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Preface

A conference on “Noncommutative Geometry and the Standard Model of
Elementary Particle Physics” was held at the Hesselberg Academy (in north-
ern Bavaria, Germany) during the week March 14-19, 1999. The aim of the
conference was to give a systematic exposition of the mathematical foun-
dations and physical applications of noncommutative geometry, along the
lines developed by Alain Connes. The conference was actually part of a
continuing series of conferences at the Hesselberg Academy held every three
years and devoted to important developments in mathematical fields such
as Geometric Analysis, Operator Algebras, Index Theory, and related topics
together with their applications to mathematical physics.

The participants of the conference included mathematicians from func-
tional analysis, differential geometry and operator algebras, as well as ex-
perts from mathematical physics interested in A. Connes’ approach towards
the Standard Model and other physical applications. Thus a large range
of topics, from mathematical foundations to recent physical applications,
could be covered in a substantial way. The Proceedings of this conference,
organized in a coherent and systematic way, are presented here. Its three
chapters correspond to the main areas discussed during the conference:

Chapter 1 Foundations of Noncommutative Geometry and Basic Model
Building

Chapter 2 The Lagrangian of the Standard Model derived from Noncom-
mutative Geometry

Chapter 3 New Directions in Noncommutative Geometry and Mathemat-
ical Physics

During the conference the close interaction between mathematicians and
mathematical physicists turned out to be quite fruitful and enlightening
for both sides. Similarly, it is hoped that the Proceedings presented here
will be useful for mathematicians interested in basic physical questions and
for physicists aiming at a more conceptual understanding of classical and
quantum field theory from a novel mathematical point of view. Of course,
the whole field is under active development and important aspects, such as
field theory of extended objects or advances in renormalization theory could



only be touched upon here, these may be covered in subsequent meetings of
the Hesselberg conference series.

From the beginning, the Hesselberg conference series was made possible
through financial support from the Volkswagenstiftung. This support is
gratefully acknowledged. Thanks are due to Martin Briegel, Thomas Eckert
and Monika Teubner of the University of Marburg for typing large parts of
the manuscript and preparing the final version of the Proceedings, and to
the participants for their careful work with the individual contributions.

The organizers

FLORIAN SCHECK
WEND WERNER
HARALD UPMEIER
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Chapter 1

Foundations of

Noncommutative Geometry
and Basic Model Building

This chapter is devoted to a systematic exposition of the mathematical back-
ground necessary for noncommutative geometry and its applications. As
a characteristic feature, noncommutative geometry involves algebra, func-
tional analysis and differential geometry in an essential way. Our exposition
reflects these various fields. Among the main topics discussed in the follow-
ing are

e the concept of spectral triple in operator algebras and Fredholm theory,
e analysis of traces (Dixmier trace) in pseudo-differential calculus,
e the heat kernel expansion from a differential-geometric point of view,

e analytic treatment of cut-off functions and their Laplace transforms.

In line with the emphasis towards physics, these mathematical concepts
are then used to express the Lagrangian densities of gauge theory (Maxwell
and Yang-Mills equations) and general relativity (Einstein-Hilbert action)
using the framework of noncommutative geometry. In this way, the basic
methods are introduced and applied to the fundamental concepts of physics,
without the full algebraic details of the physically realistic models involving
fermions.
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1.1 Spectral Triples and Abstract YM Functional
(R. Holtkamp)

The aim of the following note is to give a short introduction to the notions
of curvature and Yang-Mills functional for vector potentials (“case «”) and
for connections on Hermitian finitely generated projective modules (“case
B7). At first we recall some foundations of NCG which are needed. We will
closely follow [38].

1.1.1 Spectral triples

1.1.1 Definition ([38, IV.2.11]). Let A be a (not necessarily commuta-
tive) involutive algebra, x-algebra for short. We assume that we have given

(i) a x-representation A — L(H) on (separable) Hilbert space H, and

(7i) an unbounded selfadjoint operator D such that [D,a] is bounded (for
all a € A) and such that for alla € A, A\ € R, a(D — \)~! € K(H),
i.e. D has compact resolvent.

Then we call (H,D) a K-cycle over A and (A, H, D) a spectral triple.

Spectral triples are sometimes also called unbounded Fredholm modules.

We will always assume that A is unitary and 1 acts as identity, A is a
subalgebra of L(H). Let U := {u € A : u*u = wu* = 1} be the unitary
group.

We furthermore assume that (#,D) is (p,o0)-summable, i.e. A\, the
eigenvalues (with multiplicity) of | D| = v/D*D, are of order O(n!/?). Equiv-
alently, the eigenvalues y, of |[D|~! are of order O(n~1/7).

Then p is the dimension of the spectral triple.

1.1.2 Example. For the commutative case, where A = C*®°(M), M a com-
pact Riemannian spin manifold, we regard D = Oy the Dirac operator, and
H the space of L?—spinors. This is discussed in section 1.8.

1.1.3 Remark. We will later on define the Yang-Mills functional for con-
nections on Hermitian vector bundles.

Thus instead of (the trivial bundle) A, we are also going to study the
more general case, where & is a finitely generated projective module over a
x-algebra A, i.e. £ = eAYN is a direct summand of free module AV, € = e =

e* € Mn(A), with an Hermitian structure induced by

€m) =D & (all &= (&),n = (m) € AY).
Here a Hermitian structure is defined as follows:

1.1.4 Definition ([38, VI.1.7]). A Hermitian structure on £ is given by
a sesquilinear mapping ( , ): & x &€ — A such that
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(i) (§a,nb) = a™(§;mb (all §,n € E,a,b € A)
(it) (§,€) 20 (all§ €E)
(i1i) € is selfdual for ( , ).

We can replace ‘H by £ ® 4 H and we can consider the following inner
product: (¢ ® h,&' @ h') = ((£,&')h, h') (and replace D by Dy, see below).

Now Endy4(€) = eAN® gHom4(e AV, A) is x-algebra isomorphic to
eMy(Ae

and is equipped with the inner product (¢ ® n*,&' @ 7'*) = ((£,&")n,n") .

Let U(€) := {u € Endy(€) : v u = uwu™ = 1}.

In the following, we will refer to this more general case by the name
“case 8”7, while “case o” stands for the trivial case & = A.

1.1.2 Universal differential graded algebra

1.1.5 Definition ([38, III.1.0.3]). The universal differential graded alge-
bra over A, denoted by Q*(A), with Q°(A) = A, is the graded A-algebra
generated by {da : a € A}, all da of degree 1, subject to the relations

d(ab) = (da)b + a(db) (all a,b € A)
dl =0.

The differential is defined by d : Q*(A) — Q*(A), d(a®dal - --- - da™) =
da®dal - --- - da™ (all d/ € A).

We have the following rules:

dP?w=0 (all w € Q*(A))
d(wiwz) = (dwi)wa + (—1)%9“1 wy (dws) (all w; € Q*(A)).
02*(A) is a *-algebra:
(da)* = —da™.

It is well known that the A-bimodule Q' A is isomorphic to ker(m :
AR A — A) via the map Y a; @b — Y ai(db;) (eg- 1®f— f®1—df).



8 CHAPTER 1. FOUNDATIONS OF NC GEOMETRY

1.1.3 Vector potentials, universal connections

1.1.6 Proposition ([38, VI.1.4(1)]). We can extend the x-representation
of A to a x-representation m of *(A) on H (via D) by

n(a%dal ...da") = a°[D,a]...[D,a"] (all &’ € A)
Note that m(—(da'")a®") = [a'", D]a’".

We have m(Q') = {V = Y al[D,aj] : a},a; € A}, and a selfadjoint

element of 7(2!) is called vector potential.
For u € U, let wy, := u[D,u*], uDu* = D + w, € L(H).
Then U acts on vector potentials by

Yu(V) = u[D,u*] + uVu* (D 4+ 7,(V) =u(D + V)u").

We are going to need two definitions for the “case 87 (V:€ — £ @4 Q!
instead of (d+ V)a € Q' = A®4 Q):

Let £ be a finitely generated projective module over a *-algebra A as
above.

1.1.7 Definition ([38, VI.1.10]). A universal compatible connection on €
is a linear map V : £ — £ @4 Q' such that

a) V(a) = (V&a+E{®@da (allé €€ acA)
b) (€, V) — (V&) =d(&n) (all§nel)
where for V& =3 &wi: (V&,n) = > wi{&,n).

We denote by CC(E) the space of universal compatible connections on

£.

1.1.8 Example. The Grassmannian Vo, Vo((&;)) = e(d¢;), is an ele-
ment of CC(E): VO((fja)) = e(d(&;a)) = e(d€j)a + (&) da and d(&,n) =
2_(d€5)n; + 22(dn;) &5 = —(e(dg;),m) + (&, e(dny)).

1.1.9 Definition ([38, VI.1.8]). A compatible connection on £ (not uni-
versal) is a linear map V : € — € @ 4 (') with a),b) as above.

We denote by C(€) the space of compatible connections on £.

1.1.10 Example. 7V is an element of C(£).
Note m: CC(E) — C(E) is surjective .
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1.1.4 Quotient differential graded algebra

The definition of dV by Z[D,a?][D,ajl-] € 7(92) would be ambiguous as
ker 7 is not a differential ideal. The following construction helps to define
dV unambiguously.

Let Jy := kerm (graded two-sided ideal), J$¥ := Jy N QF.

1.1.11 Proposition (Junk ideal, [38, VI.1.4(2)]). J = Jy + dJp is a
graded differential two-sided ideal of Q*(A).

Proof. J is a differential ideal (as d? = 0).
(k)

It is two-sided: For homogeneous w = w; + dws, wy € Jok
and w' € OF | it holds:

,We € J(gk_l)

'~

ww' =ww' + (dws)w'’
=w1w' + (= (1) wadw’ + d(wew"))
c J(glc-l—k’) EdJék’+lc—1)'
O
1.1.12 Definition. We define the quotient differential graded algebra by
0 (A) = Q% (A)/J.

1.1.5 Inner product

It holds that
0 =A

(as Q0 = A C L(A), JO = J,nQ° = {0}),
Qh = QY kerm = 7(Q)
(as JNQ = JpnQ +d(Jy N Q%) = Jy N Qy),
0% = £(02)/x(d(Jy N QL)
and similarly for Q?I’), Q%, .... Every element of 92D is of the form
p= Zag[D,a}][D, a?]
mod {po = Y [D,][D,bj] : b € A, b}[D,bj] =0} (1.1.1)

with af €A
We recall the definition of the Dixmier Trace Tr,(T), T € K(#H). It
fulfills Tr,(T) < oo if the eigenvalues po(T) > u1(T) > ... of |T| satisfy

N—1
Z,un(T) = O(logN) (i.e. T order 1).
n=0
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1.1.13 Definition ([38, IV.2.4]).
1 N-—1
Tr,(T) = Lim, TogN nz:% fin(T)

(for T >0, then we can extend the definition).

The fixed lim-procedure Lim,, is defined via a linear form L on Cy(R?)
with

a) L(ay) >0 for a, >0

B) L(ay) = lim a, for converging a,,
n—r00

) scale invariance: L(a1, a1, a2, @s,...) = L(ai, a9, ...)

Here 7 can be achieved by letting Lim, (o) := L(M(f,)), where f, €
Ch(R?) is given by fo(A) = an, A €]N—1,N]and M(f)(\) = bz [} f(u) 22
is the Cesaro mean.

It holds:

Tr,(ST) = Tr,(T'S) (all T of order 1, S bounded)
Tr,(UTU*) = Tr,(T) (U unitary ).
Now we can define an inner product for 7} € 7(Q?), Dimension p, by
(Ty,T») = Tr,(T5T1|D|7P).
Let Ho be the Hilbert space completion of 7(92?) w.r.t. {,) and PHs :=

1
(r(donah)).
P%H; is the Hilbert space completion of w(02%)) w.r.t. (P(), P()).

1.1.6 Curvature and Yang-Mills functional

For vector potentials V, the curvature (V) is defined by dV + V2 € PH,
(as an operator).

1.1.14 Proposition ([38, VI.1.5(& 11)]). (i) YM(V) = (8(V),0(V))
s a positive functional, quartic and invariant under gauge transfor-
mations y,(V) = u[D,u*] + uVu*.

