isomorphism. See [FK94], [N89], [M87], and [M95].

Lemma 1.2.5 Let U C C" be a W,.-invariant domain, and let F' be a W,.-invariant holomor-

phic function on U.

(i) The associated GL(Q)-invariant operator T = F' satisfies

T(®y,,) = F(A) @y, , VAU (1.2.10)
p p

(ii) There ezists a unique holomorphic function f on o(U) so that F = f oo, i.e.

FOA) = f(o1(A), 02(N), ..., 00 (A) YA€ U.

11



(iii) In terms of the L%-functional calculus associated with {A; Y,

T = (A1, Ag,...,A). (1.2.11)

The results described above are valid in the context of the cones Q(E), 1 < /¢ <. Thus the
ring Sy := C[A1,..., A\]"* of the symmetric polynomials in AO = (A1,...,Ap) is isomorphic
to the full polynomial ring Cloy,...,0y], and the elementary symmetric polynomials

U](z)(A(e)) — Z Aichig =N, 1<j<t (1.2.12)

1<y <o < <i; <L

are algebraically independent generators of Sy. The spherical functions in the context of Q)
are parametrized by C’ and are defined as before via

{1y () ::/ Ny (k(z)) dk, =€,
A L©

The Harish-Chandra isomorphism between D, = Diﬂ'(Q(E))GL(Qm) and Sy is given via

) BN YN GONE 1O) () (0)
where "
p = (" o, ), and P = 12— -1, (1.2.13)

The algebraically independent generators of D, are
0 ._ (01,0 :
A=) (o), 1<ji<L (1.2.14)

Lemma 1.2.5 is valid in the context of Q) with obvious notational changes.

Consider the group of linear automorphisms of Q)
GL(QY) := {g € GL(X)); (o)) = o)}
and the associated ring of GL(Q(@)—invam'cmt differential operators
Dy = Diff(0)GLQY). (1.2.15)

Thus, Dy consists of all differential operators T on Q) so that TCy = CyT forall g € GL(QW),
where Cy(f) := f o g. Let us denote

LY = {k € K; k(ug) = ug}. (1.2.16)

Then kg € GL(QY) Vk € LY, and in particular T(f o k) = (Tf) o k for all T € Dy and
feCc®(QY). Let

KO = {k e K:k(Z,(v)) = Z,(v)), v=1, %,0}. (1.2.17)

Clearly, {k € K;k(v)) = v} € K®. Also, every triple-automorphism of Z,(v;) for some
v =1, %, 0 extends to a triple-automorphism of Z which preserves all the Z,(vy), i.e. to an

element of K©. Let KO denote the complexification of K®). We need the following technical
result.

12



Lemma 1.2.6 Every T € Dy extends uniquely to a holomorphic differential operator on Zy(vy)

. . . C
which is invariant under the group K.

Replacing Zy(vg) by Z it is enough to show

Lemma 1.2.7 Let Z = Zi(e) ® Zy/2(e) be the Peirce decomposition of Z with respect to the
mazximal tripotent e (cf. (1.1.6)). Then every GL(Q2)-invariant differential operator D on
has a unique extension to a holomorphic differential operator D on Z which is K€-invariant.

Proof: It is well-known that the ring Diff (Q)GL(Q) of all invariant differential operators on 2
is a (commutative) polynomial algebra in r algebraically independent generators Dy, ..., D,.
According to [N89, p. 130] we may assume

0 )
Dj =p; <$ ax> (1<j<n)
and
poj-1(z,y) = (P Py 'z|y)
p2j(z,y) = (PP 'z|Pyu)

where P, is the quadratic representation of X := {z € Zi(e) : 2* = z}. Let {uv*w} denote
the Jordan triple product of Z and put

Qzw:={zw"z} .
Define
@j-1(z,w) = ((QZQw)j_1z|w) (1.2.18)
@i(zw) = (QzQuw) '2Qu 2) (1.2.19)

for z,w € Z. Then we have

4m(z,y) = pm(2,y)
for all z,y € X.
By [U85a, p. 297, (18.2.1)], we have

{au*{au*a}} ={a{ua* v} a} .
We use this identity to show that
Q.Q)z=(z0w")¥ 2 (1.2.20)
for all 7 > 1. In fact
Q- Quz = {2 {w= w2} = {zw (zu* 2}} = (:0w")2 2 .

Now let 7 > 1 and put
Vi=(z009%?%=(Q:Qu) 'z
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and
wi=(z02)%"1 2 = {zw* v} .

Then we have by induction

Q:Quv=(Q,Qu) z=(z0w")% 2,

Quu={w{zw v}"} ={wz"{wv w}} = {wz" (Quv)}

Q. Quu— {2 {z{ww* (Quu)}* 2} = |
{zw*{2(Quv)* 2}} = {zw* (Q. Quv)} = (z0w*)¥*! 2

and hence

(Q: Qw)j+1 2 =Q:Qu ((ZDW*)2j 2) = Q. Qu{zw u}
= {z{w{zwTu} w}* 2} = {z{wz {wu* w}}* 2}
{zw™ {z{wu w}" 2}} = {zw" (@2 Qu u)}

= (z0w"¥*2z .

This completes the induction and proves (1. ).

Combining (1. ) and (1. ), we see that
(2, 0) = (20w 2 |w)
for all m > 1. In fact, (1. ) implies

g2j-1(2,w) = (Q: Qu)’ " 2| w) = (0w 2z | w)

and
QQj(Za w) = ((Qz Qw)j_l z | Qu Z) =
(0w 2 [{w 2" w}) = ({((zDw*)¥ 72 2) w* 2} |w)
= ((z0w)¥ ! 2| w)
since ({uv*w}|z) = (u|{vw* z}) for all u,v,w,z € Z. Now let by,...,b, € X and

k1, --»bn € Z1/2(e) be orthonormal basis. Then

n

w="> (w|b) bs

=1

and hence

1<imm<n 1<i<n

m—1
qm(z,w) = Z ((Z (biw)sz;"> z

= Yo (=06 (200, ) 2lbim) (biy [w) - - (bim|w) -

1<i1,..,im<n
It follows that
0 * * 0 0

1<i1,.cim<n

14



For x € X we have
{zbjz} e X (1<i<k)

and
{zbjz}=0 (k<i<n)

by the Peirce multiplication rules. It follows that
((z00;,) - («0b;, )z |bi,) =0

unless i1, ...,%, < k. This shows that the holomorphic differential operator

. 0
Dy, = qm <Z7 az>
0

when restricted to X. Since ¢, (kz, kw) = ¢n (z,w) for all k € K, D,, is K-invariant and

agrees with

hence, by holomorphicity, even KC-invariant. &

1.3 Conialization of functions

In this section we study conialization (i.e. “conical polarization”) of functions on Z. The basic
fact used here is that every z € Z admits a conical polar decomposition z = k(x) with k € K
and a unique z € Q. Thus Z = K - ), and we have a formula for integration in conical polar
coordinates for functions f € L1(Z, m):

/f ) dm(z —co/</f z2) ) N(z) da (1.3.1)

where m is Lebesgue measure, and ¢y = 7¢/T'o(%). The function

0= [ flkta

is called the conialization of f. The map E(f)(z) := f(22) can be considered as the averag-

[un

m\»—t

z€Q, (1.3.2)
ing projection (i.e. conditional expectation) from L'(Z,m) onto its subspace of K-invariant
functions.

Lemma 1.3.1 (i) For every partition m and every x € €

/|<I> (z2) Qdk_q)d(x), (1.3.3)

where dpy 1= dim(Pp,).

(ii) For every x € Q and all polynomials f =" fm and g =3, 9m With fm,gm € Pm
for all m,

=Y < fm:9m >4 P () (1.3.4)
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Proof: Formula (1.3.3) is proved in [FK94], Proposition XI.4.1 in the case where Z is a JB*-
algebra, and in [FK90] in the case where Z is a JB*-triple. Notice that (1.3.3) with z = e
yields for every m

1
Omll% = [ [Pm(k(e))* dk = —
R B
To prove (1.3.4), consider the K-invariant inner product
< f,9>a= fg / f(k % (k(x %))dk (1.3.5)

on P. Using the fact that the actions of K on the Py, are irreducible and pair-wise inequivalent,
we see that the P, are pair-wise orthogonal with respect to < -,- >,, and that there exist
positive constants ¢m () so that

< fm,9m >o= Cm(x) < fm,9m >d, Vfm;9m € Pnm.

The proportionality constants are computed by taking fm = gm = ®m and using (1.3.3) for x
ande. B

Let 1 < ¢ < r and denote the vectors in C! by A = (A1, ..., Ar). For notational simplicity
0)» and similarly for the conical func-

----------

tions. Recall that the spherical functions associated Wlth the symmetric cone Q) of X© are

denoted by <I>()\)( -

Proposition 1.3.2 Let 1 < £ < r and let m¥) = (m1,...,my) € N’ be a partition. Then for
every T € X

(0 () = Ym0 P (), (1.3.6)
where ,
"0 08) Tao3) LT+ (1 5)3)
Proof: Recall that for every y € X and A € C
_ (I)m(y)
m milp

Similarly, for z € X and X € C,

@ pnio (@)
N(e—z)= o(ug — o) AZ # (1.3.9)

m()

m® ”‘I) E)HF

In order to continue the proof of the proposition, we need the following result.

Lemma 1.3.3 Let1 < ¢ <r andlety € X be an element of rank at most £. Ifn = (n1,...,n,)
is a partition with ngy1 > 1, then Ny(y) = Pn(y) = 0.
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Proof: The condition nyy; > 1 guarantees that for some j > ¢, Ny is divisible by N; to a
positive power. Notice that rank(P;(u;)y) < rank(y) < ¢. Hence, N;(y) = N;(Pi(u;)y) =0
(because in the Jordan algebra X () elements of rank smaller than j have zero determinant).
In particular, Ny(y) = 0. If k£ € L then rank(k(y)) = rank(y) < ¢, and therefore Ny (k(y)) = 0.
Finally, ®n(y) = fL Nn(k(y)) dk =0. n

Using Lemma 1.3.3 we see that (1.3.8) for z € X yields

Nie -2 = T Vo m. (1.3.10)

m(®)

()

Since @)z, () € Pm’, we obtain by comparing the expansions (1.3.9) and (1.3.10) that

v

PaollE @ ¢
P00 (z) = w Y, (@) = o @, () Wz e XO.
m@ NF

In order to compute 7, we use the known fact (see [FK90]) that

s (Do © 2 (E)mo
H(I)m(z) HF - d © and Hq)m(i) HF = 0) )
m dmw

where dy := dim Zy(wy) =+ 4L —1)5, d o) = dim(Py, ), and dii)(@ has the same meaning
with respect to the algebra Z;(us). Quite generally, the dimensions dy, are expressed by

dm =[] il Z)Jz 2 o _j)l%’ 2 (1.3.11)

B(mi —mj +(j —1)5,5) B(mj —m;+ (i —j)3,

)

IS}

1<i<j<r

where B(z,y) :=I'(x) I'(y)/T'(z + y) is the ordinary Beta function. (see [U83] for the general
case, and [FK94], p. 315 for the case of JB*-algebras).

A straightforward computation yields the expression (1.3.7) for v,,). N

Remark 1.3.4 One can prove Proposition 1.3.2 using the connection between the spherical
2
a’

partitions. (See [M87], [M95] and [St89] for the study of Jack symmetric functions). J;:I) is
defined on all finite sequences (identified with infinite sequences which contain only finitely

polynomials and the Jack symmetric functions JI(I? ), where o := 2, and m ranges over all finite

many non-zero terms), and it is permutation invariant. The connecting formula is

- (@) 4 tr,0,...,0,...)
Om(Y tje) = AL D D gyt > 0, (1.3.12)
j=1 T ()

where 1" := (1,...,1,0,...,0,...) has r “1”. A similar formula is valid also for the spherical

functions @iﬁ)(@ associated with Q(©):

¢ ()
J (t1,...,t5,0,...,0,...)
14 (£) ) s Uly Uy )
Y, (N tjey) = m o Vi, ...ty >0, (1.3.13)
m
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It follows that for every t1,...,tp > 0,

B (Nl tieg) T, (10
/ «
o), (X0 tie) T, (1)

The numbers J{< )(1” ), v € N, are known in full generality (see [St89] Th. 5.4 and [M95]):

= Yn(® - (1.3.14)

T (1Y) =

||':]5

ﬁ (v+1—i+a(j-1)), (1.3.15)

where £(m) := max{k; my, # 0} is the length of m. It follows that if /(m) < r and o = 2, then

(@) yoy _ 2\l T F(ijF(VJFl—])g)_ 2\ iml, a

In particular,

Jli?()é)(lz) (€3) 0w  Taw(rl) 5 Timj+(+1—75)9)
Tm® = (a) = H

NG : (1.3.16)
Jm@(lr) (r%)m(@ I

where ') is the Gamma function associated with the cone Q. The spectral theorem in X
[Lo77] and the fact that L acts transitively on the frames of primitive idempotents in X imply
that every spherical polynomial ®,, is determined by its restriction to span{ej}gzl. Thus
(1.3.6) in general follows from (1.3.6) for x = Z§:1 tje;, i.e. from (1.3.14). 1

Remark 1.3.5 Recall that the half sum of the strongly orthogonal positive roots associated
with Q) is p© = (p (18), . pég)), pg ) = (2j—£—1) . For any partition m® = (mq,...,my)
define A = (A\1,..., \¢) via the “p(O-shift”

A .= m® — pO  namely Aji=mj — pg ) = mj— (2 —0—1) %, 1<j<t.
Then v, can be written as a symmetric function of A0 = (A1, .oy A):
T (re) F()\-+(£+1 a
Vo) = =2 H )1 )a (1.3.17)

This will be crucial in the sequel.

Recall that Hye is the completion of Py (see (1.1.18)) with respect to the inner product
(1.1.20) with A = £ 2.

Corollary 1.3.6 For all functions f,g € Hg% with expansions f = > @) fe and g =
S G0, and for every x € Q)

(@) = D < fm0 I >y oy

m(®)

1
FQMM’* H )\+£+1) ) y
2 T



where, as before,
a

Ajzmj—p(f)ij—(Qj—ﬁ—l)ly

; 1<j<t.

The point is that the coefficients of < f,, ), g >, in the expansion of (fg)(x) are symmetric
functions of A = (A1, ..., \).

1.4 Integration on K-orbits

In this section we will be interested in two sequences of K-orbits. The first sequence is the
G-orbits {8jD}§:1 on dD. Notice that 0,_yD = K(B(vg)), where vy = ep11 + - - - + €. Recall
that uy = e + - - - + €4, and denote the open unit interval in the cone Q) by

IO =09 N (u— QY = {2 e XD:0 < 2 < uy}. (1.4.1)
The second sequence of K-orbits that we shall need is
Op:=KIY), 1<e¢<r (1.4.2)

Note that 0,_¢D = K(vy+ I(é)) and Oy are the K-orbits of the opposite faces I and vy + I®
of the unit interval I := QN (e — ) of the cone 2.

We shall use the subgroup
Gy, = {p € G;p(ve) = ve} (1.4.3)
of G, identified naturally with Aut(Dy(v,)), and the subgroups K,, :== K N G, and
1
KY .= {k € K; k(Z,(w)) = Z,(v), v=1, 2,0}

of K.

We describe now a construction which assigns to a measure v on 1 measures 4 and [
on the orbits d,_yD and O, respectively. The construction uses as an intermediate step a

construction of a measure p on Dy(vy).

Let v be a measure on 1), and define a measure p (depending on v) on Dy(vy) via

/f du:/< Fk(z2)) dk:> dv(z). (1.4.4)
Do(vg) 106 Ky,

We call v the conical part of u. Using p we construct measures i and g on the K-orbits Oy
and 0,_¢D in a canonical way.

Construction of fi: We define

[ ran - i _ ( [ ) ar) aue)

_ /N) (/Kf(k(x%))dk> dv(z) = mﬂx) dv(x).

19




Example 1.4.1 Let A\ > p; — 1 (where py :== ({ —1)a + 2 + b is the genus of Dy(vy)), and
consider the probability measure

r A
d,u(f) (2) i= D hy(z, 2) P dm(z), D = a0 (M) @ (1.4.5)
on Dy(vy), where d¥) := dim Zy(vg) = £({ — 1) & + £+ b, and
he(k(22), k(22)) = Ny(ug — 2), Vo e IO, vk e KO,
The conical part of du(f) is the probability measure
1 _
d(x) = o Ni(ug — 27 Ny(a)" dm(x) (1.4.6)
BQ(Z)( A — )
on IY where Bg is the Beta function associated with the cone Q) (see (1.1.14)).
Example 1.4.2 For A = L;) we consider the probability measure o, on the Shilov boundary
agD()(’Ug) Of Do(’l)g):
/ fdoy:= f(Ek(up)) dk. (1.4.7)
agDo(Ug) K(Z)

Its conical part is the Dirac measure d,, .