(ii) On {a € Q' : a = o*}, the same holds for
I(@) = Try,((m(de + &2))?|D|7P).
(iti)) YM(V) = inf I(«).
m(a)=V
Y M is called Yang-Mills functional.
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For a universal compatible connection (“case 3”), the curvature (V) €
Homy (€,€ @4 %) = € @4 N2® 4Hom (&, A) is given by @2|£ where V is
the (uniquely defined) right Q2*-module morphism £ ® 4 * — £ ® 4 Q* with
@|S®1= V and V(nw) = (Vn)w + (—1)%e@y(dw).

The curvature makes also sense as an operator 7(6) € L(E @4 H)-

Let us furthermore define Dy € L(E ® 4 H) by

Dy(é®h)=¢(® Dh+ ((1®m)VE)h.

For V € C(€), similarly § = V? € Homy(&,€ @4 Q2)). We can check,
that

ewen.dewen”) = (¢ wu nn))

defines an inner product on Hom 4(&,€ ® 4 0%).

1.1.15 Proposition’ ([38, VI.1.5(& 11)]). (i) On C(£): YM(V) =
(0,0) is a positive, quartic action, invariant under gauge transforma-
tions v, (V) = uVu*.

(ii’)) On CC(E), the same holds for
1(V) = Try ((x(6))*| Dy 7).

(11i’) YM (V) = (1111)f_vI(V1)

Proof. (The trivial case.)

1) ad (iii): The ambiguity in m(da) for o with 7(da) = V is 7 (d(JoNQ'))
(

and is deleted by the projection on PHe = (7w(d(Jp N Ql)))l, while

n(da + o?) — dV + V2

2) ad (i),(ii): Assertions (i) and (ii) hold, as the following computations
show that 6 is invariant under gauge transformations:

[D,a}u*] — a}[D,u |= Da u* +a; Y~u*D — Du* + u*D) = [D,a}]u*
Thus 7,(V) = v, (> ag[D, a]l )
= u[D,u*] + Zua?[D, a} Zua [D u*

and dvy, (V) =
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[D,4][D,u*] +>_[D,ual][D,a}u*] = > [D,ualal][D,u*].

dyu(V) +7(V)? = dv (V) + (u[D,u*] + uVu*)?
=dv, (V) + u(Du* — vw*D)u(Du* — u*D)
+u[D, u*uVu* +uVu*u[D,u*] + uV2u*
:d'Yu(V) - [D7 u] [D7 U*]
— [D,u]Vu* + uV[D,u*] + uVu*
:—ZDua 11D, u*] —i—Z[Dua 1D, a; ¥
— Z[D u) aQ[D, aju’] + Z[D u ajaj[D,u*]
+Zua [Du]-l—uV2 *
=ZU[D,aj [D a'u ]
—Z D, uaa - [D, u]a ;—ua [Da])[D,u*]
+uV2u*
:ZU[D,Q ]([D,a - a}[D,u*]) + uV2u*
= u(dV + V2)u

O

1.1.16 Example. Let us briefly look at an example, that will be used to
define Connes’ Standard Model (c.f. 2.3).

Let X ={a,b},E=A=Ca®C, e; :=(1,0), H=Ha ® Hp, we consider
feAonHas (f“ 0).

0 fp

Let D := (OMA/I(;).

then (D, 1= (fs= 1) ( ) )

0 —A\M*
1_ — L=
Q' = {Aerder + p(1 — e1)der}, 7Q {< pM 0 >}
—aM*M 0
02 = {aeiderde; + B(1 — ey)derde }, 0 = {<0 - ,BMM*>}

A wvector potential is a selfadjoint element: V = .
—perder + ¢(1 — eq)dey, thus given by ¢ € C, n(V) = (2)M ¢M8).
Now

0=dV + V2= —queldel — ¢deider + (q_Seldel — (]5(1 — 61)d€1)2
~(¢+ &+ ¢pd)derder = —(|1 + ¢|> — 1)derdes

w0) ==+ 98 -3 )0 )
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and YM = (0,0) = 2(|1 + ¢|> — 1)? Trace((M*M)?),

where Trace denotes the ordinary trace, which is a 0-dimensional analogue
of Try,.
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1.2 Real Spectral Triples and Charge Conjugation
(R. Meyer)

You may think of a real structure on a spectral triple as a generalization
of the charge conjugation operator acting on the spinor bundle over a spin
manifold. The charge conjugation operator is, in fact, an important example
and will be considered in detail below. Almost everything in this section is
due to Alain Connes [39].

1.2.1 Real structures on even spectral triples

1.2.1 Definition ([39]). Let (A,H,D) be an even spectral triple. A real
structure of dimension 2p mod 8 on (A, #H, D) is a conjugate linear isometry
J: H — H satisfying:

a) JD=DJ, J?=¢, Jy=¢érJ;

b) for any a € A, the operators a and [D,a] commute with JAJ*.

€, € {+1,—1} depend on d = 2p mod 8 according to the following table:

d= |0 2
= 1] -1 1
€= |1|-1 1] -1

o
|
—

(A,H,D,J) is called a real spectral triple of dimension 2p mod 8.

Notice that (AJ)? = |\|?J for all A € C. Hence if J is a real structure of
dimension 2p, then so is AJ for all A € C, || = 1.

The crucial part of Def. 1.2.1 is condition b). Since A commutes with
JAJ*, we can turn H into a bimodule over A by putting

ab := aJb* J*(£) Va,be A, £ €H.

Using that J is an isometry (that is, J*J = 1) and that JAJ* commutes
with A, one verifies easily the conditions for a bimodule. In the application to
the standard model, this bimodule structure makes sense of uéu* for u in the
gauge group U(A) and thus allows us to define the “adjoint” representation
of the gauge group U(A) on H.

Condition a) is related to the notion of a “real” algebra. Let us first
not worry about the signs €, ¢/. Ignoring the dimension, we may replace the
conditions J? = € and Jy = €'yJ by J? = 1 and Jy = +vJ because any
pair (e, ¢') € {1} x {£1} occurs for a unique d € {0,2,4,6}.
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1.2.2 Definition. Let B be a graded *-algebra over C with grading z +—
27 and involution x — x*. A real structure on B is a conjugate linear
homomorphism B — B, z — T, satisfying T = z, z* = (T)*, and 7 = (z)7
for all x € B.

An element x € B is called real iff T = x.

A “real” graded x-algebra is a graded x-algebra with real structure.

If B is a “real” graded *-algebra, then the set of real elements
Br:={z € B |z =2z}

is a graded x-algebra over R such that B =2 Br ®gr C and the conjugation
on B is the standard conjugation on a complexification, z® X := = ® .
Hence we could alternatively define a “real” structure as an isomorphism
B = Br ®g C for some R-algebra Br.

1.2.3 Lemma. Let H be a graded Hilbert space with grading v: H — H. Let
J: H — H be a conjugate linear isometry satisfying J> = £1 and Jy = £~.J.
Then T := JzJ* defines a real structure on L(H).

Conversely, if x — T is a real structure on L(H), then there is a con-
jugate linear isometry J: H — H satisfying J> = +1 and Jy = +vJ such
that T = JxJ*.

In addition, J is unique up to multiplication with scalars of modulus 1.

Proof. Let J be a conjugate linear isometry satisfying J?> = +1 and Jy =
+vJ. Then T := JxJ* is conjugate linear and *-preserving. Since J is
an isometry, T -y = JxJ*JyJ* = JxyJ* = T -y, that is, conjugation is
multiplicative. Since J? = +1, we have T = J2x(J*)? = (£1)?z = z for all
x € L(H), that is, conjugation is an involution. Finally, Jy = £+v.J implies
vJ* = £J*vy and thus

o7 =yzy = JyzyJ* = (£1)*yJz*y = yzy = ()7

for all z € L(#). Thus z + T is a real structure on the graded x-algebra
L(H) in the sense of Def. 1.2.2.

Conversely, let z — T be a real structure on £(#). This “conjugate
automorphism” is necessarily inner in the sense that there is a conjugate
linear isometry J: H — H such that T = JzJ*. To see this, pick any
conjugate linear isometry J': H — H and consider z — J'z(J')*. This is a
x-automorphism of £(H) and therefore inner.

Since T = =z, we have J?z(J?)* = z for all x € L(H). Thus J? is in
the center of L£(#). Therefore, J2 = X for some A\ € C, |A\| = 1. Since
A-id = J2 = J(J?)J* = X-id = X-id, we automatically have A € {—1,+1}.
Thus J? = +1.

Since z7 = (Z)", we have JyzyJ* = yJzJ*y for all z € L(H). Equiva-
lently, (J*yJvy)z(J*yJy)* for all x € L(H), that is, J*yJv is in the center
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of L(#H). Thus Jy = M\yJ for some A € C, |A| = 1. Since J = Jy% = \yJy =
N242J = A2J, it follows that A € {—1,+1}, that is, Jy = +y.J as desired.
Finally, conjugate linear isometries J' and J give rise to the same real
structure on L£(H) iff J'J* is in the center of L(H), that is, J' = AJ for
some A € C, |A| = 1. Thus J is determined uniquely up to multiplication
by scalars of modulus 1. O

Thus a real structure on a spectral triple (A,H, D) is nothing but a
real structure on the graded *-algebra L£(?) with the following additional
properties:

a)’ D = D;
b)’ A:={a|a € A} commutes with A and [D, A] := {[D,a] | a € A}.

1.2.2 Spin® manifolds and charge conjugation

We now come to a crucial example, namely the standard spectral triple
(A,H, D) associated to a Riemannian Spin® manifold M of dimension 2p.
This spectral triple will be constructed in detail in Section 1.3. We are
going to find a “canonical” real structure J: H — H on (A,H,D). The
operator J is called charge conjugation. Of course, we expect to get a real
spectral triple (A4, H, D, J) of dimension 2p mod 8. This is indeed the case
when the signs ¢, ¢ are chosen as in the table in Def. 1.2.1.

To construct charge conjugation and the right values ¢, ¢/, we have to be
very careful about sign conventions in the definition of the spectral triple
(A,H,D). Let F(M) — M be the principal Spin®-bundle describing the
SpinC-structure of M. The spinor bundle S is associated to this principal
bundle. That is, S = F(M) Xgp,c % for a certain graded C-vector space X
with a grading preserving, unitary representation of SpinC. The algebra
A := C*®(M) acts on the Hilbert space H := L?(M, S) of L?-sections of the
spinor bundle by pointwise multiplication. To define ¥, we need the real
Clifford algebras. We follow Kasparov [123].

Let RP? be the R-vector space with basis (ej,...,eptq). Endow RPH
with the symmetric bilinear form @ defined by Q(ej,ex) = 0 for j # k,
Q(ej,ej) =1for j=1,...,p, and Q(ej,ej) = —1for j=p+1,...,p+gq.
1.2.4 Definition. The real Clifford algebra Cl, 4 is the universal unital R-
algebra generated by the vector space RP? with relations x - x = Q(x,z) - 1
for all z € R4, That is, Cl, 4 is the universal unital R-algebra with anti-
commuting generators ei,...,eprq such that e? =1 forj=1,...,p and
e? =—-1forj=p+1,....,p+gq.

Cl, 4 is naturally a Zo-graded *-algebra. The grading is defined by the
requirement that dege; = 1 for j = 1,...,p + q. The involution is defined
by e;“- =e¢j forj=1,...,p ande;f =—¢jforj=p+1,....,p+q.
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We consider RPY as a sub-vector space of Cl, ; in the obvious way.

Fix a basis e, ..., e, of the vector space R’. Endow the exterior algebra
ARP with the usual grading and the inner product that is defined by the
condition that the vectors e;; A---Ae;,, 41 < -+ < iy, form an orthonormal
basis. Let A\;: ARP — ARP be exterior multiplication with x € RP. Let A},
be the adjoint of A;. Then e; — A, + )\zj for j = 1,...,p and epy; —
Ae; — /\:j for 5 = 1,...,p defines a grading preserving *-homomorphism
Clyp = Lr(ARP) = My (R). This representation yields an isomorphism of
graded *-algebras Cl,, = Lr(ARP).