O

Note that with respect to the measures u,* and o, considered in Examples 1.4.1 and 1.4.2,

we have
© 2 1 / ) 0, \ @ m(z)HF
o = ® d =—m> - 1.4.8
| m® HLQ(NE\Z)) d](rﬁ)(g) o m® (z) dvy’(z) N eto ( )
and
[4 |® m(e)||2 1
H ( )(17) ||L2(o'£) = FIO) — 0 . (149)

(T )m® (%)mu)

Applying Corollary 1.3.6, and using (1.4.8) and (1.4.9), we obtain

Corollary 1.4.3 Let f,g € Py have expansions f = @) fnw and g =" @) G- Then

(1)

(€ 3)m ) < fn® s G >
< f,9>12000) = —= /CD z) dv(z m*’7m £, 1.4.10
L2(0,5) mZ() D i T () () = (1.4.10)

(ii) For any A > p;—1,

<f9> . w =D, : 22m(£)( d P < Jun0:0ens 2 (1.4.11)
LZ(OEHU‘)\ ) m (T §)m(g)( )m(e) ()\)m(z)
(iii) e
2/m
< [29>120,00) = Z (r9) . n(ld) < fn®s Im@® >p - (1.4.12)
m([) 2 m(@ m(@
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Construction of ji: The K®)-invariant measure yx on Dy(vy) is used to define a measure fi

on 8,_¢D:
/ar_ng dji = /Do(vz) (/K f(k(ve + 2)) dk) du(z). (1.4.13)

Obviously,

[ raie [ ([ ety i) i) = [ Fornan). g

10
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2 Integral Formulas for Invariant Inner Products

2.1 Discrete Wallach points for Cartan domains

In this section we obtain the formulas for the inner products < f, g >ye, 1< <r—1, via
integration on the K-orbits 0,_,D and O,.

Let {U§Z)}§:1 be the elementary symmetric polynomials (1.2.4) in the variables A0 =
(M, A2, ..., A¢), and let o® be the vector map A — (ay)(}\(@), e ,O'ée)()\(ﬁ))). Following
the remark after Lemma 1.2.5, let 49 : D, — S; be the Harish-Chandra isomorphism, and let

A = (7(@)_1 (aj(.f)) L 1<j<t. (2.1.1)

We define also U(()g) (/\(é)) =1, A((f) = I, and let W, be the permutation group of the coordinates
in C!. Thus if U is a W-invariant domain and f is an analytic function in o (U), then the

operator
FA®) = falf, Al (2.1.2)
(defined via the functional calculus analogous to Lemma 1.2.5) is GL(Q®)-invariant and sat-
isfies
(ONZXY) _ @y O\ &)
f(A )(‘P)\(Z)er(@) = f(e"(A ))‘I))\(@er(@ (2.1.3)

for every A¥) € U, where p®¥) is given by (1.2.13). In particular, for every partition m(® =
(my,...,myg,0,0,...,0) >0 we obtain

FAD)@Y,) = f(eOAO))a) (2.1.4)

where A := m(® — p0.

0

Lemma 2.1.1 Let o > (¢ —1)§. Then for every partition m® = (my,...,my,0,0,...,0) we

have

y4
T (a +m®) = (27) -5 H A\ +a— %(e 1) (2.1.5)

where \j := mj — py) =mj — (2 —€—-1)%. Thus T (o + m®) and (@) = Toe (a +
(Z))/FQ(@ (a) are symmetric functions of A0 = (A, A2, ..., Ap). Moreover, for any s € N

s—1 £

ats)me HH(Aj+a+u—%(€—1))

(@) v=0j=1
s—1 ¢

= [IX(@+v-Z-1)Fa7a0). (2.1.6)

v=0 k=0

Thus (a 4 8),@ /(@)@ is a symmetric polynomial in AO = (A, Xo,...,\). Hence the

operator
s—1 ¢
T=[[> (a+v- %(5— 1))+A® (2.1.7)
v=0 k=0
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belongs to Dy and satisfies
(e + 8) o

(@) m®

for every m®) = (my,...,my,0,...,0) >0 and fmw € P,

T fmw = Jm® (2.1.8)

Proof: (2.1.5) is a consequence of (1.1.13) for the cone Q). The first equality in (2.1.6) is
a consequence of (2 1. 5) and the fact that T'(z + 1) = 2I'(z), and the second is a well-known
property of the {Uk }_o- The rest follows from (2.1.3). &

Remark 2.1.2 For every 8 € C define
DY () := N oy, N, e D, (2.1.9)

It is well-known (see [FK94] Chapter XIV and [AU97]) that

‘
71(><e> H f —1)=p). (2.1.10)
It follows from (2.1.6) that if & > (£ —1)§ and s € N then

CRRUMIRN. y NG (A®)
(@) mo) i TDO (2 (t-1)-a—v) :

Since ) : D, — S, is a (surjective) ring isomorphism, it follows that the operator (2.1.7)
admits the following expression

Z(U-1)—« d\°  ats—a(—
=NV, <dx> Ny (2.1.11)

Theorem 2.1.3 Let 0 < ¢ < r —1 and let § > §({ — 1). Then there exists an operator
T = TGP on C®(QW) which is invariant under GL(QWY), so that for every f € Hys with
Peter-Weyl expansion f ="« fm©;

Tf= Z m“) (2.1.12)
<e> 2
Hence, for dll f,g € Hye,
< [f,9>a=<Tf,9>p. (2.1.13)

Moreover, if 3 — {5 € N then T € Dy (i.e. T is a GL(QY)-invariant differential operator).

Remark 2.1.4 Strictly speaking, the meaning of (2.1.13) is that T2 (defined in general

via the functional calculus (1.2.11), and for holomorphic functions via T %(Zm(@ fn®) =

Zm(a(((ﬂ))m((;) )1 2 fia0) mMaps Hga isometrically into Hg. Formula (2.1.13) is valid for all poly-

nomials f,g.
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Proof: We define an operator Tj on holomorphic functions of the form f =Y« f© via
Tof => m® ((fg))% fm@ - Then Tp is well defined and continuous with respect to the topology
2/m

of uniform convergence on compact subsets of D (see [A96]). Notice that the eigenvalues

(B)m® /(€5)me are positive (since myyy =+ =m, =0and 8> §({—1)). If f =3 ) fn©
and g = ), ,0) (0 are polynomials then

1
<Tfg>5= Y Far— < Jm(®> Imw >r=<f,g >z .
(£5)m®

m()

=

Thus Tif maps ’HZ% into Hy isometrically. Using the notation A0 — m® — p(€)7 Lemma
2.1.1 guarantees that there exists a symmetric function of A®) of the form p(a( )\(f))) —
p(ggﬁ)()\(@)’ e aaée)(k(g))), so that for all m® >0

)

Hence T := p(AY) = p(Agg), e AEZ)) is a GL(Q®)-invariant operator whose restriction to
the holomorphic functions of the form » ) fi@ is To. If n:= 8 —£§ € N, then (2.1.6) shows
that p is the polynomial

n—1 V4
s,z =[] (Z(eg - %(e - 1))e_kxk>

v=0 \k=0

where xg := 1. Hence

n—1 V4
a a _
T=pAY,.. A =T] <Z(£2 v =1 kA,<f>>

v=0 \k=0
is a member of Dy (i.e. a polynomial in the generators Agé), ce Ay)). [

Using (2.1.4) and Corollary 1.3.6 we obtain the following result.

Corollary 2.1.5 Let f,g € Hg% have Peter-Weyl expansions f = Y @) fme and g =
Y m® 9 - Then for every symmetric function of A0 of the form

p(@@AD)) = p(o!(AD),... o7 (AO))
the corresponding differential operator
p(A®) =pal . Ay e,
satisfies for every x € QO):
(p(a®) (f9)) (@) = (2.1.14)

(€5) m® ¢
=c Y o) 2 p(@(m® — p1)) < fru, Gt >r @ty (@),
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Ifa>p,—1={—1)a+1+Db, then

/ p(a") (Fg) avlh) = (2.1.15)

I,
(f%)mm (%)m(f) () 0 %)
= a p(e(m™ — p™)) < fro, gmov >F -
mz(a (ri)m(@(%)m“) (@) m®

Here ¢y = L' (£5)/Tow (r5), dp = dimp(X1(ue)) = €0 —1)§ + 1, and v is the measure
defined in (1.4.6).

Notice that by Lemma 2.1.1 the coefficients of < f, ), g0y >F @Ei)(e) (z) in (2.1.14) and
(2.1.15) are symmetric functions of A := m® — p(®),

Remark 2.1.6 (i) If one uses (2.1.14) with = = uy, one obtains (with T = p(A®))

(T 3)(ue) = T(f - 3)(ue) = (2.1.16)

. Z (05) m©tm©
(1) () me

< fm®> Im@® >F -

(ii) If we choose T so that its eigenvalues satisfy

(£5) motm® 1
Cy ) =

Do (Dmo () mo

then for every f,g € Hg%

——— < fm@> Im@® >F
Tf-glue) = Hzgg)m =<f,9 > .
m(®) 2/m(®)

Namely
< fg >pam /S (Tf - 5)(v) doe(v). (2.1.17)

This realizes Hg% as a Hardy-type space on Sy

(iii) It would be interesting to exhibit 7" in concrete terms (not only via its eigenvalues). If
a is even then T € Dy, i.e. T is a polynomial in the generators Ag@)7 Ag), e Ay) of Dy. Tt
would be interesting also to exhibit 7" as a linear combination of Yan’s operators (see [AU9T]).
If a is odd then either D is of type I'V,, with n odd (a case which was considered in [AU97]

and [AU98]| since ¢ = 1), or D is of type II1, (with a = 1).

Theorem 2.1.7 Let 0 < { <r—1 and let « > py—1 = ({ —1)a+1+b. Let p(c®@(AD)) be
the symmetric function of A = (A1, A2, ..., Ag) so that

1 (79 m® (Do (@) me
d
e (6%)311(@) (TZ)m(Z)

p(c @A) = (2.1.18)
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for every A .= m® — pO) Let T = p(Agz), e ,Ay)) be the GL(QW)-invariant operator
defined via the functional calculus (Lemma 1.2.5). Then for every f,g € Hye

<fyg >g¢21:/1 T (}5) v, (2.1.19)
£

()

where vy’ is the measure defined in (1.4.6). Moreover, if s := a —£§ € N, then p is a
polynomial in A and T € Dy, ice. T is a GL(Q(Z))—invariant differential operator on ().

Proof: The right hand side of (2.1.18) is symmetric in AO .= m® — p® by Lemma 2.1.1.
Thus (2.1.14) yields for any f,g € Hys with Peter-Weyl expansions f = > ) fno and

9= m® Im®;

-~ < fm®>9m@® >F (@) m
[r(fa)ato = Y Smoetmo 2O [0 ) 10(0)
4

d
L m® (3)m© (F)m®
< fm®> Im@® >F
= Z mga’ m =< f’g >Z% X
m® ( §)m(5)

Assume that s :=a —£§ € N. If also n := (r — £)§ € N then

i d e

a
re
2 2 7 {

and Lemma 2.1.1 guarantees that p is a symmetric polynomial of degree £(s+2n) in (A1, A2, ..., Ag).
If (r —£)§ ¢ N, then necessarily b = 0, and both

ny ::(T—E-i-l)g—l and ngzzg—ﬁgz(r—l—ﬁ)g—}—l

are in N. Again, Lemma 2.1.1 guarantees that p is a polynomial of degree ¢(s + nj + n3) in
(A1, A2,...,A¢). This completes the proof. &

Remark 2.1.8 (i) Using Lemma 1.3.1 and Proposition 1.3.2 it follows that if T"is a GL(Q®)-
invariant operator on C®(Q®), then for every f,g € Hys

—_~—

T (}E) —Tf.g=f Tg. (2.1.20)

Theorems 2.1.3 and 2.1.7 can be reformulated accordingly. For instance, (2.1.19) can be
rewritten as

< frg>p= /I Tf gdv) = i f-Tgdv. (2.1.21)
L 4

(ii) Formula (2.1.18) can be rewritten as

. A k(N du® (5
<oz [ ( [ >> ak
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2.2 Discrete Wallach points for symmetric tube domains using Fourier trans-
form

In the following we develop integral formulas for the inner products in the spaces H,e (T'(£2)),
(where T'(Q2) is the symmetric Siegel associated to D via the Cayley transform) in terms of the
Fourier transform of the functions. We begin with the relatively simple case of a Siegel domain
of type I. The results presented below for the discrete Wallach points {£§ Z;(l) will be somewhat
analogous to our earlier results [AU97] for the continuous Wallach points A > (r — 1)3. The
development of the integral formulas for a general symmetric Siegel domain of type I requires
additional machinery, and will be treated in the next section.

Assume that Z is a JB*-algebra with a unit e. The open unit ball of Z is holomorphically
equivalent to the tube domain
T(Q) =X +iQ
via the Cayley transform c(z) = i(e +2)(e — 2)~1, z € D. T(f) is a symmetric Siegel domain
of type I. For any A\ € W (D) the operator VN f = (f oc™1)(J ¢~ 1)MP maps the space Hy (D)

isometrically onto a Hilbert space of analytic functions on T'(€2), denoted by Hx(T'(£2)). The
inner product in Hx(7T'(€2)) is defined by

-1

(900 = (o9 my @y = V), VI gy, oy - (2.2.1)

The description of H(7T'(€2)) is therefore equivalent to the description of H) (D).
The reproducing kernel of H(T'(€2)) is

z—w*

Ky (2,0) = N( )_A, sweT(Q) . (2.2.2)

?
Namely, for all z,w € T(Q)

*

(TP (e (). ) Te T = M)

1

It is known that for A > p —1 H)\(T'(R2)) is the weighted Bergman space

HA(T(Q)) = L2(T(Q),my) = L*(T(Q),my) N {analytic function}

where
dmy(z) = cxde N2y Pdy, z=z+iy, z€ X, yeQ
and
o = Lol
mTa(y — )

Also, the Shilov boundary of T(Q) is X := {z € Z; z* = 2z}, and Ha(T(Q)) coincides with
the Hardy space H?(X) (consisting of all analytic functions f in T'(€2) for which || f [|%, (x)=

sup [ |f(z +iy)Pdz < o).
yel X

Using the Fourier transform (with respect to z) one obtains the following result. Here for
A > (r —1)% we consider on €2 the measure

dor(w) =B Nw)r > dv, By = (27) 2 T(N). (2.2.3)
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Proposition 2.2.1 [AU97; Proposition 6.1] Let A > (r — 1) 5, and let f be a holomorphic
function in T(2). Then the following are equivalent:

(i) f e HAT());
(ii) The boundary values f(x) := Qlimo f(z + iy) exist almost everywhere on X, and the
Sy—

Fourier transform f of f(x) is supported in 0 and belongs to L*(2,0));
Moreover, the map f — f is an isometry of HA(T(Q)) onto L*(Q,0y). Consequently, for all

fr9 € HA(T(2))
(f,90r = /f g doy (2.2.4)
Q

Our goal here is to extend Proposition 2.2.1 to the discrete Wallach points £, £ =0,1,..., r—
1. With respect to the fixed frame {ej}§:1 of minimal, pairwise orthogonal idempotents, we
denote uy = Z§:1 €j> Ve = > i_gy1€5, 0 < £ <7 —1 Recall that the orbits of GL(Q2) on 0
are
A0 = GLO)(ue) = {pue); ¢ € GLIQ)} (2.2.5)
= {2z €Q; rank(z) =/}, £=0,1,2,...,r — 1

The following fundamental fact is established in [RV76] and [La87]. An alternative direct
proof will be given in Section 3.1 below.

Theorem 2.2.2 Let 0 < ¢ < r — 1. There exists a unique measure jp on 082, having the
following properties:

due(p(x)) = Det()'3! ¥ dpg(x), Vo € GL(Q) (2.2.6)

where dy = dim(Zy(e)) =r(r —1)% +r, and

(S

/896_<x’y> dpe(y) = ve Ne(z)™"2 Vo e, (2.2.7)
(1

where vy = (2m) 02T (£3).
Let GL(Q2) = L N A be the Iwasawa decomposition. Then it is known that the set

No A(ug) = {z € 8,(Q); Ny(z) > 0} (2.2.8)

is open and dense in 9y Q and pg(9; Q2 \ Nq A(ug)) = 0. The following result is established in
[La87].

Lemma 2.2.3 An element x € 9; 2 belongs to Nq A(uy) if and only if in its Peirce decompo-
sition relative to ug 1 ¥ = w1 + 19 + X0, T1 is invertible in Xi(ue) and

z0 = 2ve(@12(21/2 331_1)) (2.2.9)
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The expression of yiy in the coordinates (z1,2;/9) of © € No A(uy) is
a_d
dpg(x) = Ng(a:l)e§7? dxq d(El/Q (2.2.10)
The properties of uy enable us to describe the space Hg%.