Let CL';" be the even part of Cl,, ;. By definition, Spin®(2p) is the group
of all unitary elements w € Clg'y) ®rC such that wRY%2P =1 ¢ RO?P. Thus
p(w)(z) := wzw ™! defines a representation of Spin®(2p) on R%?. One can
check that p has range SO(2p) and kernel U(1) = {X | A € C, |A| = 1}. Thus
Spin®(2p) = Spin(2p) xz, U(1), where Spin(2p) is the universal covering of
SO(2p).

We make ¥ := ACP a module over Clyo, ®gC via the isomorphisms
Cly,2p ®rC = Cl, , QrC =2 L¢(ACP) defined by

(61, ceey €2p) = (z'el, ce ,iep,ep+1, ce ,egp)
= (Ihey HIAL, .00, 0Ae, + i)\:p, Aep = AgyreevrXep — Ae,)- (1.2.1)
Since Spin®(2p) C Clp,2p ®rC, we get a natural action of Spin®(2p) on X.
The group Spin® also acts on Clp2p ®rC and suitable subspaces by conju-
gation. For this action, the Clifford multiplication Clgo, @rC ® ¥ — X is
Spin®-equivariant. Hence we get induced bundle maps CI(M) ® S — S,
where Cl(M) is the Clifford algebra bundle of M whose fiber at z € M is
the Clifford algebra of T, M, with symmetric bilinear form —g (where g is
the Riemannian metric). Our sign conventions are such that Clifford mul-
tiplication by a vector field X: M — T'M is skew-adjoint. This convention
is used by many authors, but unfortunately not by Connes.

Let V be a connection on the principal Spin®-bundle F(M) — M. The
Dirac operator D is defined as the composition

C®(M,S) L C®(M,T*M ® S) -1 C®°(M, TM ® §) -5 C®(M, ),

where g is induced by the metric and p is Clifford multiplication. Our sign
conventions are such that [D, M| is Clifford multiplication by the gradient
of f.

Let CC: ¥ — ¥ be a conjugate linear isometry commuting with the
SpinC-action. One verifies easily that the induced map C*®(M, S) — C*®(M, S)
commutes with D iff CC' commutes with Clifford multiplication by elements
of RO2P Clp,2p. Since RO?P generates Clp,2p, this means that CC commutes
with Clpgp. The isomorphism L£(X) = Clygp ®rC yields a real structure
x — T on the graded *-algebra L£(X). A conjugate linear isometry CC
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commutes with Clg o, if and only if CCzCC* = 7 for all z € L(¥). By
Lemma 1.2.3 such an operator C'C exists and is unique up to multiplica-
tion by scalars of modulus 1. Furthermore, CC? = 41 and CCvy = +yCC,
where 7 is the usual grading on ACP.

The associated map J: H — H satisfies JD = DJ by construction. In
fact, it is the only “constant” bundle map with this property up to multi-
plication by a constant of modulus 1. Furthermore, J? = € and Jy = ¢'vJ
for suitable €,€ € {—1,+1} because these equations hold for CC. If f € A,
then JM;J* = Mf is again a pointwise multiplication operator. Hence
JAJ* commutes with all maps H — #H that come from bundle maps S — S.
In particular, it commutes with A and [D, A] because [D, f] is Clifford mul-
tiplication by the gradient of f. Thus J is a real structure.

It remains to compute the signs €,¢. For that purpose, we derive an
explicit formula for CC: ACP — ACP. Since A\, — A} and iX\; + i\} are
real, an easy computation shows that A\, = —\%, \* = —), for all z € RP.
Thus C'C maps

C-1={we AC? | \}(w) =0 for all z € RP}

to
C-(e1 N Nep) ={w e AC? | A\g(w) =0 for all z € RP}.

Thus CC(1) = Ae1 A---Aep for some X € C. Since CC is isometric, [A| = 1.
Since CC is only unique up to multiplication by a scalar of modulus 1,
anyway, we may assume CC(1) =e; A--- Aep. Then

CCey A+ Aeg) = CC(e, -+ A, )CC*CC(1)
= (—1)FN; AL (et A Aep) = (—1)FETD 2 oA Aey.

This holds for any oriented orthonormal basis eq,...,e, of RP. Hence CC
coincides with the (conjugate linear) Hodge-* operator up to the signs
(_1)k(k—|—1)/2 on AFRP.

A straightforward computation shows CCy = ¢yCC for € = (—1)P.
Since CC? = ¢ is a scalar and CC%(1) = CC(e1 A -+ A ep) = (=1)PP+D/2)
we have € = (—1)?P+t1)/2_ Comparing with the table in Def. 1.2.1, we see
that J is a real structure of dimension 2p as desired.

1.2.3 Real structures via Clifford algebras

The example of the charge conjugation operator shows that the signs €, € in
Def. 1.2.1 are related to representations of Clifford algebras. If we decorate
spectral triples appropriately with Clifford algebras, we can indeed get rid
of the signs as follows:

1.2.5 Definition. Let (A, H., D.) be an even spectral triple with grading au-
tomorphism vy, € L(H.). Letp,q € Z,. A Cl, 4-real structure on (A, H., D.)
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consists of a conjugate linear isometry J.: H. — H. and a grading preserv-
ing *-homomorphism ¢: Cl, , — L(H.) such that

Cl.a) J.D = DJ,, J? =1, Joy. = YeJo; #(Cl, 4) commutes with A, D,
and Jg;

Cl. b) J.AJ} commutes with A and [D,, A].
We call (A, H¢, De, Je, ¢) a Cl, -real spectral triple.

1.2.6 Proposition. Let p € Z. There is a natural bijection between real
spectral triples of dimension 2p mod 8 and Clygp-real spectral triples. More
generally, if p — q s even, there is a natural bijection between Cl, p-real
spectral triples and real spectral triples of dimension p —q mod 8.

Proof. Let (A,H,D,J) be a real spectral triple of dimension 2p mod 8.
Define H, .= HQIACP, D. .= D®id, J.:= JQ® CC. These tensor products
of operators are meant in the ungraded sense. Thus, for example, (J ®
CC)(E¢®@n) = J() ® CC(n). Endow H,. with the product grading . =
i ® yace. Consider A C L(H,) via a — a ® 1. Define the representation
¢: Clogp = L(H) by ¢ =1Q® ¢o with ¢y as in (1.2.1). This is a graded
x-representation.

It is easy to check that (A, H,, D¢, Je, ¢) is a Clg gp-real spectral triple in
the sense of Def. 1.2.5. As an illustration, let us compute J? = J2® CC? =
€%id = id and

Jve = (J - y) ® (CC-ner) = () (v - J) © (e - CO) = vele-

Conversely, let us start with a Clg gp-real spectral triple (A, H¢, De, Jc, ¢).
Since Clp 2p ®rC = L(ACP), the complexified representation ¢¢: Cl 2, @rC —
L(H.) is a multiple of the standard representation on ACP. In other words,
He 2 HACP and ¢ = id ® ¢p. The commutant of Cly g, in L(H,) is equal
to L(H) ® id.

Thus the representation A — L(H.) is of the form f ® id for some
x-representation f: A — L(H) and D, = D ® id for some unbounded self-
adjoint operator D on H. Let v, and yacr be the gradings on H. and
ACP, respectively. Then v, 1(id ® yac») commutes with ¢(Clyo,). Thus
Ye = Y1 @ Yace for some vy € L(H) that makes H a graded Hilbert space.
Finally, we have J. = JQCC for some conjugate linear isometry J: H — H.
To see this, choose any conjugate linear isometry J': % — H and argue that
J7HJ'® CC) commutes with ¢(Clgop). It is straightforward to show that
(A,H,D,J) is a real spectral triple of dimension 2p mod 8.

Clearly, the above constructions are inverses of each other. This com-
pletes the proof of the special case.

To deal with the general case, choose an isomorphism Cl,;, QrC =
L(AC#tP)/2) a5in (1.2.1). The corresponding real structure on £(AC(12)/2)
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is implemented by a conjugate linear isometry CC,,: AC+P)/2 — ACla+P)/2
by Lemma 1.2.3. An explicit formula for CC,, yields ¢, €’ € {£1} such that
C’C,ip = ¢ and CCypy = €yCCyp. It turns out that €, € are the same as in
the table in Def. 1.2.1 for d = p — g. We can replace CC by CCy, in the
above construction and conclude that there exists a bijection between real
spectral triples of dimension p — ¢ mod 8 and Cl, y-real spectral triples.
Alternatively, one can use the periodicity of the real Clifford algebras:
The graded *-algebras Cl,, and Cly , are Morita equivalent iff p — ¢ =
p' — ¢’ mod 8. More precisely, there are isomorphisms Cl, 14,4 = Cl, 444 for
all p, ¢ > 0 (see [123]). Hence Cl, 4 and Cly , are isomorphic if p+q = p'+¢'
and p — ¢ = p' — ¢’ mod 8. By definition, Cly,1py.¢14¢2 = Clp;,q1 Qgr Clpy o
where ®g denotes the graded tensor product. If py = g1, we can replace the
graded tensor product by the ordinary tensor product, so that Cl,p, p4g, =
LAC?) @ Cly, 4,- O

1.2.4 Real structures of odd dimension

Def. 1.2.5 makes perfectly good sense if p — g is odd. We want to derive a
definition for real structures of odd dimension analogous to Def. 1.2.1. As
in the even case, we may restrict attention to Clyo,_1-real spectral triples
(A,Hc,De, Je, d). Let ey, ..., eq 1 be the generators of Clyo,—1 and let v,
be the grading operator on H.. By assumption, v, anti-commutes with ¢(e;)
for all j and 72 = 1. Thus ¢(Clp g, 1) and . together generate a copy of
Cligp1.

The complexification of Cl; ,_; is isomorphic to L(ACP). Thus we can
argue as in the proof of Prop. 1.2.6: H, = H ® ACP with Cl; 9,1 acting
only on the second copy. Since A commutes with ¢(Clgp—1) and 7., we
have A C L(H) ® id. The operator D, commutes with ¢(Clp2,—1) and
anti-commutes with .. To make D, commute with ~., multiply it by w :=
iPer---egp_1 € Clyop—1 ®rC. A straightforward computation shows that
w = w*, w? =1, and ejw = we; for all j = 0,...,2p — 1. Since w is
odd, ¢(w) commutes with Cly o, 1 and anti-commutes with .. Therefore,
wD, = D.w commutes with Cl; 2, 1. Thus D, is of the form D ® w for an
unbounded self-adjoint operator D: H — H.

Finally, J. commutes with Cly,—1 and 7, and therefore with Cly 5,_1.
Let CC12p—1: AC? — ACP be the conjugate linear isometry that occurred
already in the proof of Prop. 1.2.6. Thus CC’l,gp_wCCf,Qp_l =g forallz €
Cligp—1 C L(ACP). Therefore, J, = J ® CC9p—1 for a suitable conjugate
linear isometry J: H — H. To see this, let J': H — H be any conjugate
linear isometry and observe that conjugating with J' ® CC} 2p—1 and J, has
the same effect on Clj 9,—1. It follows that J2 = CC1272p71 = (=1)p—1)/2,
Furthermore, JD ® CC1 gp—1w = J.D, = D.J. = DJ ® wCC(C 2,—1 implies
JD = (=1)’DJ because CC12p-1wCCiy, | = w = (—1)Pw. Hence we
arrive at the following definition:



1.2. REAL SPECTRAL TRIPLES 21

1.2.7 Definition. Let (A,H, D) be an odd spectral triple. A real structure of
dimension 2p — 1 mod 8 on (A, H, D) is a conjugate linear isometry J: H —
H satisfying

odd. a) JD =¢€DJ, J? =¢;
odd. b) for any a € A, the operators a and [D,a] commute with JAJ*.

€, € {—1,+1} depend on d = 2p — 1 according to the following table

d= 1 3 5|7
€= 1|{-1]-1]1
€= -1 1)1 -111

(A,#H,D, J) is called a real spectral triple of dimension 2p — 1 mod 8.

It is left as an exercise for the interested reader to construct the analogue
of the charge conjugation operator on a manifold of odd dimension.

The definition of Cl, ,-real spectral triples is quite convenient to treat
tensor products. Let (A;,#;, D;,J;, ¢;) be Clp, q;-real spectral triples for
J = 1,2. The tensor product is the Cl,, 1;, ,+4,-real spectral triple

(A1 ® Ay, H1 @ Ho, D1 @ 1+ 71 ® Do, J1 ® Jo, h1 @ ¢2)

The above tensor products of operators are all graded tensor products. One
easily checks the axioms for a Cly, 4p, q¢,+4.-real spectral triple.