Lemma 2.2.4 Fizw € T(2) and 0 < ¢ <r —1. Then the Fourier transform with respect to
x of the function Ki(fﬁ)(x) = K% (z,w) = N(IZ—W*)J% is the following measure with support
O Q2

—a d
Kgi)(t) _ (27) e~ Hw™[t) dpg(t) (2.2.11)
e

where vy = (27’[')2(7“76)%119(@)(%), as in Theorem 2.2.2.

Proof: Theorem 2.2.2 and the fact that €2 is a set of uniqueness for holomorphic functions on
T(€2) imply that for all z € T'(Q2)

. Z . ga
/ "0 d iy (t) = N(;)EQ
02
It follows that for all z,w € T'(£2)

_E% z—w*
K%)(z,w) = <N(Z — v )) _1 e T dpy(t)

Hence . 1
K ) = — / e/ 10 d (1), w e T(R) (2.2.12)
]
02

Thus Kl(f §)(ar:) is the inverse Fourier transform of the measure (Q,YLZCZ e "Wt d 1y (t), which is

supported on dy 2, and (2.2.11) follows. &

/E
Lemma 2.2.4 can be reformulated by saying that KT(U 2) is a measure supported in 9y €2

which is absolutely continuous with respect to py, with Radon-Nikodym derivative

—

(€3) d

dKy? (2m)% i)
t) = e "W 2.2.13
d gy ®) Ve ( )

Lemma 2.2.5 For every z,w € T(Q) and 0 < <r —1

TS T 2

<de P > = BT e (5, ) (2.2.14)
d pg dpg /[ L2(89,u0) Ye

Proof: Both sides of (2.2.14) are holomorphic in z and anti-holomorphic in w. Therefore it
suffices to prove (2.2.14) for z = w = u+1iv, u € X, v € Q. In this case we obtain by Lemma

2.2.3
a2
d K2 2)2d w12 2)2d :
i - & / et du(t) = &) / e 210 d pug (1)
fe L2(89,, ) i 8, e ¢ Q
2d 2d
= C97 Nows = BT ke ww) . w
Ve Ve
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Fix 0 < /¢ <r —1 and consider the space

H (T(9)) = span {Kﬁ%); weT@)} . (2.2.15)
We define a map VZ(O) on Hé%) (T'(2)) via
1 R
Op_ % 4 2.2.1
= i dpe (2:2:16)

where f is the Fourier transform of the restriction of f to the Shilov boundary X, and 5%

is the Radon-Nikodym derivative of the measure f with respect to ug, which exists in view of
Lemma 2.2.4 and the fact that f € Hég) (T(2)).
2

Lemma 2.2.6 VZ(O) is an isometry of HEO) (T(Q)) into L*(0; Q, i), and it has a dense range.

a
2

Proof: : Let f= )" ¢; Kffj%) € Héo)(TQ). Then
j=1

a
2

n n
_ L4 L& _ a
If 7= D" e (K K Jes = > ciey KU (wj,wi) .
i,j=1 i,j=1

Also, Lemma 2.2.5 implies

I V(O) Hg _ Ye Zn: T <dK1(fi5) qu(sz)>
£ 02w @mpd A= TN dpe T dpe @0

n
= Z Ci Cj K(z%)(wjawi) :H f H?%
ij=1

)

Thus VZ(O) is an isometry. The range of VK(O contains all the functions

VK(O) (Wl/z Kg%)) (t) = e 10y e T(Q) .

The linear span of these functions is a self-adjoint sub-algebra of C(9;2), which separates
the points of 9y 2. Therefore VZ(O) (Héo%) (T'(Q2)) is dense in Cy(9; ) by the Stone-Weierstrass
theorem. Since py is mutually absolutely continuous with respect to Lebesgue measure on Jy §2,
the density of VZ(O) (Hé%) (T(2)) in L2(9,8, p¢) follows now by standard arguments. N

It follows from Lemma 2.2.6 that Ve(o) extends an isometry V; of Hé%) (T()) onto L2(9y 82, ).
2
The exact statement is the following result.

Theorem 2.2.7 Let 0 < ¢ < r — 1, and let f be a holomorphic function in T'(2). The
following conditions are equivalent:

(1) f € Hes(T(Q));
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(ii) The boundary values f(x) = Qlim Of(x + iy) exist almost everywhere on X, the Fourier
Sy—

transform f of f(x) is a measure with support in Oy which is absolutely continuous with

respect to e, and the Radon-Nikodym derivative j—j@ belongs to L?(0,8, pg). Moreover, the
map Vy f = ;—Jg is an isometry of Hea (T(82)) onto L2(0y82, o). Thus for all f,g € Hﬁ) (T'(2))
2
Low(3) [ df . dj
a = t t) dpe(t 2.2.17
o = 2 [ 220 T2 0 dutt) (22.17)
9, Q
where §p = d — £(r — {) 5.
Expressing uy via (2.2.10) on Ng A(ug), we obtain
Lo (€3) df dg o _d

a = ——— ——(t) =—— (t) Np(t rodty dt 2.2.18
ahs =gt [ T 0 T2 M) an s (2215

Nq A(ug)
Remark 2.2.8 In the case where A > (r — 1) 5, (2.2.4) can be written in the form
_ Ta(¥) d dg
<f7 g>)\ - (277)2d / d/l/)\
Q

-

(t) (t) N7 dt (2.2.19)

d f

(where f,§ are considered as the measures f(t)dt and §(t)dt). Thus (2.2.18) is the right
analogue of (2.2.19), and therefore of (2.2.4). It is an interesting problem to obtain (2.2.18)
from (2.2.19) by analytic continuation in the parameter X.

2.3 The case of a symmetric Siegel domain of type 1]

Assume now that e is a maximal tripotent in Z which is not unitary. Thus Zi(e) + Z;/2(e)
and Zy5(e) # 0. Thus
@

dy :=dim Zi(e) =r+r(r—1) 5

dyjp = dim Zy5(e) = rb
(where 1 <b€N). Zj(e) is a JB*-algebra which operates on Z; /5(e) via
R(Z) w = 2{276777}7 z € Zl(e)? ne 21/2(6) : (231)

R : Zi(e) — End (Z;5(e)) is a monomorphism of Jordan *-algebras, where the involution in
End (Z;5(e)) is induced by the given K-invariant inner product ({|n) (see [Lo75], Lemma 8.1,
p.75). Let us denote

F(&n) ={&mn, e}, &neE Zyple) . (2.3.2)

Then F': Zy/5(e) X Zy/9(e) — Zi(e) is sesquilinear, and F(¢,§) € Q for all € € Zy2(e). We
denote also F(§) := F(,€). Let us define 7: Z x Z — Zy(e) by

T(Z, w) = A1 _’L | — 2F(Zl/2, ’wl/g) (233)
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where z = 21 + 219, W= w1 +wyp (21,w1 € Zfe) and zy /9, w1 /2 € Zy/2(e)). For convenience
we denote 7(z) = 7(2, 2). The associated Siegel domain of type II is

TQ):={z€Z; 7(z)eQ}. (2.3.4)

It is known that the Cayley transform

c(z)=1 cta

+v2 R((e - 21)71)(21/2)7 z=21+ 212 (2.3.5)

€ — 21

maps the Cartan domain D (i.e. the open unit ball of Z) biholomorphically onto T'(2).
Again, for A € W(D) the operator VIV f = (foc™1)(J ¢=1)MP maps H, (D) isometrically onto
HA(T(D)), which is endowed with the inner product (2.2.1). Also, the reproducing kernel of
HA(T (D)) is

KXY(z,w) = N(r(z,w))™, zweT({). (2.3.6)

Our main goal here is to describe the inner product of H)(T'(D)) concretely.
The Shilov boundary of T'(€2) is the set

H={z € T(Q):7(z) = 0} = {o + i F(&) + & = € Xi(e) +& € Z1 p(e)}. (2.3.7)

Proposition 2.3.1 Let {,n € Zy5(e). Then for every v €

(F(&) + F(n)|v). (2.3.8)

DN |

(P, &)[v)] < (FE)*(F(nlo))'/? <

Thus 1
Re F(n,€) < 5((F(€) + F(x). (2.3.9)

The straightforward proof is based on the positivity of F' (i.e. the fact that F(£) € Q for all
§ € Zyys(e)), and it is omitted.

Corollary 2.3.2 For all z,w € T(Q)

Re (1(z,w)) > =(7(2) + T(w)) . (2.3.10)

[N

In particular Re (1(z,w)) € Q, and this is true even if z € H and w € T(Q).

Proof: Using (2.3.9) we have

2R7(z,w) = A ; 2,0 ;wl — 4Re F(z1/, w1)2)

zl—zf+w1—wf

; Faa 2F(212) = 2F(wypp) = 7(2) +7(w) . W

For A > (r—1) § consider the measure duy(x) = N(aj))ﬁdT1 dron ). For A\ =/(5, 0</<r—1,
let gy := pe be the Lassalle measure (see Theorem 2.2.2 and Section 3.1 below). Then for all
A e W(D)

Aawmmmsz@*, (2.3.11)

with vy = Tq(X) for A > (r—1)§, and vy = v = (2m) 1Dz Ty (3)forA="ls, 0<L<r-1.
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Corollary 2.3.3 Let z,w € T(Q2) and let A € W (D). Then
1
K“N@uﬁ—-m/e_“V”W“duﬂﬂ. (2.3.12)
X Ja
The formula holds also for z € H and w € T(Q).

Proof: Since Re7(z,w) € €, the integral converges absolutely, and uniformly on compact
subsets of T'(2) x T(2). Therefore, the integral is holomorphic in z and anti-holomorphic in
w. Since K (’\)(z,w) is also sesqui-holomorphic, it is enough to show that (2.3.12) holds for
z=w € T(Q). Writing z = x +iy + & (v € X, (e), y € Q, £ € Zy/5(e)), and using (2.3.11),
we obtain

/gz€_<7(z)|t> dpn(t) = NNEE) =nEN(z2) .
Thus (2.3.12) is established for all z,w € T'(Q2). Letting 7(z) — 0 in (2.3.12) for fixed w € T'(2)

(i.e. z — H), we obtain (2.3.12) also for z € H and w € T'(2). 1

Lemma 2.3.4 Let A € W(D), fixw = u+iv+n € T(Q) (withu € X1(e), v € Q, 1€ Zy55(e))
and § € Zy5(e), and consider the function

KN@)= KN@+iF@E) +¢ w), z€Xi(e). (2.3.13)
Then the Fourier transform of Kl(v’\g, considered as measure, has support in Q, and is given by

_ v
et = (273 exp {—(F(§) +v —2F(&n) +iuft)} dux(?). (2.3.14)

=

Proof: Using (2.3.12) for w € T(Q) and z =z + i F(§) + £ € H, we obtain

() = = [ el (~(F@+o-2 FEntinlt) g 1)

™ Ja

Thus K I(U)‘% is the inverse Fourier transform of the measure v, ' exp {—(F(&) +v — 2 F(£,n) +
iult)} dux(t), whose support is contained in Q. From this (2.3.14) follows by inverting the

Fourier transform. &

For A > (r — 1) § we consider on ) x Z; 5(e) the measure

dor(t,€) = N(£) dpx(t) dE = NN+ de de . (2.3.15)

Lemma 2.3.5 For every w € T(Q)

I?(T) 2 D
—s o (t.6) = 27 1) (1 0
// d 1y (t)‘ dox(t,§) = To(\) KW (w,w) . (2.3.16)

Q><Z1/2(e)
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Proof: Writing w = u + iv 4+ n as in Lemma 2.3.4, we obtain p) from (2.3.14)

) 2
/ de,g (t)‘Q de = (27) 1672<v\t) / 672<F(5)72R6F(£,17)|t>d5

d 7"
Zy/2(e) Z1/2(€)
2d
_ @M o 2 / e~ 2AFE=mn) g¢
g
Z1/2(e)
2d
_ @O e IREE? ge
7"
Zy/2(e)
(27T)2d1+7”b

>
Here we used the well-known formula h
(@l{y, 2z, w}h) = ({z, y, 2}w), Vz,y,z,weZ
to obtain
I R('/2) € |P= (€|R(6) €) = (€I2{t, e, €}) = 2({€, &, e}lt) = 2AF(E)It) -
It follows that

QXZ1/2 6)
_ @O [
> /Q RO
) N S €0 L C P

Corollary 2.3.6 Let A > (r —1)5. For all z,w € T(£2)

dK dl?a) 270)7P
/ / du,\ () do(t,€) = 2L KOz, w).
Z1

dV)\

Also, considering KL(U )( t) as a function, we have

/ / ( )dE N ()7 dt = (sz)m; KM (z,w).

(2.3.17)

(2.3.18)

(2.3.19)

Proof: Both sides of (2.3.18) are sesqui-holomorphic in (z,w) and coincide on the “diagonal”
z = w by Lemma 2.3.5. Hence they coincide for all z,w € T(92). (2.3.19) is an obvious

consequence of (2.3.18), since

dKD) i T
W NN = K0

(2.3.20)

The generalization of Proposition 2.2.1 to Siegel domains of type II is the following result.
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Theorem 2.3.7 Let T'(Q) be a symmetric Siegel domain of type II, let X > (r — 1), and let
f be a holomorphic function on T'(Y). Then the following conditions are equivalent

(i) f e HA(T(Q));

(ii) The boundary values of f at points z = x +iF (&) +& (x € X1(e),§ € Z% (e)) of the Shilov
boundary H, i.e.

fel@) = fa +iF(©) +) = lim f(a+iy+iF(©)+¢)

exist almost everywhere, the Fourier transform fg(t) is supported in Q, and

/ / |fe(t)2de N(£)* > dt < oo.
Q Z%(e)

Moreover, the operator Vy : Hx(T(2)) — L?(2 x Z%(e), N(t)gf)‘ dt d€) defined by

To(M\)2
W6 = 2n? fe(t) (2.3.21)

is an isometry of Ha(T(Q))) onto L*(Q x Z%(e), N(t)g_/\ dtdg¢). In particular, for every f,g €
HA(T(€2))

<fg p// G dEN (1) dt. (2.3.22)

The proof uses (2.3.19) and is analogous to the proofs of Proposition 2.2.1 (i.e. Proposition
6.1 and Theorem 6.1 of [AU97]) and to the proof of Theorem 2.2.7. Therefore we omit it. We
remark that in view of (2.3.18),(2.3.22) can be written in the form

< g = FQ / / dfet) die(®) 4o\ o (2.3.23)

)"P dvy  dvy

where o) is the measure defined by (2.3.15).

We turn now to the case where A = £3, 0 < £ <r — 1 (and for simplicity denote Ves = 1y
and Yeg = ve). Let t € 0,9, then its support idempotent s(¢) has rank ¢. Thus Zi(e) is the
2
direct sum

(s(t))) + (Z (€) N Zo(s(t))> . (2.3.24)

1
2
Let us denote -

) <T(Q)> ={t+ &t €€ Zi(e) N Za(s(t)} (2.3.25)
(The notation is chosen as to indicate that the Fourier transforms of functions in Hyq (T'($2))

are supported in 0y (1{(5))) O (Cﬁﬁ)) can be viewed as a bundle whose base is 0,2,
and the fiber over t € 0y{ is Z% (e) N Z% (s(t)). Let us consider on 9y (T/(ﬁ)) the measure /iy,

defined by
diry = ¢ | d . 2.3.26
/ - I ( Lo FE40 5) pelt) (23.20)

2 2
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For every t € 0, let det(t) = Nx (1)) (t) be the determinant of ¢ in the Jordan algebra

—

X1(s(t)). We define a measure o, on 9y (T(Q)) via

= (§] b ..
/MA Jdoy = /M /Z ( St +€)de | det(t)dpue(t), (2.3.27)

T(Q)) 1(©NZy (s(1)

i.e., dog(t, &) = det(t)bdfig(t,€). Namely, on the base 9,0 we use the measure pp and at the

fiber above ¢t € 9,0 we use the measure det(t)?d¢. Notice the analogy between o, and o for
A>(r—1)g.

Lemma 2.3.8 Let 0</{<r—1and fizw=u+iv+n €T (Q) (where u € Xi(e), v € Q and
nE Z% (e)). Then the Fourier transform (with respect to x) ofKﬁg)(:v) = Kffg)(x+iF(£)+§)

is a measure on Oy (T(Q)) which is absolutely continuous with respect to (i, and

D) a

dKy 2 2m)*% ) ) 1
—(t,§) = (2m) exp | — (iu—2iSF(&,n) + =7(w)+ F(§—n)|t ) | . (2.3.28)

dfi Ve 2

Moreover, with x; = (2r)2H0==03 . 9=t ye have
/(-[T) 2
dKy? a
/ ] doy = XKD (w,w). (2.3.29)
o, (T(@) | dite Ve

Proof: Using Lemma 2.3.4 for A = /g, we see that for t € 9,2 and § € Z% (e),

—ja )%
RS20 = E exp (- Gru+ v+ F(©) — 2P (Enle) dn)
It is easy to see that for all £, € Z%(e)
(FEmt) = (F(P1(s(t)S, Prs(t))n)[t). (2.3.30)
)

Hence, the measure Ky, *>’ is supported in 0, (T (Q)), it is absolutely continuous with respect
to fig, and its Radon-Nikodym derivative with respect to iy is given by (2.3.28). Next, using

(2.3.30) we see that for fixed t € 9,0

(€3) 2d
/ dKi’JQ o) de - (277)2 1e—<7(w)|t>/ e~2F(©11) g
Zy (N2 (s(0) dfi Y Zy ()7 (s(1)
2dy b
_ P el geg ()
g
Hence, using Corollary 2.3.3, we obtain
/(-WT) 2
de 2 (27T)2d1 7.réb B .
)] dote) = | e
/(’94<T(Q)) dfu ©.0) (£:€) o/ EXo) 2
= S N@(w) = S K w,w). w
Low (€3) Low (€3)
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Corollary 2.3.9 Let 0 < { <r—1. For every z,w € T(f2),

(€3) (€3)
dK, 2% dK,? a
/ - —  ———doy = ia K (2, w). (2.3.31)
2 (T() dfiy dfig Lo (05)

Proof: Both sides of (2.3.31) are holomorphic in z and anti-holomorphic in w, and they
coincide on the “diagonal” z = w. Hence they coincide for all z,w € T(2). 1

Theorem 2.3.10 Let T(Q2) be a symmetric Siegel domain of type II, let 0 < ¢ < r —1, and
let f be a holomorphic function on T(2). The following conditions are equivalent

() € Hys (T(Q);

(ii) The boundary values of f

fo(a) = J(a+iF(€) +€) = lm [(o+iy+iF()+6)

exist for almost all points x + iF(§) + &£ of the Shilov boundary H, the Fourier trans-
form fg(t) = fX1(e) e~ fe(2)dx is a measure with support in Oy (T(Q)) which is

absolutely continuous with respect to iy, and the Radon-Nikodym derivative 88[{2 belongs

to 12 (01 (T) 1),

—

Moreover, the operator Vi : Hys (T(Q)) — L? (84 (T(Q)) ,Jg) defined via

1 R
[P0 (@)) 2 of
Xe Ofug

(Vef)(t,8) = ( (t,€) (2.3.32)

is a surjective isometry. Thus, for all f,g € Hg%(T(Q)),

< f,g > = W/ of % doy (2.3.33)
U Xe o, (T(@) e Ofue
T (£3) / / of 9§ b
= — - t, oo t, det(t)” d dve(t).
X¢ 02 \ /2y (e)nZy (1) 3uz( ¢) Bue( &) det(t)”dt | due(t)

The proof of Theorem 2.3.10 uses Lemma 2.3.8 and Corollary 2.3.9, as well as the standard
arguments used in the proofs of Proposition 2.2.1 and Theorem 2.2.7; it is therefore omitted.

Although the bundle 9, (T/((T)) and the measure o, give natural and canonical description
of the space Hg% and its inner product (Theorem 2.3.10), they are not easy to use in some
concrete computation. We therefore develop now a formula for < f, g > 0g analogous to (2.3.33)
with more concrete space and measure, which are however not invariant.

Recall that uy = Z§:1 €jy Ve = i_gyq1 €5 We write

N
BN
S
=

N[

(eyNZ =7

(ug), (e) N Zop(up). (2.3.34)

1 1
2 2

1
A
2
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1
Thus Z1 (e) = Z(Q) + Z(O). Recall also (see Lemma 2.2.3) that every ¢ € NoA(uy) C 942 has

Peirce decomp031t10n t= t1 +t1 +to, where t1 € X1 (ug) positive and invertible, t1 e X1 (ug) =
X1 (vg), and tg € X (vp) depends on t; and t1 via
2

to = 2up(t (t%tfl)), (2.3.35)

1
2

where 7! is the inverse of t; in X (uy).

1
Lemma 2.3.11 For every £ = 5% + & € Z% (with 5% € 729 4nd & € Z(lo)) and every
2
t=1 +t% +to € NoA(uyg),

2P(E)It) = | R, + Rty )R(ty)eol? (2:3.36)
where tl_% is the inverse of tl% in X1(ug).
Proof: (2.3.36) will follow as soon as we prove that
26 Erudln) = [RUDE? (2:3.37)
2{e0. & udlty) = (R %R(t%xom(t%@ (2:3.38)
2{ey, fo,udlts) = (ROTIEIR(L)R(E o) (2:3.39)
and
2{e0. &0} lto) = Rty )R( 6l (2:3.40)

Indeed, by the “Peirce calculus” and orthogonality of the Peirce spaces

AR = 2({& + &0, €1 + Lo, ue + veblts + 1 + o)
= 2({5%75%7uf}|t1> + 2({50>£07Uf}|t0>
+2<{§0,§%, W}|75%> + 2<{§%,§o,vz}|t%>-

Using the fact that R : Zi(e) — End(Zi(e)) is a monomorphism of Jordan--algebras, (see
2
1
[Lo75], Lemma 8.1, p. 75), we see that R|z () : Z1(ue) — ZEQ) is also a monomorphism of
2

3)
9

Jordan-x-algebras. In particular, for every {1 € Z (1
2

R(t

==

JRUT)E, = R(L)E, and R(t; T)R(t])¢

1
2

It follows that

(€3 R(E) RUTIEL) = (63| R()Ey)
2
(

1
IREDE? = (€
§ |{£1 ug,t1}), since t1 is orthogonal to vy

= 2 {51 €1, ueblty), by (2.3.17),
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D)

0)CZ(l , we
2

and (2.3.37) is established. Using similar arguments and the fact that R(¢

obtain

)Z

m\»—-/\

1
2

(RUFIE R R(E)EG) = (€4 R R DR(E)E) = (€3]R(E)6)

= 2<€%|{§0,U@,t%}>, since & is orthogonal to uy
= 2({&1, 0, vt ).

This establishes (2.3.39). The proof of (2.3.38) is similar and is therefore omitted. To prove
(2.3.40), notice first that

(s, *)R(1

1
2

1

ol = (&olR(t)R(t ) Rt *)R(t
= (@lR(ty)R(R(LE)-

Next, since R is a Jordan homomorphism, it preserves the “quadratic representation” operator
P(x) :=2M(z)?> — M(2?) (where M (z)y := xy = {z,e,y} Va,y € Z1(e)). Thus

)60)

1
2

N|=

1
2

N[

R(t1)R(EHR(E) = R(P(t)t")
= 2R(M(ty)*7") = R(M(t3)t)
2
Now, M (t1 t_1 =t1 t;t_l € Xi(up) + X1(vy), hence
2 2 2 1
2R(M (t%) e = 4{t%(t%t1_1),v4,§0}, since & is orthogonal to wy

= 4{ue(ty(t1t7)), ve, 0}

2{to, ve, &0}, by (2.3.35).

Next, t2 € X1 (ug) + X1(vg). Hence M (2)t;! € X1(ug), and therefore R(M (¢3)t71)& = 0. Tt
follows that ’ ’

IR( RGP = (€ol2ROL(E)2)e - R(M(t1)t; ")éo)
= 2(&l{S0; ve, to}) = 2{{&0, o, ve}lto)
and (2.3.40) is established. This completes the proof of Lemma 2.3.11. &

[NIES
~

Let us define a measure g, on the set NoA(ug) % Z(l via
2

/ e / o FE+€0)dEs | No(t)Pdue(t). (2.3.41)
NoA(ug) /252 No A(ug) z; 2’ 72

Notice the analogy between 7, and o4 (and the fact that they use the same number of variables.

The advantage of 7, is that it uses fixed coordinates (t1,%1/2,&1/2) € Q1 (ug) X Xy 2(ug) X Zi/éz).

Lemma 2.3.12 Let 0 </ <r—1 and w € T(2). Then

e
£3)
/ / de’Z% (t)| de(t,€1) = 0 K5 (w,w) (2.3.42)
NoA(u) J22 | dpe 720 T (09) ’

where x¢ s as in Lemma 2.5.8.

39



Proof: Write w = u +iv +n with u € Xy(e), v € Q and n € Z1, and fix t € NgA(uy) with
2
Peirce decomposition t = t1 + t1 + to with t, € X (u) and ¢y given by (2.3.35). Then
2

— 2
(£3)

dK, 2
wiy )| = (2m)*h o {r(w)[ty ,~2FE L —m)lt)
dpug 7 7

and in view of Lemma 2.3.11,

/ e2AFE@ I ge ) = / e*||R(t}/2)(§1/2*771/2)*R(tl_l/Q)R(h/z)UO||2d§1/2
zy47 zy47

- / e 1207 Q(R(E7) 2, 1) = 7 Ny(ty) ™

(1/2)
295

Using this and the knowledge of the Laplace transform of py (see Theorem 2.2.2), we obtain

o —

(¢3)

dK ¢
[
dpie

NyA(ug) Z%m

2 2d1+4b
_ @m® / =TI 41,1

2
A1 2 No(t1)? dpg(t) =

= ’72
NaA(ug)
(27T)2d1+€b _ga Xe (02)
=~ _—  N(r(w 2= an K2 w,w) . [ |

Theorem 2.3.13 Let T(Q2) be a symmetric Siegel domain of type II. Let 0 < ¢ <r —1, and

let f be a holomorphic function on T(). Then the following conditions are equivalent:

() f € s (T(9);
(ii) The boundary values of f at points of the Shilov boundary H :

fe(@) =[x +iFE) +&) lim f(z+iy +iF()+E)

exist almost everywhere on H, the Fourier transform fg(t) is a measure with support in Op )

which is absolutely continuous with respect to pe, and the Radon-Nikodym derivative %(t)

I

0 (£2) 1/2>

satisfies

f12
5/ dGe (t,€172) < o0

Moreover, the operator Vi : Hys (T(Q2)) — L?(0,8 x ZSQQ), o) defined via

0 (53)> 2 dfe, ) (2.3.43)

I
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is a surjective isometry. Thus, for all f,g € Hg%(T(Q)),

Lo (¢ dfe d@g a g dp
(f,g)es = “F—2- / / d/:f dljf (t) d€rja Ne(t) 20 dty dtyy . (2.3.44)
NoA(ur) 7(1/2

The proof relies on Lemma 2.3.12 and standard techniques (as in the proof of earlier Theorems
in this section); it is therefore omitted.

Remark 2.3.14 (1) 64((f(_9\)) should not be confused with the boundary orbit 9,(7'(2)) of

T(Q):
W(T(Y) = {2€T(Q); 7(2) € 0,02} (2.3.45)
(2) There is a representation ¢ +— @ of GL(£2¢) on Z; 5(e), defined on the generators of GL(2)
via .
P(z)=R(z), z€Q, and (=¢  (€eL.
One has

P(F(&n) = F(2(8),¢(n), ¢ € GL(Q), &n € Zya(e).
GL(Q) acts also on 0y (TT(T)) via

p(1,6) = (p(t), 2(€),  » € GL(Q), t € 0u(Q), & € Zyya(e) N Zya(s(t)) -

In particular, p(§) € Z;2(e) N Zy/2(s((t))). The proof of Lemma 2.3.8 yields the transforma-
tion formula
op0 @ = (Det p)btts e oy Vo € GL(Q) (2.3.46)

as well as the Laplace transform formula

[ Oyt ) = (2mP 0% o (65) N(w) 72 (2.347)

—

(T ()

|

for all v € Q. These properties are analogous to the corresponding properties of py (see
Theorem 2.2.2).

2.4 Realization of H,,(7(2)) and H,,(D)by boundary integration

In this section our main concern will be the Wallach points

a4:£g+g, 0<f<r—1. (2.4.1)

Let D be a Cartan domain and let 7'(2) be the associated symmetric Siegel domain (as in the
previous section). We assume that T'(€2) is of type II; the analysis in the type I case is easier
and will follow from the general case.

For 0 < /¢ <r —1 consider the set

2(T(Q) ={2€T(Q); 7() € 0,0}. (2.4.2)
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Thus 9p(T'(€2)) consists of all points
z=x+iy+iF(§)+¢& z€Xi(e), &€ Z%, y € 0.
Hence 0,(T'(€2)) is the direct sum of the Shilov boundary H and i 0,2:
O(T()) = H +1i 0,
We endow 0p(T'(€2)) with the measure
dM] D (2) = et d de dpug(y),
where z =z + iy + 1F(§) + £ as in (2.4.3) and

p = 905 girteng Lo (t5),
Lo ()

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

The reason for including the constant 821 in the measure will be clarified by the next lemma.

Thus M, ET ) s a constant multiple of the product measure M, ET @ — H X g, where

dmp(x +iF (&) + &) = dz d€

is the Haar measure of H.

(2.4.7)

Lemma 2.4.1 Fizw=u+iv+n €T(Q), withu e Xi(e),veQ andn € Zi(e). Then
2

2
/‘\KW>(Mﬁmﬁ=Kwkmw>

(T ()

Proof: Let z € 0,(T(£2)) have the decomposition (2.4.3). Then

K0 (2)

2

Hence, as in [AU97, Theorem 6.3]

!)K,ffﬂ(z)f dr = )[‘N (:L‘—|—i <y+;r(w)+F(f—n))>

1 72045+d71
= o (v gr e FE-n)

where di = dimg X1(e) = r(r —1)§ +r and

Lo(20 — 4)

r

c = 4d1—7‘ag7rd1
Lo (ar)?

Next, using the formula

1
N(8>72ae+d71 — dl) /6<S|t>N(t)2a52drl dt

Fo(2ap — % J

r

42

L ’N(x—u+2%F(§,n)+i(y+1T(w)+F(§—77)))

—2ay

—2ap

dzx

(2.4.8)



with s = y + 37(w) + F(£ — n), we obtain

/ /‘K(W)(«Z)‘dedg _ / () (20022 gy / (F(E=n)lt) ge

v 020y — &
Z1(e) X ‘ Q Zy(e)

rb
_ (27T /6’ (y+3 Lr( )|t) ()204/ 2——bdt
r (Qag— 4
Q

Thus,

2
/ K0 ()] an D (z) =
o(T()

—1 rb
= SBR[t e [ dugy)

To(2a, — 4
a(204 )Q 90

71
_ (2”)3’%/ ) (-2 gt
Fa(2ap — ) 4

et (27T)Tbcw FQ(O&[) N <1

—7(w —W: (@0) (4, ).

For 0 < ¢ <r — 1 we consider the Hardy-type space
Q
H2 (04(T(2))) = B (2u(T(9)), M)
consisting of all holomorphic functions f on (7'(2)) for which
. (22
oy =swp [ 1+ au] ) (249)
9(T())

is finite. Standard arguments show that for f € H? (9,(T(2))) the boundary values

f(z):= 9191%2 f(z+it), z€0(T(Q)) (2.4.10)

exist almost everywhere, and

. . T(Q
1By = Jim / Fz+it)? aMT@ () (2.4.11)

0e(T(2))

S G A!
0e(T(2))

See the proof of Theorem 6.3 in [AU97].

Theorem 2.4.2 For 0 < ¢ <7 —1 we have Ho, = H*(9,(T(2))), and moreover
1 fllae = 1 F 2@y Y € Hao(T()). (2.4.12)

43



Thus, for all f,g € Ha,
< f.g>a= lm / Fz+it) 9z + i) dMI D (2). (2.4.13)
20T

Theorem 2.4.2 is the generalization of Theorem 6.3 of [AU97] to symmetric Siegel domains
of type II. The proof uses Lemma 2.4.1 (which yields (2.4.12) and (2.4.13) for functions in
Ho, (T(2)O) = span{KfUaé); w € T(Q)}) as well as the standard arguments used in the proofs
of the theorems in Section 6 and in the proof of Theorem 6.3 in [AU97].

Notice that, in particular, the reproducing kernel of H?(9,(T(Q))) is

K@) (z,w) = N(1(z,w))™%, ze d)(T(Q)), we T(Q). (2.4.14)

Consider the inverse Cayley transform ¢! : T(Q2) — D,

w) = P 3 R((wn + i) ) w

(2.4.15)
w1 + 1€

1
2

(where w = wy twi, wi € Z(e), w1 € Z%(e)). ¢! extends to 9(T(Q)) = {w € T(Q); 7(w) €
00}, and it maps holomorphic boundary components of T'(€2) to holomorphic boundary com-
ponents of D, and preserves the rank of the boundary components. But not every holomorphic
boundary component B(v) = v + Dy(v) of D is obtained in this way, since ¢(B(v)) = oo if
e — v is not invertible in Z;(e). Thus

r@) = |J B S D). (2.4.16)

vES, _yp
e—v invertible

On the set ¢! (9y(T(£2))) consider the measure

dMP(2) = |Je(z)| 7 dMI D (e(2)). (2.4.17)
Then M} is absolutely continuous with respect to the volume measure on c¢~! (9,(T(2))).
Since 9,_¢(D)\c™ ! (0(T(R))) is a lower dimensional subset of 9,_,(D), its volume measure is
zero. This consideration enables us to consider M, ED as an absolutely continuous measure on all
of 0,_¢(D) in a unique way. In Section 3.5 this boundary measure will be constructed directly
and analyzed in more detail.