For real spectral triples in the sense of Def. 1.2.1, tensor products are
awkward to define if both dimensions are arbitrary. For the standard model,
we only need tensor products in which the first triple has dimension 0 mod 8.
Then, the obvious formula

(A1 @A, Hi ®@H2, D1 @1+ 71 ® Do, J1 ® Jo)

works (with all tensor products graded). However, J; ® Jy is not a real
structure if J; is odd!

1.2.5 Relations to real K-homology

Let me now indicate the relation of Cl, ,-real spectral triples to Kasparov’s
real K-homology [123]. An important application is the formulation of
Poincaré duality. Let (A4, #,D, J, ¢) be a Cl, ;-real spectral triple.

1.2.8 Definition. The opposite algebra B°PP of a (graded) *-algebra B is
equal to B as a (graded) x-vector space. However, the order of multiplication
is reversed: z°PP - y°PP = (yx)°PP for all x,y € B.
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Opposite algebras are a device for turning right modules into left modules
and vice versa. In our case, the A-bimodule structure on H is translated to
a representation of A ® A°PP. In addition, we have an action of Cl, , that
commutes with A ® A°PP. Therefore, we get a *-homomorphism

¢: A® APP @ Cl,, — L(H),a @ PP @ ) — aJb* J*¢(z).

By construction, J¢(a ® b°PP @ z)J* = b*JaJ*¢(z) = ¢(b* @ (a*)°PP ® ).
Thus ¢ becomes a homomorphism of “real” algebras if we endow A® A°PP ®
Cl, 4 with the natural real structure defined by a ® b°PP ® z := b*® (a*)°PP®
z for all a,b € A, x € Cl, 4.

Let F := sign D, so that F = F*, F? = 1. If [D, z] is bounded, then [F, z]
is compact. Thus [F, ¢(z)] is a compact operator for all z € A® A°PP ®Cl, ,.
Since also JFJ* = F, the data (¢, H, F,J) yield an element of Kasparov’s
real K-homology K R%(A ® A°PP @ Cl,,,C) =2 KRI"P(A® A°PP,C). Thus a
real spectral triple of dimension d yields an element of K R%(A ® A°P,C).

1.2.9 Definition ([39]). Let (A,H,D,J) be a real spectral triple of some
dimension. An S°-real structure on this triple is a self-adjoint unitary € €
L(H) (that is, € = €*, €2 = 1) that commutes with A, D, and the grading v,
and anti-commutes with J. We call (A,H, D, J,e) an S%-real spectral triple.

Let (A,H,D,J,e) be an S%-real spectral triple. Let #H.; be the range
of the orthogonal projection %(1 +e¢). Thus H =2 H; & H_;. Since J anti-
commutes with € and A commutes with ¢, JAJ* commutes with €. There-
fore, A® A°PP. D, and v map H; to H; and H_; to H_;. Restricting to, say,
H;, we therefore get a spectral triple (A ® A°PP, H;, D;) with the additional
property that [D, A] commutes with A°PP.

Since J anti-commutes with ¢, it maps H; to H_; and H_; to H;. The
restriction of J to #; therefore yields an isomorphism H; = #H_; onto the
conjugate of H_;. Thus we can reconstruct H from #_;. Indeed, the S°-
real spectral triple (A, H, D, J,¢) is determined uniquely by its restriction
(A ® A°PP H; D;) to H; and the dimension 2p.

Given the data (A ® A°PP,H;, D;), we put H := H; ® H; and define ¢
by ely, = 1 and €|H_i = —1. Let J|p,: H; — H; be the identity map,
considered as an anti-isomorphism H; — ;. Define J |%_¢ H; — H; such
that J2 = +1 gives the sign appropriate for dimension 2p. The operation
of D on H; is already prescribed by D;. Since JD = DJ, we have to put
D\y_, == JD;J*|y_,. The operation of A on H; is prescribed by the action
of AQ A°PP. Since (a®b°PP) (&) = aJb*J* (), we have b*(J*¢) = J*b°PP(€) for
all £ € H;. This determines the action of A on H_;. Finally, the grading v
on H2H; ®H_;is (vi, (—1)PJy;J*). Thus Jy = (—1)Py.J.

Summing up, there is a natural bijection between S%-real spectral triples
of dimension 2p and spectral triples (A ® A°PP,H;, D;) with the additional
property that [D;, A] commutes with A°PP.



1.2. REAL SPECTRAL TRIPLES 23

The notion of S°-reality was introduced by Atiyah in the context of
“real” K-theory for topological spaces. A “real” topological space X is a
topological space together with an involution 7: X — X. The “real” K-
theory of such “real” spaces is concerned with “real” vector bundles over X.
A “real” vector bundle is a complex vector bundle with a conjugate linear
involution lifting the involution 7 on the base space.

Let S° be the two-point space {44} endowed with the involution that
exchanges the two points. The S°-real K-theory of X is, by definition, the
“real” K-theory of X x SO with the product involution. Atiyah observes
that S%-real K-theory is nothing but the ordinary complex K-theory of X
(regardless of the involution on X). Indeed, X x S° is a disjoint union of two
copies of X and the involution exchanges these two copies. A “real” vector
bundle over X is determined uniquely by the restriction to the first copy
of X, which is just a complex vector bundle. Furthermore, any complex
vector bundle over X can be extended uniquely to a “real” vector bundle
over X x S°. Thus the “real” K-theory of X x S is the same as the ordinary
complex K-theory of X.

1.2.6 Real structures on the nc torus

Finally, let us consider another example of a real structure that illustrates
the relation of condition b) of Def. 1.2.1 to the modular theory of von
Neumann algebras. Let Ay be a two-dimensional smooth noncommutative
torus. That is, Ay is generated by two unitaries u1, us subject to the rela-
tion ugu; = Aujug with A = exp(27if). Elements of Ay are described by
“Fourier series” }_,, . <7 @nynyui uy®. The sum of )~ an, n,uf"us® belongs
to Ay iff the sequence (an, n,) is rapidly decreasing. Hence for 6 = 0 we get
the algebra of smooth functions on the ordinary two-torus. The Lebesgue
measure on the torus corresponds in the Fourier picture to the linear func-
tional T(E anl,nzu?lu?) := agp. This continues to be a faithful, positive
trace for @ # 0. Thus we can construct a Hilbert space L%(Ag,7) as the
completion of Ay with respect to the inner product (a,b) := 7(ab*). Ay acts
on L?(Ag,7) by left multiplication.

We now carry over the Dirac triple on the 2-torus to the case 6 # 0.
For that purpose, we just have to write it down in terms of Fourier series
and check that everything makes sense for  # 0. Let H* := L?( Ay, 7), put
H:=HT" ®H™. The Zo-grading on H is defined by v|y+ = 1, v|gy- = —1.
The continuous linear map 9: Ag — Ay defined by

O(ultun?) := V2r(ing + no)ul'us?

is a derivation. View it as an unbounded operator H~ — H*. The adjoint
of 0 is the derivation

0" (uf'uy?) == V2w (—ini + na)u uy®.
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Let D := ( 80* ‘3 ) The operators 0, 9* are already diagonal. Using this, it
is easy to find a basis of eigenvectors for D and to show that D is (2, 00)-
summable. One verifies that (Ag, H, D) is a spectral triple.

We now construct a real structure of dimension 2 mod 8 on this spectral
triple as follows. Let Jy: L2(Ag,7) — L?(Ag,T) be the conjugate linear map
defined by Jy(z) = z* for all z € Ay. Since 7 is a trace, Jy is an isometry.
It satisfies JZ = 1. For = € Ay, let L, and R, be the operation of left and
right multiplication by z on L?(Ay, 7). The rule (ab)* = b*a* implies that
JoLzJi = Ry«. Thus JyAyJ; commutes with Ap. Furthermore, since 0 is a
derivation, [0, Ly] = Ly(s), so that JoApJi commutes with [0, Ag]. The same
holds for 9*. Finally, one computes that Jy0 = —90*Jy and Jy0* = —09J,.
The isometry Jy is a special case of the Tomita isometry. The above remarks
also apply in the more general situation.

We now define our real structure J: H — H by J := (_(}0 ‘60). The
computations with Jy show that J is indeed a real structure on (A, H, D) of
dimension 2 mod 8 as desired.
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1.3 The Commutative Case: Spinors, Dirac Oper-
ator and de Rham Algebra (M. Frank)

The present chapter is a short survey on the mathematical basics of Classical
Field Theory including the Serre-Swan’ theorem, Clifford algebra bundles
and spinor bundles over smooth Riemannian manifolds, Spin®-structures,
Dirac operators, exterior algebra bundles and Connes’ differential algebras
in the commutative case, among other elements. We avoid the introduction
of principal bundles and put the emphasis on a module-based approach us-
ing Serre-Swan’s theorem, Hermitian structures and module frames. A new
proof (due to Harald Upmeier) of the differential algebra isomorphism be-
tween the set of smooth sections of the exterior algebra bundle and Connes’
differential algebra is presented.

In the first two sections we explain the Gel’fand and the Serre-Swan
theorems to explain the background of ideas leading to noncommutative
geometry. In section three Hermitean structures on vector bundles and
generalized module bases called frames are introduced to have some more
structural elements for proving. Furthermore, we give a short introduction to
the theory of Clifford and spinor bundles over compact smooth Riemannian
manifolds M. Following J. C. Varilly [217] we use the duality between vector
bundles and projective finitely generated C'°°(M)-modules as described by
the Serre-Swan theorem to give a comprehensive account to the commutative
theory. The spectral triple is derived and the crucial properties of the Dirac
operator are listed without proof. Further, we define the differential algebra
of Connes’ forms in the commutative setting and compare it to the set
of all smooth sections of the exterior algebra bundle which forms also a
differential algebra. The isomorphism of both these differential algebras is
demonstrated by a new proof appearing here with the kind permission of its
inventor Harald Upmeier.

1.3.1 The theorems by Gel’fand and Serre-Swan

One of the corner stones of the beginning of noncommutative geometry was
I. M. Gel’fand’s theorem published in 1940. He established an equivalence
principle between some topological objects and algebraic-axiomatic struc-
tures that can be expressed in the following way (cf. [22, 163]):

1.3.1 Theorem. (I. M. Gel’fand)

Let A be a commutative C*-algebra and X the set of its characters. The
topology on X should be that one induced by the weak* topology on the dual
space A*. Then X is a locally compact Hausdorff space, and X is compact
iff A is unital. The C*-algebra A is *-isomorphic to the commutative C*-
algebra Co(X) of all continuous functions on X vanishing at infinity.

In a more contemporary language this bijection can be expressed as a
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categorical equivalence. We have to add a set of suitable morphisms to
the sets of objects ’commutative C*-algebras’ and ’locally compact Haus-
dorff spaces’. They are called proper morphisms: for C*-algebras we have
to take *-homomorphisms that map approximate identities to approximate
identities, and for locally trivial Hausdorff spaces we have to select those con-
tinuous maps for which the pre-image of a compact set is always compact.
Then we can summarize the categorical equivalence:

commutative C*-algebras C'(X) < locally compact Hausdorff spaces X
proper *-homomorphisms proper continuous homomorphisms

The noncommutative viewpoint enters the picture removing the commu-
tativity condition on the multiplication in C*-algebras. Algebraically the
left side is still a proper category, and many theorems for commutative C*-
algebras can be generalized to the noncommutative situation. (But, there
are also pure noncommutative structures like those described by Tomita-
Takesaki theory.) However, the right side possesses no obvious candidate
for a counterpart of the left side generalization to preserve the categorical
equivalence. One reason is that the notion of a point that is crucial for any
geometry becomes a vacuous notion under such an extension of the theory.
Consequently, what we are left with is the algebraic noncommutative picture
on the left side.

Looking for further topological and geometrical structures that can be
categorically replaced by appropriate algebraic structures J.-P. Serre [202]
(1957/58) and R. G. Swan [208](1962) independently established a cate-
gorical equivalence between projective finitely generated C(X)-modules and
locally trivial vector bundles over X for compact Hausdorff spaces X. To
describe it in greater detail some preparation is necessary.