The Hardy space
H?(0,4(D)) = H? (0,—¢(D), M{") (2.4.18)

is the space of all holomorphic functions in D for which

10, oy = s [ 1A dMP () (2.4.19)
o<t<1
6T—Z(D)

is finite. By standard arguments, for each f € H?(0,_4(D)) the radial limit (here f;(z) :=

f(t2))
fiz) = lim fi(2), 2 € 0,—e(D) (2.4.20)

t—1—
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exists in L?(8,_¢(D)) and almost everywhere on 9,_,(D). Moreover
120, oy = Jm | fellz2o, oo f1llz20, oo)- (2.4.21)

Recall that the operator
fr(foe)(Je)™/?

maps Ha, (T'(2)) isometrically onto H,, (D). Therefore Theorem 2.4.2 enables us to obtain the
following result.

Theorem 2.4.3 For 0 < ¢ <7 — 1 we have H,,(D) = H? (&,g(D), MZD) and
Flloe = 1o, op a9y F € (D). (2.422)

Thus, for all f,g € Ha,(D)

< f,9>a,= lim / f(tz) g(tz) dMP (2). (2.4.23)
Or—¢(D)

Theorems (2.1.3) and (2.4.3) combine to yield the following result.

Theorem 2.4.4 Let 0 < ¢ < r — 1 and, as before, let oy = {5 + g. Then there exists an
operator T on C*°(D U d,_y(D)) which is GL(Q)-invariant, so that

(i) For every f € Hya (D) with Peter-Weyl ezpansion f = Y m® fm@®, one has

() m)
Tf = Dm® f (2.4.24
,% (£5)m® )
(ii) For all f,g € Hea(D),
<f.g> = <Tf,9>m20, )= lim / T(fg)dMp.  (2.4.25)
BT—Z(D)

The volume measure m on 0,_p(D) is given by
/ fdm = / dvy—_¢(v) / fo(z) dmy(2) (2.4.26)
dr—_¢(D) ) Do (v)
where m,, is the Lebesgue measure on Dy(v). Let us consider the Radon-Nikodym derivative

_dmp
 dm

w(z)

Then formula (2.4.25) can be written in the form

<hgzg = [ o) [ @R ) dnz)
Sy—e

Do (v)

(2), 2z €0,—u(D).

_ / dvy_o(v) / Ty(fo 35)(2) w(v + 2) dma(2). (2.4.27)
Sy—e

Do (v)
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3 Semi-invariant Measures on Boundary Orbits

The main results of Section 2 are mostly expressed as boundary integration formulas for in-
variant inner products, using canonical ”semi-invariant” measures supported on the various
group orbits in the boundary of the underlying domain. In the following Sections we analyze
these boundary measures and their main features (existence, polar decomposition etc.) in
more detail, using only the basic properties of Jordan algebras and triples. In the unbounded
setting of Siegel domains and tube domains, the boundary measures were constructed by Las-
salle [La87], but here we emphasize the corresponding polar decomposition which makes the
symmetry properties more transparent. In the bounded case, the relevant boundary measures
are also constructed from first principles avoiding extensive use of the Cayley transform. As
an application we obtain an independent proof of the main result of Section 2.4 in the bounded
setting (cf. Theorem 3.4.6).

3.1 General formulas for homogeneous spaces

In the following we consider locally compact groups G, with left Haar measure denoted by pg
and modulus function denoted by Ag. For f € C.(G) let

(g f)(x) = f(g~'x) (3.1.1)
and
(0g f)(x) == f(zg) (3.1.2)

denote left and right translation by g € G, resp. Throughout, we will use the concept of
”quotient measures” on homogeneous spaces [Bou63, p. 44, Définition 1].

Proposition 3.1.1 Let G be a locally compact group, with closed subgroups P C Q C G D K
such that G = KQ and
AK(k) = AKQQ(/C) VkEke KNQ (313)

and
Ag(p) =Ap(p) VpeP. (3.1.4)

i) Let x : G — R be a continuous function satisfying

OpX = X VpeP (3.1.5)

and
lx =X Vke K. (3.1.6)

Then the (well-defined) quotient measures

UK
= on K/KNQ,
HK/KNQ KNG /
HQ
= —= on Q/P, 3.1.7
HQ/P p / (3.1.7)
pa/p = % on G/P (3.1.8)
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yield a decomposition

/duc/p f= / dpg/rne(k KNQ)- / dug/p(qP) f(kqP) W (3.1.9)
G/P K/KnQ QP Q

for all f € C.(G/P).

ii) Let x be a positive character of G satisfying

X(p) = igg VpeP (3.1.10)
and
xk)=1 VkekK. (3.1.11)

Then (8.1.5) and (5.1.6) hold, and pg/p is relatively invariant with multiplier x.

Proof: By (3.1.3) and (3.1.6), K/K N Q carries a K-invariant measure
MK

= . 3.1.12
HK/KNQ JKNO ( )
Since G/Q ~ K/K N @, there exists a function p : G — R satisfying
Aq(q)
p= p Yqe@ 3.1.13
q Ag(q) ( )
giving rise to the quotient measure
P 1G
HQ JKne
[Bou63, p. 56, Lemme 5]. By K-invariance, we have
bp=0p Vke K. (3.1.15)
It follows that Ao(a)
Q\q
pP\g) = 3.1.16
) Ac(q) ( )

whenever g € G, ¢ € Q satisfy g7' K = ¢"! K. By (3.1.4) and [Bou63, p. 59, Corollaire],
Q/P carries a Q-invariant measure

HQ
=£e 3.1.17
Ho/p =" 7 (3.1.17)

In view of (3.1.4) and (3.1.13), the quotient measure p ug/pup on G/P exists and, by [Bou63,
p.63, Proposition 12], there is a decomposition

/d(%) f= /d,uK/KmQ(gQ) /d,UQ/pfglf:
G/P &0 )

/d“K/KﬂQ(gQ) /duQ/p (¢P) flgaP)= (3.1.18)
G/Q Q/P

[ e 5 K0Q) [ dugup(aP) skar)
K/KNQ Q/P
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for f € C.(G/P). By (3.1.5), (3.1.13) and (3.1.4) we have

p o opp  Aclp) Aop)p »p
for all p € P C Q. Therefore, x/p is a function on G/P and we have
pgyp = 2EE = X PRC (3.1.20)
pp P pp
as measures on G/P. Applying (3.1.18) to f x/p € C.(G/P) one obtains
[ dncpe s = [a(PEe) Xyo
pp ) p
G/P G/P
x(kq)
dpg/kn(k KNQ) [ dugp(gP) w(kqP) (k) (3.1.21)
K/KNQ Q/P
Since x(kq) = x(¢) by (3.1.6) and
Aq(a) Aq(a)
kq) = k) = e 3.1.22
plka) =3 PP = A P (3.1.22)
by (3.1.13) and (3.1.15), the assertion follows if we normalize p(e) = 1. [

Proposition 3.1.2 Let g € G, q € Q satisfy g7' K = ¢ ' K. Then the Radon-Nikodym
density is given by

dpr/knQ(9Q) _ Ag(a) ' (3.1.23)

diug/knQ(Q)  Ac(q)

Proof: By [Bou63, p. 54, Lemme 4] we have

/ d (g tr/kng) = / dugikng bgf = / d<pMG> Uy f (3.1.24)

HQ
K/KNQ K/KNQ K/KNQ
{1 P £, P
= [P = [ e
1Q p p
K/KNQ K/KNQ
Therefore J (420Q) ) (g2)
UK/ KNQ\g X g1 P plgx
= Q) = 3.1.25
dig/rno(T Q) p (=Q) p(z) ( )
for all x € G. Since g = kq for some k € K, we obtain
duk knQ(9 Q) Ag(g) Ag(q)
— = = plkq) = (4 k)= k) = . 3.1.26
|
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Proposition 3.1.3 Let G be a (not necessarily connected) Lie group having a compact sub-
group K such that G/K is connected. Let

® ®
0= " 8a=009)  da (3.1.27)
e a#0
be a direct sum decomposition of g satisfying
[8a: 85] C Gatg YV o.p (3.1.28)
and
go=adm, (3.1.29)
with
m C t. (3.1.30)
Let x : G — Rs be a character satisfying
dxlg. =0 Va#0 (3.1.31)
and
tr adg(y) = ¢ dx(7) Vyea (3.1.32)
where ¢ is a fized constant. Then
Aclg) =x(9)° Vged. (3.1.33)
Proof: By (3.1.28) we have
tr adg(y) =0 (3.1.34)
for all v € g, such that o # 0. Consider the character
n(g) = x(9) Ac(g) - (3.1.35)

Since n(K) C Ry is a compact subgroup it follows that n|x = 1. With (3.1.30) this implies

dlm =0 . (3.1.36)
Applying [Dieu74, (19.16.4.3)] we have
Ag(exp v)™' = Det Adg(exp y) = Det exp adg(y) = exp tr ady(y) (3.1.37)
for all v € g. Therefore
dn(y) = ¢~ dx(7) — tr adg(7) (3.1.38)

and hence dn|g, = 0 by (3.1.31) and (3.1.34), whereas dn|q = 0 by (3.1.32). In view of (3.1.27)
it follows that dn = 0. Now let g € G. Since G/K is connected, there exists k € K such that
gk~ € G° (identity component). Writing

gk Y =exp (m1)---exp () (3.1.39)

for suitable vy, ...,v, € g, we obtain
n(g) = nlexp (1)) - -nlexp (w)) n(k) = exp (dn(n)) - -exp (dn(y)) =1.  (3.1.40)
[ |

In the following these elementary results will be applied to various homogeneous spaces related
to Jordan algebras and symmetric domains.
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3.2 Boundary orbits of symmetric cones

Let X be an irreducible euclidean Jordan algebra of rank r, with open positive cone 2 and
unit element e. Then

G = GL(Q) (3.2.1)

is a reductive Lie group, with Lie algebra denoted by g = gl(€2). A maximal compact subgroup
is

K=Aut(X)={g9ge€G:g(e) =€}, (3.2.2)

with Lie algebra ¢ = aut (X) consisting of all Jordan algebra derivations. Using the Jordan

triple product, put
(v Ov")z:={uv*z} (3.2.3)

for all u,v,z € X. Let A be the norm function (”determinant”) of X, and let (x|y) be the

K-invariant inner product, normalized by (ele) = 7.

Lemma 3.2.1 x(g) := A(ge) defines a character of G, with differential
dx(y) = (elye) Vveg. (3.2.4)

Proof: Since A(gz) = A(ge) A(z) forall g € Gand x € X, we have A(g1 g2€) = A(g1e) Ag2€)
for all g1, g2 € G. Thus y is a character. Since A’(e) z = (e|x) for all z € X, its differential is

() = 5| )= S| Aeap (t)e) = Me)ve=(ehve) . (325)
|
Fix a frame {ey,...,e,} of minimal orthogonal idempotents in X, and consider the associated
Peirce decomposition
X= Y "x;. (3.2.6)
1<i<j<r

With respect to the Cartan subspace
a:= (e, O er:1<k< T) (real span) , (3.2.7)

g has a real root decomposition

g=a & mae ». (gj_i @ g;_i) (3.2.8)
1<i<j<r
where
m = {0€aut(X):0e,=0 V1<k<r}
gj;i = {aO éi =e; U a:ac Xij} s (3.2.9)
9, = {aDZj:eiDzz:anij}.

For m € {i,j} we have

ler, O Zk, em O Zi] = {ex er em} O a—en O {azk ex}”
Ok + 5jk Ok + 5jk

= Ok €m O a — — 5 el a= <5mk - 2) emda,  (3.2.10)
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as follows from the Jordan triple identity [U87]. Therefore gj_; is the root space corresponding

to the root § (0; — d;) defined by

ﬁ@(ekﬂék)::m@ VEk.

We now turn to the Iwasawa decomposition
G=GL(Q) = Aut (X) AN

of the (reductive) Lie group GL (£2). The Lie algebra of N is given by

n= Z g;r_i.

1<i<j<r

n= Z g;_l..

1<i<j<r

Similarly,

AN and AN act (simply) transitively on €.

Lemma 3.2.2 Let v =Y ~" ¢, O ¢ € a. Then
k

tr adggn(y) = tr ada(y) =

(VRS

k

Proof: Counting with multiplicity, we obtain

i g
tradn(’y):azry 27 2527k(2k—r—1)
i<j k

Proposition 3.2.3 AN has the modulus function

Aan(g) =A—2,(ge) ,
where
a

Proof: For 1 < k < r, the minors Ay satisfy

Ar(gr) = Ag(ge) Ag()

Z'yk(Qk—r—l).

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

for all g € AN. Therefore Ay (g1 g2¢€) = Ay (g1 €) Ak (g2 e) for all g1, g2 € AN, showing that

xk(9) == Ak (ge)

defines a character of AN. For v € a @ n, its differential is

AXk(1) = oo X (exp (17)) =

Shimo Ak (eap () €) = A7) = (e1 ++-+ exbre)

o1

(3.2.20)

(3.2.21)



since A} (e)x = (e1 + - - + eg|x) for all x € X. It follows that

X(9) = Aaylge) = xo(9) "2 Y T x(9)" (3.2.22)
k<r

defines a character of AN, with differential

dx(7) =Y adxi(y) - % (r—1)-dx;(v) =

k<r
T

oY (er+-+eplve) - % (r—1)(e|ye) = —g N @k —r - 1)(exlye) . (3.2.23)
k<r k=1

If i < jand a € Xjj, then v :=e; O ae g;i and (egx|ye) = (ek\{ejae}) = % (egla) = 0. If
y=>1ve; O éj € a then ye =>4/ ¢; and Lemma 3.2.2 implies
J J

T

a
dx(y) = D) Z(Zk: —r =17 = —tr adagn(v) . (3.2.24)

k=1
Now apply Proposition 3.1.3 to G := AN and K := {1}. ]

Fix 0 </ <r and put upg =e; +---+ ¢ep. Then
O Q:={recd: rank(z) =0} =G wy (3.2.25)
is a G-orbit, i.e., we may identify
G/P > gP»:gug € ), (3.2.26)

where

P:={peG: pu=u} (3.2.27)

is a closed subgroup of GG, with Lie algebra
p:={y€g: yu =0}. (3.2.28)

Let IT; denote the compact manifold of all idempotents of rank ¢ in X. For u € II;, let Q1 (u)
denote the positive cone of the euclidean Jordan algebra X;(u) of rank ¢. Then

0 Q)= U Q4 (u) (disjoint union). (3.2.29)
uelly

Since G permutes the fibres of (3.2.29), there exists a (non-linear) action g — ¢ of G on II,
satisfying
9§ (u) = A (g(w)) (3.2.30)

for all w € II,. This action is transitive, and hence there exists a diffeomorphism

G/Q 3 gQ — g(w) € 1L (3.2.31)
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where
Q= {q eqG: E]V(Ug) = ug} = {q eG: qug € Ql(Ug)} (3.2.32)

is a closed subgroup of G containing P, with Lie algebra

g={veg: yur e Xy(up)} . (3.2.33)

If g € QN K then quy € TIyNQ (ug) = {ug} and hence ¢ € P. Thus QNK = PN K. Evaluating
at uy, we obtain

Sug=» beg=0 forall Sem, (3.2.34)
k<¢

whereas for a € X;; we have

<
{ekezue} _ €L k’_g :
0 k>/
fe;au) = 4 2 £2i<] (3.2.35)
ITT T Y 0 r<i<g -
* _ % i<j</
{a ¢ ue} {0 i<j>t
It follows that
p=m & (e, Oep: k>0 > g, > g, (3.2.36)
(<i<j i<j>0
a=p @ (@06 k<he Y (4, @ g,) - (3.2.37)
1<i< <t
This implies g Da @ nand Q D AN.
Lemma 3.2.4 @ has the modulus function
Ag(q) = Alge) ™ A,y (ge) . (3.2.38)

Proof: x(q) := A(qe)*™" A,_y(qe)" defines a character of AN C Q, with differential

dx(y) = (0 —7) A'(e)ve+1 Apgle)ve
= (L —r1)(elve) +r(epr1+ -+ erfve) (3.2.39)

a

forally e a®n If vy =a0 ékj € u, then ve = § and dx(y) = 0 since i < j. If v =
Sk e O e, € a then ve =>"+* e and
k

k
dX()=(=1)Y A +rY A =-r) )LD A (3.2.40)
k<r k>0 k>0
On the other hand, (3.2.36) and (3.2.36) imply
tradgy= 3 5 (V¥ =7)+ X 50/ =)+ X §(7/-9) (3.2.41)
1<i<j i<j>t 1<i<j<t
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=3 3 (=) =5 [0+ =) = () ] = =5 dx().
1<l

By Proposition 3.1.3 it follows that

Ag(g) = x(9)*"* (3.2.42)

for all g € AN C Q. Now let ¢ € Q. Then ge = ge for some (unique) g € AN, and hence
q= gk, where k € QN K. It follows that

Aq(q) = Aglgk) = Ag(g) Ag(k) = Aglg) = x(9)*”
=A(ge) ™2 A _y(ge)V? = A(ge) Y2 A, _y(qe)" 2 . (3.2.43)

|
Corollary 3.2.5 The Jacobian of g € G, for the action (3.2.30) at uy € Iy is
pri(9) = A(g ' &) AL (g7 e) T2 (3.2.44)

Proof: Write g = kq with k € K, ¢ € Q. Then g~ 'e = ¢ ' k~'e = ¢ ' e and hence

pu9) = g (6a) = (8, )8 = T2 o (1) =
A(q) = A5 g ) =A(g )2 A, y(g e) 2 (3.2.45)
|
Theorem 3.2.6 For 0 < /¢ < r, define the character
xa0(9) == Alge) /? (3.2.46)
on G. Then the (well-defined) quotient measure
Lo, Q = X8, Q - G/ 1P (3.2.47)
on G/P ~ 0,9 is relatively G-invariant with multiplier xs,q and has a decomposition
[dnoo 1= [ [ duoy(© A +e— w2 (3.2.48)
9,0 1, Q1 (u)
for all f € C.(0,R2). Here du denotes the K -invariant measure on Ily, and
dpig, (u)(§) = dpix, (1) (€) A€ +e—u) 72 (3.2.49)

is the invariant measure on Q;(u).

v
Proof: For every ¢ € @, the restriction ¢ := ¢|x,(,,) belongs to GL (Q1(u¢)) and we may
identify

Q/P>qP — QUg:zl/’LLEEQl(Ug) (3.2.50)
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in an equivariant way. It follows that @)/ P carries a Q-invariant measure

1(12) (4P) = duo, a0 (3.251)

and [Bou63, p.59, Corollaire 2] implies

Ap(p) =Aq(p) VperP. (3.2.52)

Since pe = p(ug + ¢ — ug) = pug + ple — ug) = g + ple — ug), we have K,_y(pe) =
A, _o(ug +ple —up)) = A(uy + ple — up)) = A(pe). Hence P has the modulus function
Ap(p) = A(pe)'¥?  VpeP. (3.2.53)

Since G is unimodular, Proposition 3.1.1 (ii) shows that g, q is a well-defined K-invariant
measure on G/P ~ 0, which is relatively G-invariant with multiplier x5, . For ¢ € Q we

have
A(ge) = A(g*e) = Au(q™e) Ar_s(ge) (3.2.54)
and
Au(g e) = Alque+ e —uy) . (3.2.55)
With (3.2.38), this implies
xo,2(9) _ [A(qe) ]M/Q = A(que+ e —ug) 2 (3.2.56)
AQ (Q) AT—Z (q€)

Applying Proposition 3.1.1, we obtain

/ dus,0 f= /dk / dpq, (u) (7) Az +e —ug)”a/2 f(kx) (3.2.57)
8,0 K Q(w)
for all f € C.(0,2). Putting u = kuy € II; and £ = kxz € Q1(u), the assertion follows. |

3.3 Boundary orbits of symmetric Siegel domains

For an irreducible hermitian Jordan triple Z, with maximal tripotent e, let Z = U @ V be the
Peirce decomposition
U= Z(e), V= "Zle) (3.3.1)

with respect to e. Put X :={x € U: 2* =z} and define 7: Z — X by

T(u,v) := u—;u* — P(v,v), (3.3.2)

where ®(v1,v2) := {vivie} for all v1,v3 € V. Then 7(e) = e, and
D :={(u,v) € Z: 7(u,v) € Q} (3.3.3)

is a symmetric Siegel domain. Let Aut(D) be the holomorphic automorphism group of D.
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For (a,b) € iX x V, the ”quasi-translations”
tap(u,v) == (u+a+ ®(b,b) + 2®(v,b), v+ b) (3.3.4)
belong to Aut(D), since 7(tqp(u,v)) = 7(u,v). Moreover, the relation

tay by tas,by = ta1+a2+’1>(b2,b1)*‘1>(bl,62),bl+bz (3'3'5)

implies that
Yi={tep: aciX,beV} (3.3.6)

is a nilpotent (hence unimodular) subgroup of Aut(D), with Haar measure
dps(tap) = dpix (a) duy (b) (3.3.7)

given by the product of the Lebesgue measures on X and V. The group GL(D) := Aut(D) N
GL(Z) consists of all linear transformations

h(u,v) = (hiu, hav) (3.3.8)
on Z = U&V such that hy € GL(2) C GL(U) (by complexification), and hy € GL(V) satisfies
(I)(hg’l), hgb) = h1 (p(?), b) (3.3.9)

for all v,b € V. Therefore
T(hz) = h17(2) (3.3.10)

for all z € D, and the homomorphism
GL(D)>h + h; € GL(Q) (3.3.11)
has a compact kernel. Using [Bou63, p.61, Corollaire| it follows that
Agrp)(h) = Agra)(h1) =1 (3.3.12)
for all h € GL(D). For a € iX, b€V and h = hy x he € GL(D), we have
htaph™' = thiangb - (3.3.13)
Thus we may consider the semidirect product
Aff(D) =% -GL(D) C Aut(D) (3.3.14)
consisting of all affine transformations of D. The symmetry s. of D around e satisfies
sehlse = h* € GL(D) (3.3.15)
for all h € GL(D). This can also be written as

(seh™1s)(0) = h* € GL(Z) . (3.3.16)
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Lemma 3.3.1 For h € GL(D) the automorphism in(t) := h™'th of ¥ has the modulus
As (i) = A(he)™" (3.3.17)

where A is the Jordan determinant of X.
Proof: The commuting diagram

tap € % 2, 5
1 ~ ~ (3.3.18)
(a,b) € iIXxV — iXxV

h1 X hz
implies

Ag(igl) = AiXXV(hl X hg) = |D€tX h1| . ’Detv hg’z
|D6tZ h‘Q _ |D€tz h|2

= |Detx hq] - = . 3.1
Detx Ml | petomP = |Dety bl (3:3.19)
Since hy € GL(Q2), we have
|Detx hi| = A(he)™/" | (3.3.20)
where nq = dim U. On the other hand, every g € Aut(D) satisfies
Det g/ (e) = Alr(g(e))” (3:3.21)
since A(7(z,w))P is the Bergman kernel of D. Therefore
|Dety h|* = A(1(he))? = A(he)? . (3.3.22)
Since p = w, it follows that
- A(he)P
1y _ n/r
Ax (i, ) Alhe)lr A(he)™T . (3.3.23)
|
Corollary 3.3.2 Aff(D) has the modulus function
Aagpy(g) = Alr(g(e))) ™" . (3.3.24)

Proof: Write g € Aff(D) as g = th, with ¢t € ¥ and h € GL(D). Since 7(g(e)) = hie, [Bou63,
p.61, Corollaire], (3.3.7) and Lemma 3.3.1 imply

Dagrpy(9) = As(in) Agrp)y(h) = As(in) = Alhie) ™" = A(r(g(e))) ™" (3.3.25)

We now turn to the Iwasawa decomposition

Aut(D) = NAK (3.3.26)
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of the (semi-simple) Lie group Aut(D). We have

NA=3% (NANGL(D)) ¢ Aff(D)

(3.3.27)
(semi-direct product), and
NANGL(D) > h+— h; € NoAq (3.3.28)
is a group isomorphism.
Proposition 3.3.3 N A has the modulus function
Analg) = A-—2,(7(g(e))) , (3.3.29)
where 2p, = a(k — 1) +1+b.

Proof: Write g = th € NA, with t € ¥ and h € NANGL(D). Then 7(g(e)) = 7(he) = hye
and [Bou63, p.61, Corollaire] and Lemma 3.3.1 and Proposition 3.2.3 imply

Ana(th) Asx(in) Anancrp)(h)

= A(hle)in/r A_gp, (hie) = A_%_QPQ (hie)

(3.3.30)
with 2 +2(pa)e =1+5( —-1)+b+ 52k —r—1)=a(k—1)+1+0. ]
Fix 0 </ <r and put up =e; +---+¢ep. Then

D =% -0={tx: te X, x €0} =Aff(D)(up) (3.3.31)
is an Af f(D)-orbit, i.e., we may identify
Aff(D)/P > gP — g(ug) € 8;D , (3.3.32)
where
P:={ge Aff(D): g(us) = us} (3.3.33)
is a closed subgroup of Aff(D), with Lie algebra
p:={ye€aff(D): v(uy) =0} . (3.3.34)
For u € Iy, let
Di(u) =%1(u) - Q1(u) C Zple —u) (3.3.35)
denote the Siegel domain associated with u € Zp(e — u). Here
Yi(u) = {tap €X: a€iXi(u), b€ Vijp(u)} (3.3.36)
is a closed subgroup of ¥. One can show [U85], that
oD = U Dy (u) (disjoint union) . (3.3.37)
UEH[
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Theorem 3.3.4 Let up,q denote the Lassalle measure on 0, (cf. Theorem 3.2.6). Then the
product measure

dpa,p(tx) == dux(t) - dus,o(x) (3.3.38)

on O¢D is relatively invariant under Af f(D), with multiplier

xo,0(9) == A(7(g(e)))™ (3.3.39)

forall g € Aff(D). Here oy = %+ + £ 5. Moreover there is a decomposition

/ dpoyn f = / du / dt / A1y () () Alr(w + € — )% f(tw) (3.3.40)

0D 11, 3/ (u) D1 (u)

for all f € C.(0¢D), where
d:uDl(u) (CU) = dMZO(u—e) (W) : A(T(w +e— u))_(g"‘a(é—l)-i-b) (3341)

is the invariant measure on D1 (u).

Proof: Write g € Aff(D) as g = to h, where to € ¥ and h = h; X ha € GL(D). Then we have

[ d(g:tpa,p) f= [ dpg,p fog™t = fduz(t) [ dpg,a(@) fF(h gt ta) =
8D agD 082

[dus(t) [ dusa(x) f(h"tr) = fduz [ dpa,a(x) f(in(t) by 'a) =
b 8,Q z 02

A(hie)'? [dus(t) [ dug,a(z) f(in(t)z) = (3.3.42)
5 PXY)

A(hye) 2 A (in) g dmt)afg dpg,o(x) f(tz) =

A(hie)'?? A(he)™"™ [ dpo,p f = A(h1e)* [ dua,p f -
9y D 0, D
Since 7(g(e)) = 7(to(he)) = 7(he) = hye, it follows that pug,p is Aff(D)-relatively invariant
with multiplier given by (3.3.39). For every u € II;, we have
Zo(u—e) = Zy5(u) ® Z1(u) = By (u) - X1(u) (3.3.43)
where

Yi(u) = {tap: a €iXi(u), b€ Vip(u)} . (3.3.44)

Therefore the respective Lebesgue measures satisfy

7o (u—e) (1€) = dpis; () (£) i, () (€) - (3.3.45)

Similarly,

and

dpp, (u) (1) A(T(t§ + e —u))* =
Ay (- (£6) AT (t + € — w)) @~ Al =
dpiss, () (1) A, () () A€ + e —u) M2 070D = (3.3.47)
dpiss, (u) (8) dpter, (u) (€) A(E + € — u)/?
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since 7(t§ + e — u) = £ + e — u. Therefore Theorem 3.2.6 yields

/duawf:/duz (t) /duam(x) f(tz) =

8, D PXo
/dﬂz /du / dpig, () (&) A&+ e — u)™/? f(t6) =
I, Ql

[ / di / dhss o (t0) / b () (€) A+ — )™/ f(t10€) (3.3.48)
Q1 (

M, ¥/%i(u 1(
= [au / di / At (@) A(r(w + € —w))* (1)
I, ¥/S1(u) Di(u)
by putting w = tg&. |

3.4 Boundary orbits of Cartan domains
Let Z be an irreducible hermitian Jordan triple of rank r, with open unit ball B. Then

G := Aut (B) (3.4.1)
is a semi-simple Lie group, with Lie algebra

g = aut (B) (3.4.2)

consisting of all completely integrable holomorphic vector fields

0

f(2) EP (3.4.3)
on B, under the commutator
0 0 , ; 0
1) 5o 92 5| = () 9() = () F2) 5 (3.44)
For a € Z, we abbreviate
a—{a}:=(a—{zaz}) (982 €g. (3.4.5)
G has a maximal compact subgroup
K=Aut(Z)={g€ G: ¢(0) =0} (3.4.6)

consisting of linear transformations (in fact, Jordan triple automorphisms), and its Lie algebra
0

t={\z 5 A €aut(2)} (3.4.7)
z

consists of all Jordan triple derivations A\ regarded as linear vector fields Az %. Since, by
(3.4.4), for all A\, € aut (Z)

0 0 0
[)\z 5, M 82] =[\pulz 5 (3.4.8)
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we will identify A € aut (Z) with the corresponding linear vector field Az %. Then

I\, a—{a}] = xa— {(Xa)*} (3.4.9)
forall A € tand a € Z. Fix a frame {ey, ..., e, } of tripotents in Z, and consider the associated
Peirce decomposition

Z= 3 "7;. (3.4.10)
0<i<j<r

With respect to the Cartan subspace
a:= (e — {e*k} c1<k<r) (real span) , (3.4.11)

we obtain a real root decomposition

g=mdad »_ (gj_,- @ gj‘_z-) =Y (gjﬂ- ® g];i) . (3.4.12)
1<i<j<r 0<i<j<r
Here
m:={dcaut(Z): de, =0 V1<k<r} (3.4.13)

and, for Kk = 4+ and ¢ = £1, g;j_.; consists of all vector fields of the form
vza—{a}—}—ﬁ #ij(e; O a—a ékj)

with a € Z;; and a = ea (if i > 0). Here

9 i
Tij = { ' 7&]. (3.4.14)
1 2=73.
For the commutator, one obtains
lex — {ex}, 7] = 2(ex O a—a O €;) + 5 #i(b—{b}) (3.4.15)

where b= {a ¢; e} — {e; a ey,}. We claim that for all 1 < k <r

#i({acej e} —{ejaer}) = (5, —cdi)a (3.4.16)

and
2ep O a—a O e)) = (5% —€6L) #ij(e;0 a—al e*j) . (3.4.17)

For k ¢ {i,j}, this is trivial. Now assume k € {i,j}. Assume first 0 < i < j <r. Then
2({a ¢j e} —{ej aej}) =2{acj e} =a, (3.4.18)
(3.4.17) is trivial for k = j, and in case ¢ > 1
2({a ¢je;} —{e; ae;}) = —2{ej ae;} = —a=—ca (3.4.19)

and
*

2e; O a—a O &) =2(a0 éj—e; O (a)*) =2e(a 0 €;—e; O a) . (3.4.20)
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Thus (3.4.16) and (3.4.17) hold if i < j. Now let 1 <i =5 <r. Then € = —1 and hence
{a ¢ ej}—{ejéej}:a_éz (1-¢)a (3.4.21)

and (3.4.17) is trivial for k = j since 1 — ¢ = 2. Thus (3.4.16) and (3.4.17) hold for i = j also.
It follows that

lex — {ek}, ) = K(5, —€3}) (3.4.22)

showing that g7__, is the root space belonging to the root x(d7 — ¢ 6*) defined by
k(07 — 6 (e — {ex}) = (6] —€dL) . (3.4.23)

Lemma 3.4.1 Let G = Aut (B) and, for some o € B C Z, put
P:={peG: plo)=o0}. (3.4.24)

Then
x(p) := |Detz p'(0)] (3.4.25)

is a character of P, with differential

dx(v) = Re trz 7/(0) Vyegp. (3.4.26)

Proof: The group G acts on the compact dual space M of B which contains Z as an open
dense subset. Since o € Z it follows that Z Np~!(Z) is an open neighborhood of o for each
p € P. Therefore p'(0) € GL (Z) is well-defined, and

(p1p2)'(0) = p1(0) pa(0) (3.4.27)

for all p1, pa € P since p2(0) = o. Thus (3.4.25) defines a character of P. Now let v € p. Then

gt(z) := expp (ty)(z) satisfies

agéiz) = (g:(2)) (3.4.28)

and hence

aggi") = (yo4)(0) = ¥(g:(0)) gi(0) =7'(0) gi(0) - (3.4.29)