To introduce both the notions, first, define a (left) unital A-module H
over a unital algebra to be projective finitely generated if it is a direct sum-
mand (in an A-module sense) of a free A-module A" for n € N, where A"
consists of all n-tuples of elements of A equipped with coordinate-wise ad-
dition and an action of A on A" given as (left) multiplication of any n-tuple
entry by fixed elements of A. The set of projective finitely generated A-
modules can be equipped with the structure of direct sums @ of A-modules.
To introduce the structure of a module tensor product we have to consider
them as A-bimodules defining another (right) action of A on A" as a (right)
multiplication of any n-tuple entry by fixed elements of A. The module
tensor product Hi ® 4 Ho is the algebraic tensor product of the linear spaces
H1, Ho factored by the module ideal generated as the linear hull

Lin{h; ® ahog —hia® ha: h1 € H1, ha € Ha, a € A}.
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We have associative and distributive laws for the addition and the tensor
products and a commutative law for addition. The neutral element of ad-
dition is the A-module consisting only of the zero element, and the neutral
element of the module tensor product is the bimodule A' = A.

As the set of homomorphisms we consider all A-(bi-)module homomor-
phisms of projective finitely generated A-(bi-)-modules.

The second structure involved in the stressed for categorical equivalence
consists of locally trivial vector bundles over compact Hausdorff spaces X.

1.3.2 Definition. Given a topological space E, a compact Hausdorff space
X and a continuous mapping p: E — X. Then FE is a locally trivial vector
bundle (E,p, X) over X if for every x € X there exists a finite-dimensional
vector space Ey (equipped with the Euclidean topology) and a neighborhood
U, C X such that a homeomorphism ¢ : Uy x E; — p Y (U,) exists and
po ¢(z,e) = x for any v € X. In case U, = X the vector bundle is
(globally) trivial.

A map ¢: (E,p,X) — (F,q,X) is a vector bundle isomorphism in case
¢ is bijective, ¢ and ¢~ are continuous and $(E,) = Fy is linear for any
z € X. The map ¢ is a vector bundle homomorphism if ¢ is continuous and
¢(Ez) C Fy is a linear embedding as a subspace.

We call X the base space, E the total space, E, = p '({z}) the fibre
over x and p the projection map.

Note, that the compactness of X implies sup(dim(E;)) < oo. As one of
the alternative descriptions of vector bundles in geometry we can describe
them in local terms: a vector bundle (F,p, X) is given by an atlas {U,} C
X of (open) charts and of coordinate homeomorphisms {f, : Uy X E; —
p 1 (Ua)} (z € Uy) such that the transition functions

fop = f/;lfa : (Ua NUB) X By = (Ua NUB) X Ey

are described by fos(z,e) = (z, fag(z)e) with continuous functions fus €
GL(n,C) fulfilling the law

faa =1dv, ,  fayfypf8a = idv.nusnu, -

We can show that the condition f,5 € GL(n,C) can be always reduced to
fap € U(n) (or, for real vector spaces, fos € O(n)) changing the coordinate
functions in a suitable way, cf. [161, 153]. The group U(n) (or O(n)) is said
to be the structural group of the vector bundle.

For further use we introduce the notion of an orientation on vector bun-
dles over orientable compact manifolds.

1.3.3 Definition. Let M be an orientable compact manifold. The vector
bundle (E,p, M) is orientable if there exists an atlas {Uy} describing E with
transition functions {fag} € GL*(n,C). The corresponding atlas is said to
be an orientation of the vector bundle (E,p, M).
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For a fixed compact Hausdorff space X the set of vector bundles with
base space X can be equipped with some algebraic structure. The Whitney
sum of two vector bundles (E,p,X) and (F,q,X) is the vector bundle (E @&
F,p®q,X), where

E&F = {(e,f) € ExFiple)=q(f) € X},
pdqg)(e,f) = ple)=4q(f) e X.

Local triviality is preserved under Whitney sums. The fibres are the vector
spaces E, @ F,. The tensor product of two vector bundles (E,p,X) and
(F,q,X) is the vector bundle (E ® F,p ® ¢, X) with the fibres E, ® F, for
z € X and the transition functions fus(z) = fup.£(%) ® fas,r(z) com-
ing from a common atlas {U,} C X of the vector bundles (E,p, X) and
(F,p, X). We observe that for trivial vector bundles X x C" =: 7 the two
operations are related by the isomorphism £ ® n = @;_; E(;), where n € N
is arbitrary. Concerning the algebraic properties of the two operations both
they are associative and fulfil the obvious distributivity laws, and the Whit-
ney addition is commutative in the sense of an appropriate isomorphism of
vector bundles. The neutral elements are 0 and 1, respectively. One of the
central observations is Swan’s theorem:

1.3.4 Theorem. (R. G. Swan, 1962)

Let (E,p, X) be a locally trivial vector bundle over a compact Hausdorff base
space X. There ezists a locally trivial vector bundle (F,q,X) over X such
that (E @ F,p @ q, X) is trivial (with finite-dimensional fibre).

The proof is elaborated, and we refer to R. G. Swan’s paper [208] or to
[72, 161, 153] for different versions of proofs.

1.3.5 Definition. A section in a vector bundle (E,p,X) is a continuous
map s : X — E such that (pos)(z) = z for every x € X. The set of sections
of (E,p,X) is denoted by T'(E).

1.3.6 Proposition. Let X be a compact Hausdorff space. Fvery locally
trivial vector bundle admits non-trivial sections. For every vector bundle
(E,p, X) the set I'(E) has the algebraic structure of a C(X)-module.

Any isomorphism of vector bundles induces an isomorphism of the corre-
sponding modules of sections. Whitney sums of vector bundles correspond to
direct C(X)-module sums of the related modules of sections, tensor products
of vector bundles correspond to bimodule tensor products.

For compact X the C(X)-module T'(E) is projective and finitely gener-
ated, in particular, T'(X x C*) =2 C(X)" for every n € N.

Proof. The existence of continuous sections can be proved applying Uryson’s
Lemma to constant sections in the (trivial) part of the vector bundle over one
chart U, getting continuous sections of the whole vector bundle supported
in one chart U over which the vector bundle is trivial.
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Any bundle homomorphism ¢ : (E,p, X) — (F,q,X) maps sections in
E to sections in F. If ¢ is a bundle isomorphism, then ¢, : I'(E) — I'(F') is
a C(X)-module isomorphism.

We observe that T'(X x C*) = C(X)". These C(X)-modules are free
and finitely generated. Since C(X)" 2 T(E® F) = I'(E) @ T'(F) for a given
vector bundle (E, p, X), some vector bundle (F,p, X) and n < oo by Swan’s
theorem, I'(E) is projective and finitely generated. O

1.3.7 Theorem. (J.-P. Serre, 1957/58, R. G. Swan, 1962)
Let X be a compact Hausdorff space and &€ be a finitely generated projective
C(X)-module.
IfE®G =2 C(X)" for some n < oo, then let P be the projection of C(X)™
onto € along G. Interpreting P as an element of M,(C(X)) = C(X, M,(C))
define

2(€) ={(z,e) e X xC" : e € ran(P)}.

Then =(&) is a locally trivial vector bundle over X, T'(2(€)) = €. Moreover,
if E =T(E) for some vector bundle E, then =(I'(E)) = E.

Proof. E(I'(E)) 2 E: Assume E® F = X x C" by Swan’s theorem. Let
7y : C* — E, be the fibrewise projection, x € X. Define 7 : X xC*" - FE
by w(z,e) = (z,m.(e)) for z € X, e € C*. Then 7 is a correctly defined
surjective bundle homomorphism.

Let P=m, : (X x C") —» I'(E) & T'(F) be the induced C(X)-module
map, a projection onto I'(F). Note, that P(z) = =, for every z € X.
Therefore, E = =(I'(E)) by construction.

I'(E(€)) = &: Note, that (E(E))y = {z} x {e € C" : e € ran(P(x))} are
the fibres of =(&). The family of projections {P(z)} is continuous, and Z(£)
becomes a locally trivial vector bundle. Thus, I'(E(£)) = {f € C(X,C") :
feEran(P) =&} =¢€. O

Formulating the result in a categorical language we obtain a categorical
equivalence between an algebraic and a geometric category if suitable sets
of C(X)-module and bundle homomorphisms are chosen:

projective, finitely generated C(X)- < locally trivial vector bundles (E, p, X)
modules
proper C(X)-module maps proper bundle homomorphisms

We would like to point out that this categorical equivalence can be ex-
tended to the situation of infinite-dimensional fibres, however we will lose
local triviality of the Banach bundles if we try to preserve a suitable cat-
egory of C(X)-modules like Banach or Hilbert C(X)-modules on the left
side. Moreover, most locally trivial bundles over compact Hausdorff spaces
X with fibre l2 turn out to be automatically globally trivial.
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Now, we specify the compact Hausdorff space X to be a compact smooth
manifold M. The observation to be made is that every locally trivial vector
bundle over M with continuous transition functions in some atlas is in fact
equipped with an atlas containing smooth transition functions, i.e. there is
no reason to distinguish between ’'continuous’ and ’smooth’ vector bundles
over smooth compact manifolds M, cf. [161] for a proof.

1.3.8 Lemma. For every vector bundle (E,p, M) there ezxists an atlas on
M such that E is trivial over every chart U, and the transition functions
fap : Ua NUg = GL(n,C) are smooth functions.

The Fréchet algebra C°° (M) and the C*-algebra C' (M) have the same set
of characters: every character on C*°(M) is automatically continuous and a
measure on M and hence, a character of C(M). Consequently, C*°(M)™ =
(M x C"), and the categorical equivalence between projective C®°(M)-
modules and vector bundles over M is a reduction of Serre-Swan’s categorical
equivalence. For the Whitney sum and the bundle tensor product we get
the following corresponding module operations on the C°° (M )-modules of
smooth sections:

I*(EeF) = T%(E)®cem *(F),
FOO(E®F) = FOO(E)®COO(M)FOO(F).

1.3.2 Hermitean structures and frames for sets of sections

As an essential tool we need the existence and the properties of a continuous
field of scalar products on the fibres of vector bundles. This structure is not
needed to prove the Serre-Swan’ theorem, it arises additionally.

1.3.9 Definition. Let X be a compact Hausdorff space and (E,p,X) be a
vector bundle with base space X. A C(X)-valued inner product on (E,p, X)
is a bilinear mapping (.,.) : T(E) x I'(E) — C(X) that is continuous in
both the arguments, acts fibrewise (i.e. is C(X)-linear in the first argument)
and its restriction to any fibre E, generates a scalar product on it. (Some

authors refer to this structure as to a Hermitean structure on the wvector
bundle.)

1.3.10 Theorem. Let X be a compact Hausdorff space and (E,p,X) be a
vector bundle with base space X. Then (E,p, X) admits C(X)-valued inner
products (.,.) on the C(X)-module T'(E) such that T'(E) is complete with
respect to the resulting norm |.|| == (.,.)/2.

Any two C(X)-valued inner products (.,.)1, (.,.)2 are related by a positive
invertible C(X)-linear operator S on I'(E) via the formula (.,.)1 = (S(.), .)2.
If X is a smooth manifold then (.,.) restricted to I (E)xT'*°(E) takes values
in C®(X).
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Proof. Because of the categorical equivalence obtained by J.-P. Serre and
R. G. Swan we have only to indicate the existence and the properties
of C(X)-valued inner products on finitely generated projective C'(X)- or
C*®(X)-modules. For the free C*-module C(X)™ the C(X)-valued inner
product is defined as ((f1, ..., fn), (g1, -2 9n)) = Dpey figi- For direct sum-
mands P(C(X)") of C(X)™ we reduce this C(X)-valued inner product to
elements of them.

The relation between two C(X)-valued inner products follows from an
analogue of Riesz’ representation theorem for C(X)-linear bounded module
maps from C(X)" into C(X). (Attention: This may fail for more general
C(X)-modules with C'(X)-valued inner products.)

If X is a smooth manifold, then the C(X)-valued inner product defined
above maps elements with smooth entries to smooth functions on X. A
perturbation of the C(X)-valued inner product by a positive invertible op-
erator S that preserves the range C°°(X) of it or the restriction to a direct
summand of C*°(X)" do not change this fact. O

We would like to remark that for more general *-algebras A C C*°(X)
that are closed under holomorphic calculus and contain the identity the
property of A-valued inner products on the correspondingly reduced set of
sections T"4(E) C T™°(E) to possess an analogue of the Riesz’ property has
to be axiomatically supposed, in general.