It follows that (expptvy)'(0) = expz tv'(0) and therefore

x(expp(ty)) = |Detz expp(ty) (0)| = |Det expz tv' (o)

= lezptrz ty'(o)| = exp (Re trz t+'(0)) . (3.4.30)
Hence d
dx(vy) = i x(expp (t7)) = Re trz+'(o) . (3.4.31)
|
Fix 0 </ < r and put up —e = —ep11 —--- — e,. Consider the G-orbit
O B:=G(uy—e) COB. (3.4.32)
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Then there is a diffeomorphism
G/P > gP — gluy—e) €y B, (3.4.33)

where
P={peG: plu—e)=u—e} > gP — gluy—e) € B (3.4.34)

is a closed subgroup of GG, with Lie algebra
p={v€g: y(ug—e)=0}. (3.4.35)

Let S,_y denote the compact manifold of all tripotents of rank » — ¢ in Z. For every v € S,_y,
the unit ball
By(v) C Zp(v) (3.4.36)

is a symmetric ball of rank ¢, and there is a fibration
0B= |J v+Bov). (3.4.37)
VES,_y
Since G permutes the fibres of (3.4.37), there exists an action g — g of G on S,_, satisfying
g9(v+ Bo(v)) = g(v) + Bo(g(v)) (3.4.38)

for all v € S,_y. This action is transitive, and hence there exists a diffeomorphism

G/Q > gQ — Gug—e) €Sy (3.4.39)
where
Q = {a€C: que—e)=u—ec}
= {g€G: qlug—e) €ug—e+ Bo(ug —e)} (3.4.40)

is a closed subgroup containing P, with Lie algebra

qg={y€g: y(uw—e) € Zp(usr—e)} . (3.4.41)

If g € QN K then g € S,y N (ug — e+ Bo(ug — €)) = {uy — e} and hence ¢ € P. Thus
QN K = PN K. Evaluating at uy — e, we have

(ug —e) = — Z5€k =0 forall dem, (3.4.42)
k>/¢
whereas
* €L /‘JSE
— — — = 4.4
er —{(ug—e) ex (ug—e)} {0 Ny (3.4.43)
and
a—{(ue—e)a(u—e)}+r#i;({eja(u—e)—{aéj (u—e)} =
a—é—i—Qn(—%—F%):(l—i—ﬁ)(l—e)a (<i<j
a—a+r(—ata)=(1+r)(1—-¢e)a (<i=j (3.4.44)
a+26 () =014+kK)a 0<i<l<y
a 0<i<y<{

63



for all @ € Z;; with a = ea (if i > 0). It follows that

p=md(er—{ex}: k>0 Y g ,© Y g,® Y ., (3.4.45)
i<j>/ 0<i<j 0<i<j>¢
g=p® (e —{ex}: k<O & > (gj_i@gj‘_i) & Y. (gjﬂ@g;i) . (3.4.46)
I<i<g<t 0<i<y<t

This implies ¢ D a @1 and Q D A N. Therefore
Q/QNK ~Q(0)=AN(0)=B=G(0), (3.4.47)

showing that G = QK.
Lemma 3.4.2 P has the modulus function Ap(p) = |Dety p (ug — €)|>/P.

Proof: Since P fixes uy — e, Lemma 3.4.1 shows that x(p) := |Detzp'(us — e)| defines a
character of P, with differential

dx(v) = Re trz v'(us —e) (3.4.48)
for all v € p. Now let
*yza—{é}%—n#ij(ejﬂa—aﬂ e*j)€p, (3.4.49)
where a € Z;;. Then
v (ug—e) = —2(ug —e) O a+k #ij (e; O a—aO e;) (3.4.50)
satisfies 5
p Re try ' (up — e) = —2(ug — ela) + k #4j ((ej|a) — (alej)) (3.4.51)
since trzu O v* = & (ulv) for all u,v € Z. This vanishes if i < j. For i = j > {, we have
k= —1 and
> Re trz o (1= ) = 2e0) = ((e)la) = (ales)) = (e)l0) + (aleg) =0 (3:452)

since a* = —a. Now let v =3 v*(ey — {ex}) € a . Then
k

vV (up —e) = =2 Z V* (ug—e) O e (3.4.53)
k
satisfies 5
» Re try v'(ug — €) = —2 Z A* (ug — eleg) =2 Z o (3.4.54)
k k>t

Since tr ad,y =tr adqy = —2ay ~*, Proposition 3.1.3 implies Ap(p) = x(p)?*/? provided
k>¢
P/PN K is connected. Since PNK =QNK, and Q/QN K ~ B and Q/P ~ By(ug — e) are

simply connected, this follows from the exact homotopy sequence applied to the fibration

P/PNK —Q/PNK — Q/P. (3.4.55)
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For g € G, v € S,_y and ¢ € By(v), we write

9(v+¢) =g(v) + 9u(C) ,

where
v+ Bo(v) — Bo(g(v))

is biholomorphic. Specializing to v = uy — e, we obtain a group homomorphism

Q3>q — Guy—e € Aut By(ug — e)

determined by
q(ug — e+ ¢) = up — e+ quy—e(Q)
for all ¢ € By(us — e).

Proposition 3.4.3 Q has the modulus function

\Det ¢ (ug —e)2/?| 1™
A(Gur—e(0), Gup—e(0))

Ag(q) =

Proof: The identification
Q/P>qP — qu,—c(0) € By(ug — e)

yields a Q-invariant measure

1(12) (4P) = -0 -0

Kp
By [Bou63, p.59, Corollaire 2], this implies

Aq(p) =Ap(p) VpeP.

The Lie algebra aut By(ug — €) consists of all vector fields

* * * 8
X =({ab" ¢} —{ba’CpHe— {0} 57
on By(ug — e), where a,b,c € Zy(uy — e) are arbitrary. Moreover, the vector field

Y :={ab*z} —{ba* 2z} +c—{zc"z}) %

on B belongs to g, and there is a Lie algebra homomorphism

7 aut Bo(ug —e) — q

(3.4.56)

(3.4.57)

(3.4.58)

(3.4.59)

(3.4.60)

(3.4.61)

(3.4.62)

(3.4.63)

(3.4.64)

(3.4.65)

(3.4.66)

satisfying 7(X) = Y for all a,b,¢c € Zy(uy —e) C Z. Since aut By(ug — e) is a simple Lie

algebra, it follows that

12a (““b*z}—{ba*z}ﬂ—{zc*z}> zi)
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For ¢ € Zy(ug — e), define

q° = expp ((c —{zc*z}) 882> CerpqC Q. (3.4.68)
Then (3.4.67) implies
Ag(¢F)=1. (3.4.69)
Since 5
v = camguo (= 1067 ) € At Bolue =), (3470

it follows that for every ¢ € @ there is a (unique) ¢ € Zy(us — e) such that gy,—.(0) = g5, (0).
Then q(up — e) = ug — €+ qu,—(0) = ug — e + q;,_.(0) = ¢°(ug — e), showing that ¢ = ¢°p for
some p € P. Using (3.4.63) and Lemma 3.4.2 we obtain

[Dety q/(ug— )24/ |Det (¢ p)/(u — e)**/" _ |Det (¢°) (ue — )2/ Ap(p)

AqQ(9) Aq(g°p) - Aq(g°) Aq(p)
_ | Detz (¢°) (ug — e) P/
AQ(g°)
For 0 < 6 < 1 we have 0(uy — e) € B and
¢°(0 (ug—e)) = expp (c—{e})(0 (ur—e)) = 0 (up—e)+45,_.(0) = 0 (ur—e) +qu,—e(0) (3.4.72)
since ¢ and uy — e are orthogonal. This implies
A (0 (e — €)), 4“0 (e — €))) = A0 (g — €), 8 (s — €)) - Alduge(0), quye(0)) . (3-4.73)
Since A(z1,22)7? is the Bergman kernel of B, it follows that

A(q°(0 (ug — ), ¢°(0 (ue — e)))
A0 (ug — €),0 (ug — e))

= |Detz (¢°) (ug — e)|> /P (3.4.71)

|Detz () (6 (ug — €)' = = A(qup—e(0); que—e(0)) -

(3.4.74)
Letting 8 — 1, we obtain
Dety ¢ (ug — e)|2¢/P . o p
Detz e — T2 | Dty (q7) (e = )PP = Aguy-e(0), qur-c(0) . (3:4.75)
Aq(q)
|
Lemma 3.4.4 The Jacobian of g € G, for the action (3.4.38) at ug —e € S,y is
dps, ,(gue—e))  |Detyg'(ug— e)|**/P
ps,_,(9) = : _ Detzg ) (3.4.76)

dps, _,(ug—e)  A(guy—e(0), gup—e(0))e

Proof: Write g(u; — e) = k (uy — €) for some k € K. Then (k71g)  (uy —e) = k= g(up —e) =
uy — e, showing that ¢ := k=1 g € Q. Since g~' K = ¢~! K, Proposition 3.1.2 implies
dps,_,(g(ue —€)) _ dpg/kng(9 Q) ~ Aolg) = |Det q'(up — e)|?¢/P
s, (we =) durgsrn(@ T Algue(0), qu—e(0)

Since g = kg implies ¢'(us —e) = k ¢'(ug — e) with |Detz k| =1, and gy,—c(0) = k qu,—(0) im-

plies A(gu,—e(0), guy—e(0)) = A(k guy—e(0), k Guy—e(0)) = A(qu,—e(0), qu,—e(0)) , the assertion
follows. [

(3.4.77)
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Lemma 3.4.5 Let g € G. Then

|Detz ¢ (ug — e + C)|*/P
A(gue—e(Oa gue—e(O)

x(g) = A(¢,¢) (3.4.78)

is independent of ¢ € By(ug — e€).

Proof: Suppose first g € Q. Write ¢ = ¢y,—(0) for some ¢ € Q). Then (3.4.60) implies

|Dety g'(ug — e+ ¢)[2/P
A(guz—e@): guz—E(C))

|Detz (9q) (ug — e)[>/P
A((90)up—e(0), (90)up—e(0))
This shows

[Dety o (a(ue — €)P1? [Dety o (ue — )20
A(Qw—@(O7 gw—@(C))

A(C.C) Ag(g)'/r =

= Ag(g )™ = Ag(g)* Ag(g)V/ . (3.4.79)

|Detz g'(ug — e+ Q)7 1/ |Detz g'(ug — e) /P
A, C) = Ag(g)/e = 3.4.80
Y R 13) B BN ) e () S
whenever g € Q. If g € G then g(uy — €) = k (up — e) for some k € K. Therefore g = k g for

some ¢ € () and we obtain

|Detz g'(ug — e + C)|2/p |Det z k\g/p |Dety ' (ug — e + C)|2/p

A(G¢) = A(¢ Q)
A(Gup—e(€)s Gup—e(€)) A(qu—e(€)s qup—e(C))
B \Detzq’(uf—e)lz/p B |DetZg’(uz—e)]2/p (3.4.81)
A(qup—e(0); qup—e(0))  Algup—e(0); gu,—e(0))
since |Detz k| =1 and A(kz, kz) = A(z,2) for all k € K. [
Theorem 3.4.6 Define a C*°-function x9,5: G — R by
Xo, 8(g) 1= |Detz g (ug — e) >/ (3.4.82)
where ap := T + £ 5. Then the (well-defined) measure
1, B = Xo, B hG /1P (3.4.83)
on G/P is K-invariant and gives rise to the Uy, -invariant inner product
(1o = [ diocn 70 (3.4.89)
OB
for o, € Hy,. Moreover, there is a decomposition
/ duioy 5 | = / do [ ) (©) AGO™ fw+0) (3.4.85)

—¢ Bo(v)

for all f € C.(0¢ B). Here dv denotes the K-invariant measure on S,_p, and

dpipy () (Q) = dpzy(w) (Q) A(¢,¢)~FHalt=DHY) (3.4.86)

is the invariant measure on By(v).
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Proof: For all g € G, p € P and k € K we have

Xo,B(gp) = |Detz (gp) (ug — €)|***/? = |Dety g'(ug — €)|***/P |Detz p/ (ug — e)[**/
= xo,8(9) Ap(p) (3.4.87)
and
Xo,5(kg) = |Detz (kg) (ue — €)|**/P = |Dety k|**/P | Dety g’ (ug — e)[>**/P
= |Detz g (ue — €)***/? = xo, 5(g) - (3.4.88)

Hence Proposition 3.1.1 shows that pg, p is a well-defined measure on G/P ~ 0y B which is
K-invariant. Since (3.4.60) yields for all ¢ € @

XBZB(Q) _ ag
7AQ((]) = A(quy—e(0), qu,—e(0))*, (3.4.89)

Proposition 3.1.1 gives a decomposition

/ dup,p f = / dus, , (k(ug —e)) / A By (up—e) (qug—e(0))-

9 B St Bo(ug—e)
4 (k(U,g —e+ quz—e(o)) A(que—e(o)a QW—e(O))ae

= s b= [ du Q) elkur— e+ 0) AG QO (3490

Sr—¢ Bo(ug—e)
- / dyis, () / disy0)(C) 90 +€) A, )™
Sr_¢ Bo(v)

for all f € C.(9y B). Now let g, € G and put z := y(uy — e) € 9y B. Then

<€g1 XalB) ( P) _ X0, B(g 7) _ ’DetZ (g 7),(u€ - 6)‘2(12/17
Xo, B X, B(7) |Detz ' (ug — e)[2/p
= |Dety ¢ (v(ug — €))[>**/P = |Det ¢ (z)|>*¢/P . (3.4.91)

According to [Bou63, p.57] we have for the image measure

[t o) 1= [ avameyr— [ a(XEEE) g

9 B o B 9 B

{ _
/ d <XagB MG) g~ Xo,B f = /dNBeB |Det g'[>/P f . (3.4.92)
o5 np Xo, B
(4

It follows that
9*_1 (:U'ae B) = |Dety g/‘%éé/p “Hoy B - (3.4.93)

If g€ G and ¢,y € H,,, then

Un,(9) ¢ Ua,(9) % = |Detz (g7 2P po gL spo g™t = (|Detz g'| 2*/P G p) o g™ (3.4.94)
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as functions on dy B ~ G/P. With (3.4.93) it follows that

/ dlu’agB Uae (g) ag w / ,uagB ‘Detzg ‘ 200/p © w / dlu'agB ¢¢ )
oy B Oy B
(3.4.95)

showing that s, p induces the U,,-invariant inner product on H,,. ]

Remark 3.4.7 Integration formulas such as (3.4.84) were proved in [AU98, Theorem 6.3] in
the somewhat simpler setting of (unbounded) Siegel domains. In the bounded case, the two
extreme cases ag = 7+ (Hardy space) and a;—1 = p — 1 were also proved in [AU98].

3.5 Restricted boundaries of symmetric domains

Let Z = U &V denote the Peirce decomposition for the maximal tripotent e = e1 + -+ - + €.
Let U 5 a — R, € End (V) denote the canonical representation of U on V. The ”Cayley
transform”

c(u,v) == ((e+u)o(e—u)"', V2R, _,)-1v) (3.5.1)
defines a biholomorphic mapping ¢ : B — D, with inverse
1
—1 -1
c(u,v):=(u—e)o(ute) ™, —=: Ruyte-1v) . 3.5.2
(u,v) := ((u—e) o (u+e) 75 Bate ) (3.5.2)

Note that ¢(0) = e and ¢(—e) = 0. Since Aff(D) C Aut(D) is the stabilizer of c(e) (in the
compact dual of B), it follows that

Ge:={g€G: gle)=ey=c P Aff(D)c=GF G, (3.5.3)
where GF :=c"'Y¢, GY:=c ' GL(D)ec.
Proposition 3.5.1 If g € G. then ¢'(e)|x € GL(Y) and
T((cg™ @) =g (e)xa (3.5.4)
for all x € Q, where h +— h* is the involution in GL(Y). Moreover
[Detz (cge™) (w)] = Alg'(e)e) /2 (355)

for allw € D.

Proof: Let t,;, € ¥ and put ¢ := ¢! tapc € Ge. Since

tap(u,v)(0,0) = (4 +28(0,b), V) (3.5.6)
for all w = (u,v) € D and (1, ?) € Z, we obtain

(3.5.7)

Detyz (ctc™') (w) = Dety tfl,b(w) = Dety [ iy 29(=,b) ] = 1.