Now, we indicate the existence of finite sets of generators of I'*°(FE)
as a C*®°(M)-module for vector bundles (E,p, M) over smooth manifolds
M. Consider the free C*°(M)-module I'*°(M x C") = C*®°(M)" for n €
N and a C°°(M)-valued inner product (.,.)o on it. Then there exists an
orthonormal with respect to (.,.)o basis consisting of n elements of this
module. Indeed, on free C(M)-modules C(M)™ every C(M)-valued inner
product is related to the canonical C(M )-valued inner product by a bounded
invertible positive module operator S that fulfills the identity (.,.)can. =
(S(.),-)- The restriction of (.,.)¢an. to C°(M)™ is C*°(M)-valued, and (., .)o
can be extended to C(M)™. So the linking operator S exists on C(M)",
and its restriction to C°°(M )™ maps smooth elements to smooth elements.
However, the canonical C*°(M)-valued inner product on C*°(M)" admits
an orthonormal basis consisting of smooth elements:

{e1,en € =(0,...,0,1(;),0,...,0)} .

Consequently, {S~/2(e;) : i =1,...,n} is an orthonormal basis of C*(M)™
with respect to the given C'°°(M)-valued inner product (.,.)g.

Let £ be a projective finitely generated C*°(M)-module, ie. £ @ F =
C®(M)™ for a finite integer n. Denote by P the C*°(M)-linear projection
onto £ along F. Then the set {P(e;) : i = 1,...,n} of elements of £ has
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the remarkable property that

n

£= (& Ple))oP(e:)

=1

for every £ € £. The engeneering literature on wavelets calls such sets of
generators of Hilbert spaces (normalized tight) frames, whereas the litera-
ture on conditional expectations calls them quasi-bases or (module) bases.
The notion 'basis’ is, however, misleading since the elements of the generator
sequence {P(e;) : i =1,...,n} may allow a non-trivial C°°(M)-linear de-
composition of the zero element of £. To see that let £ be simply the subset
of all elements admitting only allover equal entries in their n-tuple repre-
sentation. For more details we refer the reader to [82, 83]. To summarize
the arguments we formulate

1.3.11 Theorem. Let M be a smooth compact manifold and (E,p, M) be
a vector bundle with base space M. Let (.,.) be a Hermitean structure on
it. Then the projective finitely generated C°°(M)-module T°(E) possesses a
finite subset {n; : i € N} such that T*°(E) is generated as a C*°(M)-module
by this set and the equality

i=1
is satisfied for every & € T°(E).

1.3.3 Clifford and spinor bundles, spin manifolds

Let (M, g) be a smooth Riemannian manifold, where the Riemannian metric
gz induces a scalar product on T, M for any z € M. Note, that the tangent
space Ty M and the cotangent space T, M are isomorphic via the scalar
product on Ty M for any © € M. If (T;M, g;) denotes the Hilbert tangent
space then let (T M, g, ') denote the resulting Hilbert cotangent space.

Let CI(T; M, g;) be the real Clifford algebra of the tangent space Ty M
with respect to the scalar product induced by the Riemannian metric g,
z € X arbitrarily fixed. This algebra is defined to be a quotient of the tensor
algebra T (T, M) generated by the linear space T, M, i.e. of

T(TM) =COTM & (T,M TM) @ .. ® (LM ® .. @ Ty M) & ...
More precisely,
Cl(TyM,gy) :=T(TyM)/Ideal(e ® e — gz(e,€) : e € Ty M).

The real Clifford algebra CI(T,M,g,) possesses a Zs-grading induced by
the map xy : (z,e) € T,M — (x,—e) € T, M, i.e. by the linear operator x
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on CI(T;M,g,) with the property x? = id, with eigen-values {1, -1} and
isomorphic eigenspaces C1¢%*"(T, M, g,.), C1°%(T,, M, g,) summing up to the
algebra itself. The words ’even’ and ’odd’ refer to the highest degree of the
element under consideration and its property to be an even or odd number.
If n = 2m + 1 then y is realized as a multiplication by a central element.
Extending the isomorphism between tangent space and cotangent space via
the scalar product g, on the first space we obtain a canonical algebraic
isomorphism of the Clifford algebras Cl(T; M, g;) and CI(T;M, g;) for any
fixed x € X.

The Clifford algebra bundle CI(M) is defined fibrewise using the atlas
on M induced by the tangent bundle atlas of TM (or the cotangent bundle
atlas of T*M):

Moym (C) t n=2m

Note that the isomorphism 7 is quite complicated, and in case n = 2m + 1
it maps both the even and the odd part of the Clifford algebra to both
the blocks of the matrix sum at the right (see [85, p. 15] for details). The
Clifford bundle possesses a Zo-grading induced from that one on its fibres.
The C*-algebra structure of I'(CI(M)) comes from the algebra structure of
the Clifford algebra fibres and from the involution induced by ®gC from C.
The C*-norm exists and is uniquely defined since the multiplication and the
involution are given and every fibre is finite-dimensional.

Some authors (cf. [217]) prefer to restrict the Clifford algebra bundle
to the even part in case the dimension of the manifold is n = 2m + 1.
The loss of that alternative definition is the Zo-grading. The advantage of
that approach is the structure of CI(M) as a continuous field of simple C*-
algebras allowing the attempt to interpret this bundle as a homomorphism
bundle derived from some other vector bundle with base space M. We prefer
to postpone this reduction until the spinor bundle has to be built up.

Consider either the Clifford algebra bundle CI(M) over M for n = 2m
or the first matrix block part CI(M)! of the Clifford algebra bundle CI(M)
over M for n = 2m + 1 (in its matrix representation) locally: for every
z € X we find vector spaces S, such that the (first part of the) Clifford
algebra bundle is locally isomorphic to the trivial homomorphism bundle
Hom(S;) of the trivial bundle (U x S;,py,U). The C*-algebra structure
on I'(Cly (M)) (resp., T'(Cly (M)")) induces a unique scalar product on S,
compatible with it. The dimension of the linear spaces S, is constant and
equals dim(S;) = 2™ for any manifold dimensions n, m := [n/2].

Whether we can glue these trivial pieces together to obtain a vector bun-
dle S over the compact Riemannian manifold M carrying an irreducible left
action of the Clifford bundle (resp., the first part of it) that acts locally in
the manner described, or not? Unfortunately, not always. If n = 2m the
Clifford bundle CI(M) serves as a homomorphism bundle for some other
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vector bundle with the same compact base space M if and only if the
Dixmier-Douady class 6(CI(M)) € H3(M,Z) equals zero, where §(CI(M))
also equals the third integral Stiefel-Whitney class w3(TM) € H3(M,Z).
If n = 2m + 1 the first part CI(M)! of the Clifford bundle is a homomor-
phism bundle of some other vector bundle if and only if the second part of
it does so, if and only if the Dixmier-Douady class 6(Cl(M)") € H?(M,Z)
equals zero, where §(CI(M)") also equals the third integral Stiefel-Whitney
class w3(TM) € H3(M,Z). The first fact was observed by J. Dixmier in
[64, Th. 10.9.3] and again investigated in connection with spinor bundles by
R. J. Plymen [179].

To formulate the definition of a spinor bundle on a given compact smooth
Riemannian manifold M or, equivalently, the definition of the property of M
to be a Spin®-manifold we have to introduce the notion of Morita equivalence
of certain unital x-algebras. We will do that only for the two *-algebras of
interest, for more general cases we refer to [181, 179]. Let us fix the unital
x-algebra

p_ | CX(MCUM)) =T>(CUM)) : n=2m
_{ C®(M,CI(M)Y)y =T>CU(M)!) : n=2m+1

1.3.12 Definition. Let M be a compact smooth Riemannian manifold.
Consider the unital x-algebras A = C*®°(M) and B. They are Morita-
equivalent as algebras if there exists a B-A bimodule £ and an A-B bimodule

F such that EQA F =2 B and F @ £ =2 A as B- and A-bimodules, respec-
tively.

In our case F can be chosen to be a projective and finitely generated (left)
module over the unital #-algebra A = C° (M) denoted by S. As a projective
finitely generated C'°(M)-module S admits a C*°(M)-valued inner product
(-»-)ceo(m)- Then B can be realized as the *-algebra of bounded module

operators over S generated as Lin{{({, 7)o (mra(m)) : &1 € S}, where

(&Moo amy (V) = v, cepnn for vES.

So the counterpart £ of F can be described as the set {£ : £ € F, €a =
(a*€), a € A}. Obviously, the right action of B on F is simultaneously swept
to a left B-action on £. The C*°-module F together with the C*°(M)-valued
inner product (.,.)ce(ar) is said to be a B-A imprimitivity bimodule.

1.3.13 Definition. (R. J. Plymen, 1982)
Let (M, g) be a compact smooth Riemannian manifold, let A = C*°(M) and
B as defined above in dependency on the dimension of M. Both A and B
are unital *-algebras of smooth mappings.

We say that the tangent bundle TM of M admits a SpinC-structure if
TM is orientable as a vector bundle and the Dizmier-Douady class §(CI(M))
equals zero for n = 2m or, respectively, §(CI(M)') = 0 for n = 2m + 1.
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If this condition is fulfilled then the Spin®-structure on TM is a pair
(6,8) consisting of an orientation € of TM and a B-A imprimitivity bimod-

ule S.

The compact smooth Riemannian manifold M is a Spin®-manifold if the
tangent bundle TM of M admits a Spin®-structure.

Questions like existence or uniqueness of SpinC-structures are compli-
cated and depend on several properties of the manifold M. For an accessible
and detailed geometrical account see [85].

By the Serre-Swan’ theorem the B-A imprimitivity bimodule S can be
realized as the C°°(M)-module of smooth sections I'*°(S) of a uniquely
determined vector bundle (S, pg, M) with base space M. The vector bundle
(S,ps, M) is called the spinor bundle.

If n = 2m then the spinor bundle admits a non-trivial Zs-grading aris-
ing from the grading of the Clifford bundle CI(M): S = ST @& S, where
dim(S]) = dim(S; ) = 2m~L.

Furthermore, the set of smooth sections of S always admits a C*°(M)-
valued inner product (.,.)cee(ar)- The smooth sections of the spinor bundles
are called spinors, or chiral vector fields in physics.

1.3.14 Definition. Let H be the Hilbert space

H = q&0°°(S) + [ (& &) ey dg < +oo ¢,
o= [, }

Sometimes H 1is referred to as the spinor Hilbert space. The Hilbert space
H consists of all square-integrable sections of the spinor bundle S, i.e. H =
Ly(M,S).

The spinor Hilbert space H inherits the non-trivial Zs-grading arising
from the grading of the spinor bundle in case n = 2m: H = H* @ H™,
where H* := Lo(M, S%).

The sections of the Clifford bundle CI(M) act naturally on H. To look
for details recall that I'(CI(M)) = C(M)+T'(T*M)+ .... Then the elements
of C(M), i.e. of the zeroth component of I'(CI(M)), act as multiplication
operators on I'(S) and, hence, on H by continuity. Identifying I'*°(T* M) by
the C®°(M)-module A'(M) of 1-forms on M, the images of 1-forms under
~ fulfill the rule

Y@V (B) +v(B)v(e) =267 iy for «a,p € A'(M).
Consequently, y(dz*)? > 0 and non-trivial 1-forms are faithfully rep-

resented. The representation v : I'(CI(M)) — B(H) is called the spin
representation. We will use it again in the last part of the present chapter.
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1.3.4 Spin connection and Dirac operator

Let (M, g) be a smooth Riemannian manifold, where the Riemannian metric
gz induces a scalar product in the cotangent spaces Ty M for any z € M.
The Riemannian metric g on M gives rise to a unique Levi- Civita connection
V9 (or Riemannian connection). It is defined on (contra-/covariant) C*°-
tensor fields over M of arbitrary order, V9 is symmetric, V9(g"/) = 0 and
the torsion of V9 vanishes.

In particular, V9 : AL(M) — AY(M) ® 4 A*(M) obeying a Leibniz rule:

VI(wa) = VI(w)a + w ® da

for a € C*°(M) and arbitrary tensor fields w on M. Lifting this Levi-
Civita connection to the spinor bundle S (where I'(S) is equipped with the
C(M)-valued inner product arising from S) we obtain another Levi-Civita,
connection there, the spin connection.

1.3.15 Definition. The spin connection is an operator VS : T®(S) —
['®(S) ® 4 AY(M) that is linear and satisfies the two Leibniz rules

V3 (a) = V5 ()a + 1 ® da,

VE(y(@)) = (V@) + 7 (w) V(%)
fora e A=C®(M), we AY(M) =T>(T*M), ¢ € T>(S).

The spin connection on the spinor bundle (S,pg, M) gives rise to the
Dirac operator acting on the spinor Hilbert space H.

1.3.16 Definition. Let m : T®°(S) ® 4 A} (M) — T°(S) be the mapping
defined by the rule m(y ® w) = y(w)(¥) for w € AY(M) = T®°(T*M) C
> (Ci(M)), ¥ € T'°(S). The Dirac operator on S is the mapping D :=
m o V¥ that acts on the domain T°(S) C H of the spinor Hilbert space H
as an unbounded operator.

The Dirac operator ) has a number of remarkable properties. We list
them without separate proof for the commutative case. For detailled refer-
ences see [38, 85, 161, 153, 216]:

e If n = 2m then ) : T®°(S*) — I'*°(SF). Moreover, with respect to
this decomposition of I'*°(S) the Dirac operator can be represented as

\
p=(, %) wrenan=wtp e
for bt € T(S%).

e lfn=2mand xy: (h*,h")e Ht®@H- = (h*,-h") e H" ® H™ is
the grading operator on the spinor Hilbert space H then xI) + 1 x = 0.
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D is symmetric and extends to an unbounded self-adjoint operator on
H. (Same denotation.)

[D,a] is compact and [[,a],b] = 0 for every a,b € C°(M).

If the smooth Riemannian manifold M is compact, then D is a Fred-
holm operator, i.e. ker()) is finite-dimensional.

The operator J) ~' defined on the orthogonal complement of ker(Jp) is
compact. The eigenvalues {\;} of ) ' counted with multiplicity fulfil
the relation A\, < C - k~1/" for some constant C' and n = dim(M).

The spectrum of ) is discrete and consists of eigenvalues of finite
multiplicity.

D is an elliptic first order differential operator.

The algebra A = C*°(M) is represented on the spinor Hilbert space
H by multiplication operators (via ). We obtain

[P, a] = P (ay) — alp () = ~y(da)y)

fora € A= C>(M), ¢ € H. In particular, since a is smooth and M is
compact, the operator [0, a] is bounded with the sup-norm ||y(da)||s
of the multiplication operator by y(da).

For the geodesic distance of two points p,q € M we have

d(p, q) = sup{[p(a) — g(a)| : a € C*(M), [P, a]|| <1},

where p is the character on C*°(M) induced by evaluation in p € M
and ||y(da)llec = llallLip = [IPP a]l-

The Lichnérowicz formula is valid:
1
p ? = AS + ZRa

where R is the scalar curvature of the metric and A® is the Laplacian
operator lifted to the spinor bundle that can be described in local
coordinates by A% = —g¥ (V7 Vf — F%V;g ) with I‘fj the Christoffel
symbols of the connection.

For any f € C°°(M) one has the formula

—1)"nl'(n/2 _n
/Mfdg = 2([n/2])+?—n(:/—/n/)2 ' T‘I‘w(f|¢| )7

where Tr, denotes the Dixmier trace.
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1.3.5 The universal differential algebra QC*° (M) and Connes’
differential algebra Q,C>(M)

As a good source for the commutative approach to differential algebras we
can refer to the monograph of G. Landi [136]. Complementary information
can be found in [160].

1.3.17 Definition. Let M be a compact smooth manifold. Identify a suit-
able completion of the algebraic tensor product C*°(M) ® ... © C*(M) with
C®(M X ... x M), the same number of ®/% operations supposed.
The universal differential algebra QC>®(M) = @,QPC*(M) is defined
by the linear spaces:
QUC®(M) = C®(M)
QPC®(M) = {f et Co(m) :

f(xla <y Lk—1,T, Ty Th+2, "'7"Ep+1) =0, Vk}

The exterior differential 6 : QP — QP11 is defined by

(6f)(x1,22) = f(z2) — f(z1)

p+1

(5f)('7"1a () ',L‘p-f-l) = Z(_l)k_lf(xla oy Lh—1, Th+1, "'axp-f-l)
k=1

The C*°(M)-bimodule structure on QC®(M) = @,QPC*®(M) is given by:
(@) (@1, zpp1) = g(@1)f (21, Tpt1)
(fo)(@1, - zp1) == f(@150s Tpi1)9(Tptn)

It extends to a general multiplication by the formula

(fh)(xla ey x(p—l—q)—Fl) = f(wla "'7$p+1)h(xp+1a ey :Ll(p—l—q)—l—l)
for f € QPC™(M), h € QIC™(M).

Key properties of the exterior differential are linearity, the Leibniz rule
and the vanishing of its square:

6(ab) = (da)b+ (=1)Pa(sb) , &°=0,
0(aa + pb) = «afda) + B(b)
for a € QPC*®(M), b € QC®(M), o, € C. These three properties give

rise to another representation of the differential algebra as a linear hull of
standard elements as it is used in the noncommutative case:

OPC*(M) = Lin{agdai...0ap : a; € C°(M)},
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d(agda...dap) = dagdai...0ay .

We take the parity of the degree p as a grading for the differential algebra
QC®(M) = P, PC>(M).

To go further and to construct Connes’ differential algebra we need
another property of our compact smooth manifold M — it has to be Rie-
mannian. Then we have a spectral triple (C*°(M),H = Lo(M,S),p) by
construction, and we consider an algebraic representation of QC*°(M) on
B(H):

7:QC* = B(H) , n(apdai...0ap) := ao[P,a1]...[D,ap]

where a; € C°(M), and C*(M) acts on S C H by the usual module action.
(If one introduces an involution on the differential algebra then 7 becomes
a x-representation, however we do not need this additional structure for our
purposes.) If we want 7 to be a representation commuting with the action
of the differential in some way we run into difficulty since 7(w) = 0 does not

imply 7(dw) = 0, in general. Fortunately, there exists a differential ideal of
QC™(M), the *junk ideal’ J.

1.3.18 Lemma. Let Jy := ®pJ{ be the graded two-sided ideal of QC®(M)
given by
J§ = {w € QPC®(M) : n(w) = 0}.

Then J := Jy + 6Jy is a graded differential two-sided ideal of QC*>°(M).

Proof. Consider an element w = wy + dwy € JP, w1 € Jb, wo € Jgil. For
every v € QIC*°(M) we have the equality

wr = wiv+ (dwy)v = wivd(wov)
= wiv + d(wav) — (—1)P twydv
= (wiv — (=1)P twodv) 4 §(wov) € JPTI.

Similarly, we obtain vw € JPt4. Since §? = 0 the ideal J is a differential
ideal. O

1.3.19 Definition. (4. Connes)
The graded differential algebra of Connes’ forms over the algebra C*(M) is
defined by

Qp C®(M) 1= QC™(M)/J = m(QC®(M))/x(5J0).

The space of Connes’ p-forms is O, C*°(M) = QPC®(M)/JP. On QpC®(M)
there exists a differential induced by & with the usual properties:

d : Q5 C®(M) - QI O®(M) , d(w]) = [dw] = m([0w]).
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1.3.6 The exterior algebra bundle A(M) and the de Rham
complex

Let M be a compact smooth manifold equipped with an atlas inher-
ited from the cotangent bundle T*M. Denote by A(T,; M) the real exterior
algebra of the cotangent space T M, z € X. Recall that

ANT;M) =T (T, M)/ldeal(e®e:ec T, M).

The real exterior algebra A(T;s M) possesses a Zgy-grading, i.e. a linear oper-
ator x on it with x? = id, eigenvalues {1, —1} and isomorphic eigen-spaces
AT (TiM), A (T M) summing up to the algebra itself. The signs + stand
for the parity of the degree p of the exterior form. An exterior p-form on M

is locally given by
>

with smooth functions a;, .. ;, (z) defined on a chart U.

ai, i Az A oA\ dz'P
T 5eemyip

1.3.20 Definition. The exterior algebra bundle A(M) is fibrewise defined
using the atlas on M induced by the cotangent bundle atlas of T* M :

Ag(M) := A(T*M) ®x C, z € X .

Consequently, A°(M) is a trivial line bundle over M and A'(M) = T*M
and A¥(M) = 0 for k > n = dim(M). The set AP(M) is said to be the
set of all p-forms, and A(M) := @,AP(M) is a linear space by definition.
The multiplication is fibrewise defined by the A-multiplication of Ay(M),
ie. w1 ANwy = (—1)Plwy Awy for wy € AP, wy € AY.

The exterior differential d : T®°(AP(M)) — T°(APYL(M)) induced by the
local differential dy on A(TyM) is linear and obeys the rules

d(OJ1 A w2) = dwi Awy + (_1)p - w1 A dws
d(dw) = 0

for w1 € AP, we € A1. Moreover, in local coordinates we have

_ af % o0
df = : 8xidx for f € C®(M),

dw = Z dag,,...i, N d' A ... ANdz™ , w e AP.

As a result we obtain a complex, the de Rham’ complex

0 — T®(AY(M)) S T(A (M) S ... S T®(A(M)) = 0
that gives rise to cohomology groups that are isomorphic to the cohomol-
ogy groups H*(M,R). The name of the complex comes from the application
of de Rham’s theorem to this particular situation, cf. [161, 153].
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1.3.7 QpC*>(M) versus A(M)

The final goal of the present chapter is another theorem relating a structure
formally depending on the Riemannian metric on the compact smooth man-
ifold M to another structure that does not depend even on its existence or
absence.

1.3.21 Theorem. (A. Connes)

Comparing the components of Connes’ differential algebra Sy C®(M) and
the smooth sections of components of the exterior algebra bundle A(M) we
obtain an isomorphism QIED C®(M) Z T'°(AP(M)) for every p > 0. More-
over, it extends to the commutative diagrams

QI;DCIO(M) LN %HTO(M)
re(AP(M)) - To(APH (M)

showing an equivalence of differential algebras.

Harald Upmeier kindly communicated a new approach to a proof of this
theorem. We present here the variant that arose after some discussions and
that preserves his basic ideas.

Proof. For every p > 0 consider the subbundle CI(M)P~¢’ that consists
of the intersection of the subbundle of all elements of CI(M) of degree at
most p with either the subbundle CI(M)®**" or CI(M)°¥ in accordance
with the parity of p. In the same manner we define QP~¢YC*®(M) =
@k:p_EUQkCOO(M ), where k runs over all indices between 0 and p differ-
ing from p by zero or an even number.

Claim 1: w(QP~YC®(M)) = y(I'*>°(CIP~¢¥(M))) for every p € N.

We prove the claim by induction. For p = 0 a comparison of the defini-
tions shows that 7(f) = v(f) = f-idy for every f € C*°(M). In case p =1
we obtain 7(df) = [P, n(f)] = [P, 7(f)] = v(df) for every f € C*(M).

To show the general argument recall that the complexified Clifford alge-
bra of a real vector space V and the complexified exterior algebra of V are
related by the isomorphisms CI*(V)/ Cl((cp ey AZ(V) for every
p € N. So there exist induced symbol maps between the components of the
Clifford bundle and the exterior algebra bundle over M,

o? : T®(CP~¢"(M)) — T°(AP(M)),

p € N, with kernels ker(o?) = I'®(CIP=2)=¢v(M)). Consequently, every
smooth section of the p-th component CI? (M) of the Clifford bundle can
be represented as a finite linear combination of elementary elements of the
form {fodfi - ...-dfp : fi € C°°(M)}, where the central dot denotes the
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Clifford multiplication. (Apply Swan’s theorem and take the projection
of the canonical orthonormal basis of the trivial bundle housing AP(M)
as a direct summand. Then pull this system of generators back via o”.
Cf. Theorem 1.3.11.)