0 idy
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Moreover t, (w)z =z for all z € X. If 0 < 0 < 1, then c(fe) € D and ¢ (fe)x € X. Therefore
d(t(0e)) t'(Be) x = (ct)' (Be)x = (tapc) (Be)x =t ,(c (Be)) ' (Be)x = ¢ (fe) x . (3.5.8)
Letting # — 1 and using t(e) = e, we obtain
t'e)r =x (3.5.9)
for all x € X. Now let h € GL(D). The commuting diagram

—1p—1
B S0 B cth e B S0 B

cl cl le le (3.5.10)
D — D — D — D
Se h—1 Se
for the symmetries s9 = —idp and s, around 0 € B and e € D, resp., shows that

h* = (seh™1s.)(0) = (cso(c P h™te)sge ) (0) =

d(—e)shle)c TRl e () sh—e)e Y (0) = (AN ey (e)  (35.11)
since ¢/(—e) = (¢71)/(0) is scalar and s(e) = sj(—e) = —id. Since
|Dety h| = A(he)P/? (3.5.12)

we obtain for all w € D

|Detz W' (w)| = |Detz h| = |Detyz (¢ *h~te) (e)*| =

(3.5.13)
A((cPh o) (e) e)??2 = A((c P he)(e) e) P2 = A((c ' he) (e)e) P2 .
Now let g = t(c ' he) with cte™! € ¥ and h € GL(D). Then
(g HY(z=(C"hte)e)t Y (e)r=(cthte)(e)e=hiz (3.5.14)
showing that
(Y ()% = h1 . (3.5.15)
On the other hand,
m((cge N (x)) = 1(cte Hha)) =hy . (3.5.16)
This proves (3.5.4). Now let w € D. Then hw € D and
|Detz (cgc™) (w)| = |Detz (ctec™b) (hw)| - |Dety b (w)| = |Detz h'(w)|
= A((cHhe)'(e) e) P2 = Alg'(e) e) /2 .
Now (3.5.5) follows since (3.5.9) implies
de)e=t(e)cthe)(e)e=(c"the)(e)e. (3.5.17)
|
Proposition 3.5.2 G, has the modulus function
Ac.(9) = Alg'(e)e)™" . (3.5.18)
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Proof: By Corollary 3.3.2 and Proposition 3.5.1

Ac.(9) = Dagspy(ege™) = Alr((ege™)(e) ™"

= A(lg7) (@) e) ™" = Ag'(e)e)" = Alg (e)e)"" .

Proposition 3.5.3 N A has the modulus function

Ana(g) = Az,(d'(e)e)

where 2p;, = a(k — 1)+ 1+ b.

(3.5.19)

(3.5.20)

Proof: Since NA C G, and cNAc™' = NpAp, we may apply Proposition 3.3.3 and Propo-

sition 3.5.7 and obtain

Analg) = Anpap(cge™) = Agy(r(cge(e))) = Azp(g'(e)e) -

Lemma 3.5.4 Let z € B satisfy Ale — 2) # 0. Then c¢(z) € D C Z and
Dety d(z) = 2/2 A(e — 2)7P.

Proof: The derivative at z = (u,v) is given by
(2)(,0) = (2P, 1, V2(Rie—yy-1 0+ Rp1 ,0)) .
Being of "block-triangular” form, ¢/(z) has determinant

Dety () = Dety2P, ., - Dety \@R(e,u)_l

2dim U+dim V/2 D€tZ R(e—u)*l )

Since Rye_y)-1 = (P} Rc—y-1) € GL(D), we have

e—u’

Detz Rie—y)-1 = A(R(e—y)—1 P2 =Ale—u)P=Ale—2z)".

Now the assertion follows, since

r(r—1) rb rp
2 2 2

1
dimU—l—EdimV:r—i—

Corollary 3.5.5 If A(e — z) # 0, then
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Proof: Since ¢: B — D is biholomorphic, we have

|Detz ¢ (2)|> Kp(c(2),c(2)) = Kp(z, 2) (3.5.27)
for all z € B, where Kp and Kp denote the respective Bergman kernels. This implies
A p
a X-((an(j;;) = |Dety ¢ (2)> = 2P |A(e — 2)| 7P (3.5.28)
where a is a fixed constant. Evaluating at z = 0 yields a = 2"P. [ |
Now fix 0 </ < r and put uy —e = —ey11 — - - — e,. Then the "restricted” boundary orbit
B ={2€dB: Ale—2)#0}=c YD) = Ge(up — €) (3.5.29)

is an open dense subset of dyB. We may identify
Ge/P.>gP. — g(ug—e) € 9,B, (3.5.30)
where
P.=G.NnPCGy. (3.5.31)
In terms of the fibration (3.4.37), we put
o = {vES 4 Ale—v)#£0}={veS,_4: v+ By(v) CIB} (3.5.32)

as a dense open subset of S,_p, which is K,-invariant and contains I, — e. Note that
S, _,NI,_y = 0. By definition, S/ _, is a G.-orbit for the action (3.4.38), i.e. there is a
diffeomorphism

Ge/Qe2g — glug—e)eS._,, (3.5.33)

where
Qe=G.NQ=QF Q¢ (3.5.34)

is a closed subgroup of G, and we put

Qf =QNGE, Q=QNGY. (3.5.35)

Theorem 3.5.6 Under the mapping ¢~ : 0,D — 0yB, the measure pg,p constructed in
(8.3.38) has the image measure

pop = i (a,n) (3.5.36)
on 9,B, which is relatively invariant under G with multiplier
Xo;B (9) = A(g'(e) €)™ (3.5.37)

for all g € G.. Moreover, 1o, B has a decomposition

A(C,C)
[ o = [ au / di / Qi) M FEC+u—e)  (3.539)
9,B I, %/%(u
for all f € C.(8,B), where t°:=c 'tce G} and
dhpy(u—e)(€) = 27 dpzy(u—e) () A(C, O™ (3.5.39)

is the invariant measure on By(u — e), with pg:=2+ a({ — 1) + b.
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Proof: For g € G, we have cgc™! € Aff(D), and Theorem 3.3.4 and Proposition 3.5.1 imply

gr (o) = & eg e V)u(ex (ngp)) = e (cg e s (pa,n) =

A(r(cg™ M) e (na,n) = Alg'(€)" €)™ payp = Al (€) €)™ payz -

(3.5.40)

This shows that to,p 18 relatively invariant under G, with multiplier given by (3.5.37). For

any u € Iy, let ¢, : Bo(u — e) — Di(u) denote the ”partial” Cayley transform relative to

u € Zy(u —e). Then
c((F+u—e)=cuC); culC) +e—u=c(C)

for all ¢ € By(u — e). Moreover
(cu)s (11By(u=e)) = HD; (u)

for the respective invariant measures. Applying Theorem 3.3.4, it follows that

[ dugp f= | dug,p(w) f(c(w)) =
9B 9D

i
[du [ dt [ dpp, () (W) A(T(w + e — u))* o(c(tw)) =
I, 2/%1(u) D1 (u)

Jdu [ db [ dppy—e)(Q) A(r(eu(C) + e = u)* p(cT (teu(C))) -

II, ¥/%1(u) Bo(u—e)

Now the assertion follows from the identities

A(r(eul) + e = w) = Alr(eE) = T3 = -

cMteu(Q)=cte(C+u—e)=t(C+u—ce).

(3.5.41)

(3.5.42)

(3.5.43)

(3.5.44)

We will now express the relationship between the relatively invariant measure o, ON 0B,

and the K-invariant measure pp,gp on OB constructed in Theorem 3.4.6, giving rise to the

invariant inner product for parameter ay.

Proposition 3.5.7 On 0,B C 0;B we have
|Ae = 2)[** - dugp(2) = 27 - dug,p(2) -
Proof: By Proposition 3.5.1, we have for all g € G,

|Dety ¢ (g9(2)) Dety ¢'(2)|?*/P = |Dety (cg)(z)]>*/P =

|Detz (cge) (e(2)) Detz ¢ ()PP = Xop(g) - |Det & (2)/7 .

Using (3.4.93) this implies

9: ' (|Detz ¢ **/P py,p) = |Det 7 ¢ o g**/P g7 (ng,5) =
|Detz ¢ o g|**/P|Dety ' P*/P g, 5 = xa,8(9) | Detz ¢ /P g, -
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(3.5.46)



This shows that |Detz ¢/[2*¢/P yg, g is relatively invariant under G, with multiplier Xo,p- Using
Lemma 3.5.4, we obtain, up to a constant factor,

dpioy(2) = Dtz ¢ ()P dpg,(z) = 27 | Ale — 2)| > dpig,s(2) - (3.5.47)

Theorem 3.5.8 For 0 < /¢ <7 and f € C.(S._,), we have

r g o |[Ae — t°(u— €))[**
2 / dv f(v /du / df f(t°(u —e)) A(te_(0),£5_(0))r ° (3.5.48)

u—e u—e
I, X/31(u

’I

Here we put t° := ¢ 'tc for t € ¥, and decompose t°(ug — e) = t°(ug — €) + 15, . (0) according
to (8.4.56).

Proof: By (3.5.7), Detzt'(w) =1 for all t € X.. Therefore Lemma 3.5.4 implies for all u € I,
and ¢ € By(u — e)

Dety (t°'(u— e+ ¢) = Detz (¢  te) (u—e+ )
= Detz (¢ (t(c(u — e +¢)) Detz c(u—e+()
= Detz d(t(u—e+¢)) 7! Detyd(u—e+C) (3.5.49)
=Ale—t(u—e+ Q) Ale—(u—e+())?
=207 Ale =t (u—e+ () Ale = ()",

since Ale — (u —e+¢)) = 2"7¢ A(e — ¢). Applying Lemma 3.4.5 to t¢ and setting ¢ = 0, we
obtain

AGO Al tu—et Q)
AE O, .0) AP
e AGO e ool A~ (= )P
R0, w0y Pz e T P = G o) L o)

Since ay —py =5 (r—£+1)—12>a—12>0, there exists a constant ¢ such that
/ Apo(v) (W) Alw,w)* =c (3.5.50)
By (v)

for all v € S,_y. Since t&_, : Bo(u — €) — By(t°(u — €)) is biholomorphic, we have

(ti,e)* (MBo(ufe)) = 'U’Bo(‘tvc(ufe)) (3551)

and hence
dpgo(u—e) () Alts_c(Q) i (Q))* = ¢ (3.5.52)
By (u—e)

Applying Theorem 3.4.6, Proposition 3.5.7 and Theorem 3.5.6, we obtain for f € C.(S!_,)
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s, S!_, Bo(v)
=2 [ digno+0) £0) = [ duogn(o-+ ) F(0)[A(e — (0w (3:5.53)
9B 9B
. A(C,C)
= /du / dt f(t°(u —e)) / dpBy(u—e)(C) \A(e(g:?ﬂm |A(e —t¢(u— e+ C))|?™
I, 3/S(u) Bo(u—e)

e —t(u — e))[2
= [aw [ ds@Ee-a) g R [ O A0 )

II, 2/21(u) BO(u_e)

oy 1A= = )P
c/du /)dtf(t(u )

At (0), 85 (0))

i, 5/ u—e\V)s ly—e
|
Example 3.5.9 For / =0, S, =5 is the Shilov boundary. If B is of tube type, we have
Sl =c1(iX) . (3.5.54)
For t € ¥ set a = t(0). Then
t(—e) =c tte(—e)=ct0)=c(a)=(a—e)o(a+e)! (3.5.55)
and hence e — t¢(—e) = 2(a + ¢)~L. Tt follows that
IAle —t°(—e))| = 2" |A(a+ €)' =2" Ale — a®) /2. (3.5.56)

Theorem 3.5.8 yields for all f € C.(5")

2”/dv f(v) :/dtf(tC(e))|A(etC(e))\2"/’“ :4"/daf(c_1(a))A(ea2)_”/r, (3.5.57)

S’ P X

i.e. we obtain the well-known formula [FK94]

/dv flv) = 2"/da fe™H(a) Ale —a®) ™" . (3.5.58)

S’ X

References

[A92-1] J. Arazy, Realization of the invariant inner products on the highest quotients of the
composition series, Arkiv Mat. 30 (1992), 1-24.

75



[A92-2]

[A95]

[A96]

[AU97]

[AU9S]

[BeT75]

[Bou63]

[Dieu74]

[FK90]

[FK94]

[Gi64]

[Gi75]

[Gad7]

[HeT8]

[He84]

[Hu63)

[La86]

[La87]

J. Arazy, Integral formulas for the invariant inner products in spaces of analytic
functions in the unit ball, Lect. Notes in Pure and Applied Math., Vol.136, Marcel
Dekker (1992), 9-23.

J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded sym-
metric domains, Contemp. Math. 185 (1995), 7-65.

J. Arazy, Boundedness and compactness of generalized Hankel operators on bounded
symmetric domains J. Funct. Anal. 137 (1996), 97-151.

J. Arazy and H. Upmeier, Invariant inner products in spaces of holomorphic functions
on bounded symmetric domains, Documenta Math. 2 (1997), 213-261.

J. Arazy and H. Upmeier, Discrete series representations and integration over bound-
ary orbits of symmetric domains, Contemp. Math. 214 (1998), 1-22.

F. Berezin, Quantization in complex symmetric spaces, Math. USSR-Izv. 9 (1975),
341-379.

N. Bourbaki, Eléments de Mathématique, Livre VI, Intégration, Chap. 7 & 8, Herman
(1963).

J. Dieudonné, Treatise on Analysis, vol. IV, Academic Press, 1974.

J. Faraut and A. Koranyi, Function spaces and reproducing kernels on bounded sym-
metric domains, J. Funct. Anal. 88 (1990), 64-89.

J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Clarendon Press, Oxford
(1994).

S. Gindikin, Analysis on homogeneous domains, Russ. Math. Surv. 19 (1964), 1-89.

S. Gindikin, Invariant generalized functions in homogeneous domains, Funct. Anal.
Appl. 9 (1975), 50-52.

L. Garding, The solution of Cauchy’s problem for two totally hyperbolic linear differ-
ential equations by means of Riesz integrals, Ann. Math. 48 (1947), 785-826.

S. Helgason, Differential Geometry, Lie Groups, and Symmetric spaces, Academic
Press (1978).

S. Helgason, Groups and Geometric Analysis, Academic Press (1984).

L.K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Clas-
sical Domains, Transl. Math. Monographs, Amer. Math. Soc. (1963).

M. Lassalle, Noyau de Szegd, K-types et algébres de Jordan, C. R. Acad. Sci. Paris
303 (1986), 1-4.

M. Lassalle, Algébres de Jordan et ensemble de Wallach, Invent. Math. 89 (1987),
375-393.

76



[Lo75]

[Lo77]

[MS7]

[MO5]

[N8Y]

(080]

Rid9]

[RV76]

[Sch69]

[St89]

[UU94]

[US3)

[U85]

[U85a]

[US6]

[U87]

[W79]

[Y93)]

O. Loos, Jordan Pairs, Springer Lect. Notes in Math. 460 (1975).

O. Loos, Bounded Symmetric Domains and Jordan Pairs, Univ. of California, Irvine

(1977).

I. G. Macdonald, Commuting differential operators and zonal spherical functions,
Springer Lect. Notes in Math. 1271 (1987), 189-200.

1. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Ox-
ford (1995).

T. Nomura, Algebraically independent generators of invariant differential operators
on a symmetric cone, J. reine angew. Math. 400 (1989), 122-133.

B. Orsted, Composition series for analytic continuations of holomorphic discrete se-
ries representations of SU(n,n), Trans. Amer. Math. Soc. 260 (1980), 563-573.

M. Riesz, L’intégrale de Riemann-Liouville et le probleme de Cauchy, Acta Math. 81
(1949), 1-223.

H. Rossi and M. Vergne, Analytic continuation of holomorphic discrete series of a
semi-simple Lie group, Acta Math. 136 (1975), 1-59.

W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen
Réumen, Invent. Math. 8 (1969), 61-80.

R. P. Stanley, Some combinatorial properties of the Jack symmetric functions, Adv.
Math. 77 (1989), 76-115.

A. Unterberger and H. Upmeier, Berezin transform and invariant differential opera-
tors, Comm. Math. Phys. 164 (1994), 563-597.

H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math.
Soc. 280 (1983), 221-237.

H. Upmeier, Toeplitz operators on symmetric Siegel domains, Math. Ann. 271 (1985),
401-414.

H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, North Holland
1985.

H. Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J.
Math. 108 (1986), 1-25.

H. Upmeier, Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics,
CBMS Series in Math. 67, Amer. Math. Soc. (1987).

N. Wallach, The analytic continuation of the discrete series, I, I, Trans. Amer. Math.
Soc. 251 (1979), 1-17 and 19-37.

Z. Yan, Differential operators and function spaces, Contemp. Math. 142 (1993), 121-
142.

77



Authors’ Addresses:

Jonathan Arazy: Department of Mathematics, University of Haifa, Haifa 31905, Israel.

Electronic Address: jarazy@math.haifa.ac.il

Harald Upmeier: Fachbereich Mathematik, Universitdt Marburg, D-35032 Marburg, Germany.

Electronic Address: upmeier@mathematik.uni-marburg.de

78