To show the inclusion 7(QP¢?C*®(M)) C (I'*°(CIP~¢(M))) we have
only to check the canonical elements fy df1dfs...df, € QPC*° (M) since the in-

clusion is supposed to be already established for lower degrees by induction.
We have

w(fo dfrdfa...dfy) = w(fo)lD,7(f1)]-- [, 7(fp)]
v(fo)y(df1)--v(fp)
= y(fodfr-...-dfp).

Conversely, we have to show that 7(QP~¢*C*®(M)) D v(I'>°(CIP~¢"(M)))
for every p € N.

By the results of our considerations on the symbol maps and by induction
we have to verify the inclusion for finite sums ¢ = Efin.,l fogdfip--..-dfp) €
CIP (M) only. We get

¥(e) = Y (o), fral P fpal = 7 | D foudfiiedfpi | € m(QPC®(M)),

fin.,l fin.,l

This establishes the statement of the first claim.

Claim 2: m(dker(mP~!)) = v(ker(oP)) for any p € N with p > 2.

Suppose, w = Zfin.,l foudfi-dfp 1, € ker(nP™1) C Q’l’p_l. By the first
step

Y Z fogdfig- . dfp—1y | =7(w) =0

fin.,l

and > ;. g foudfiy - ... - dfp—1; = 0 since v is injective on such elementary
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elements. Consider dw = me_,l dfoy-dfiy - ... - dfp—1, € CIP(M) :

m(dw) = 7 (Z dfoy - dfiy - .- dfpl,l)

fin.,l
o | D dfog-dfigc o dfprg | = D dfoa Ndfii A Adfpoy
fin.,l fin.,l
= d Z Joudfiy Ao Ndfp—1,
fin.,l

= doP! (Z Joudfiy- - dfpl,l>

fin.,l
= 0.

Consequently, 7(dker(7P 1)) C y(ker(a?)) for every p € N with p > 2.

To show the reverse inclusion, let ¢ € T®(CIP~2) (M)). If {uy} is a
partition of unity corresponding to the selected atlas then we can assume
supp(c) C U since y(c) = v(>_, vac) = Y ,Y(uac). Furthermore, by the
discussions in the first part of this proof

c= Y foudfiy- - dfp—ay

fin.,l

for some functions f; € C*°(M).
Let h € C°°(M) with h(y) > X > 0 for any y € M and (dyh, dyh)g-1(z) >
p > 0 for every z € U. This forces h,h=t € C*®°(M) and

. . fou(@) — hz)®
fou(z) := 2(dzh,dzh 1), 1 2(dgh,dgh) -

- fou(x) € C™(M)

for every [. Furthermore,

fou (@h-dh™ +dh™t - dh) =2 fo (dh,dh ™)1 = fo (1.3.1)
for every [, and by the first step we obtain
n(hdh™ + h=tdh) = y(hdh™" + h=1 dh) = y(d(hh™')) = 0.
Therefore, for any [
w; == (hdh™ + b1 dh) dfy 1dfo...dfy 2, € ker(nP71),

fo,l dw; € (ker(n?) + dker(7P™1)),
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since the latter is an ideal in QP. Finally, by (1.3.1) and the first step:

ve) = v | Y. fou(dh-dh ' +dh7 - dh) - dfyy - dfay- ... dfpay
fin.l

= w | Y foi(dhdh™" + dh= dh)dfy ydfo...dfp oy
fin.,l

= 7w | > fouduw

fin.,l
€ m(ker(nP) + dker(nP~ 1)) = w(dker(nP"1)).

We arrive at 7(dker(7P 1)) D vy(ker(oP)) for every p € N with p > 2, and
claim 2 is proved.

As the final step we list the following chain of identifications and isomor-

phisms:
0 C®°(M) = n(QPC®(M))/n(dker(r"))
= T(AP(M)/ker(o?)
= im(o?)
— To(AP(M)).

1.3.22 Corollary. QIlJD C*®(M) =0 for every p > dim(M) = n.
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1.4 Connes’ Trace Formula and Dirac Realization
of Maxwell and Yang-Mills Action (P.M. Al-
berti, R. Matthes)

1.4.1 Generalities on traces on C*- and W*-algebras

The essential ingredients of the famous trace formula [37, 38] of A. Connes
are operator algebraic constructs over the W*-algebra B(H) of all bounded
linear operators over some infinite dimensional separable Hilbert space H
which are known as Dixmier-traces. The constructions will be explained
in this section. For a general operator-algebraic background the reader is
referred e.g. to [64, 188, 210, 117, 118].

Basic topological notions, notations.

A C*-algebra M is a Banach *-algebra, with *-operation £ —— z* and
norm || - || obeying ||z*z|| = ||z||?, for each z € M (*-quadratic property).
Let M, = {z*z : x € M} be the cone of positive elements of M. For
x € M let £ > 0 be synonymous with z € M,. The Banach space of
all continuous linear forms on M (dual) will be denoted by M*, the dual
norm (functional norm) be || - ||;. As usual, a linear form f over M is
termed positive, f > 0, if f(z*z) > 0, for each x € M. Remind that
positive linear forms are automatically continuous and are generating for
M*. Thus M} = {f € M* : f > 0} is the set of all these forms. There is
a fundamental result of operator theory saying that if M possesses a unit 1
(unital C*-algebra), then f > 0 if, and only if, f(1) = ||f||1- It is common
use to refer to positive linear forms of norm one as states. Thus, in a unital
C*-algebra the set of all states on M, S(M), is easily seen to be a convex set
which according to the Alaoglu-Bourbaki theorem is o(M™*, M)-compact.
Here, the o(M*, M)-topology (also w*-topology in the special context at
hand) is the weakest locally convex topology generated by the seminorms
Pz, T € M, with p,(f) = |f(z)|, for each f € M*. The generalization of the
notion of positive linear form on M (which refers to positive linear maps into
the special C*-algebra of complex numbers C) is the notion of the positive
linear map. Say that a linear mapping T': M — N which acts from one
C*-algebra M into another one N is positive if T'(z*z) > 0 within N for
each z € M. In the unital case (for M) one then knows that ||7°(1)|| = ||T|
holds (||T’|| refers to the operator norm of 7" as a linear operator acting from
the one Banach space M into the other N). On the other hand, each linear
map T : M — N which obeys this relation is known to be positive. If
both M and N have a unit, a linear map 7': M — N is said to be unital
if T(1) = 1 is fulfilled (the units being the respective units). Thus, and in
particular, each unital linear map T': M — N of norm one beween unital
C*-algebras has to be a positive map.
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Remind that a C*-algebra M is a W*-algebra, that is, is *-isomorphic
to some vN-algebra on some Hilbert space #, if and only if, there exists a
(unique) Banach subspace M, (the predual space) of M* such that M is the
(continuous) dual of M,, M = (M,)*. Note that a non-zero W*-algebra is
always unital. Suppose now that M is a W*-algebra. The forms of M, will be
referred to as normal linear forms. One then knows that the normal positive
linear forms M, = M,NM? (resp. the normal states So(M) = M, NS(M))
are generating for M, in the sense that each normal linear form may be
represented as a complex linear combination of at most four normal states.
As a consequence of this, for each ascendingly directed (in the sense of
<) bounded net {z,} C M, there exists a lowest upper bound l.u.b.z,
within M. On the other hand, a positive linear form w € M} is normal
if, and only if, for each ascendingly directed bounded net {z,} C M, the
relation w(l.u.b. z4) = l.u.b.w(z,) = lim, w(z,) is valid. Note that in the
latter characterization it suffices if the mentioned continuity be fulfilled for
ascendingly directed nets of orthoprojections of M.

In contrast to the previous, v € M7 is called singular if to each ortho-
projection p € M with v(p) > 0 there is another orthoprojection ¢ € M
with 0 < ¢ < p and v(q) = 0. According to [209] each w € MI\M, in a
unique way can be decomposed as w = wi + we, with normal w; € M, and
singular we € M7 .

The simplest example of a W*-algebra where singular positive linear
forms can exist is the commutative W*-algebra £>° = £°°(N) of all bounded
sequences z = (z,) = (x1,T2,...) of complex numbers, with norm ||z||. =
SUP,¢cN |Zn|, and algebra multiplication z - y = (z,y,) and *-operation z* =
(Z,,) defined componentwise. Recall that in this case the predual space £5°
is the Banach space of all absolutely summable sequences £ (N), with norm
lwllh = Ypenlwnl for w = (wp) € 1(N)(= £'). Thereby, each such w
can be identified with an element in the dual Banach space (£*°)* via the
identification with the linear functional w(-) given as w(z) = ), cy WnZn,
for each z € £*°. For simplicity, also this functional w(-) will be referred to
as w, w = w(-).

In generalizing from the setting of a normal positive linear form, call a
positive linear map T': M — N from one W*-algebra M into another W*-
algebra N normal if T'(l.u.b. z,) = l.u.b.T(z,) holds for each ascendingly
directed bounded net {z,} C M. Note that in a W*-algebra the Alaoglu-
Bourbaki theorem may be applied on M, and then yields that the (closed)
unit ball M; of M is (M, M,)-compact. From this it follows that the unit
ball within the bounded linear operators which map the W*-algebra M into
itself is compact with respect to the topology determined by the system of
seminorms p; ¢, labelled by x € M and f € M,, and which are defined at
T by pg f(T) = |f o T(z)|. Refer to this topology as the o(M, M,)-weak
operator topology on the Banach algebra of bounded linear operators B(M )
over the Banach space M. Thereby, by convention for T, S € B(M) let the
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product T'S € B(M) be defined through successive application of maps to
the elements of M in accordance with the rule ‘apply right factor first’, that
is TS(z) = (T o S)(z) =T(S(z)).

Traces on C*- and W*-algebras.

We recall the very basic facts on traces as found e.g. in [64, 6.1.]. A function
T: M, — R, from the positive cone into the extended positive reals is said
to be a trace provided it is (extended) additive, positive homogeneous (that
is, z,y € My and A € Ry imply 7(z+y) = 7(z) + 7(y) and 7(Az) = A7 (z),
with 0 - oo = 0 by convention) and obeys 7(z*z) = 7(xx*), for each x € M
(invariance property). From the first two properties it follows that M, =
{z € My : 7(z) < oo} is a hereditary subcone of M, that is, M, is a cone
such that € M, and 0 < y < z for y € M, implies y € M. From
this it is then easily inferred that £, = {z € M : 7(z*z) < oo} is a left
ideal in M. Owing to the invariance condition 7(z*z) = 7(zz*) however, L,
has to be also a right ideal. Hence, L, is a two-sided ideal of M, which is
characteristic for the trace 7. It is known that the complex linear span [M, 4|
is a *-subalgebra of M which is even a two-sided ideal and which is generated
by L, as [M;;] = L2. Also, on the *-subalgebra [M, ] there exists a unique
(complex) linear form 7 obeying 7(z) = 7(z), for each z € M, ;. Owing to
invariance then also the characteristic commutation property 7(yz) = 7(zy)
holds, for each z € [M,4] and all y € M.

The two-sided ideal [M ] will be referred to as defining ideal of the trace
7. Since the linear extension 7 of 7 from the cone of all positive elements of
[M;4] (which according to the previous is M) onto [M;4] is unique, by
tacit understanding the notation 7(z) will be also used at non-positive z of
the defining ideal of 7 if the evaluation 7(z) of the linear functional 7 at z
is meant.

The trace 7 is termed finite trace if M,y = My, and semifinite trace
if 7(z) = sup{7(y) : y < z,y € My}, foreach z € M. If M is a
W*-algebra, with group of unitary elements U(M), the above condition on
invariance usually is replaced with a seemingly weaker requirement upon
unitary invariance, that is 7(u*zu) = 7(z) be fulfilled, for each z € M, and
u € U(M). However, both conditions are equivalent there (and are so even
on unital C*-algebras). Also, in the W*-case the trace 7 is said to be normal
provided for each ascendingly directed bounded net {z,} C M, the relation
T(lub. zo) = lub. 7(x,) = limy 7(24) is fulfilled.
Now, suppose I C M is a proper two-sided ideal of the W*-algebra M.
Then, I is also a *-subalgebra of M, with generating positive cone I, =
IN My, that is, I = [I] is fulfilled (these facts are consequences of the
polar decomposition theorem, essentially). Under these premises we have
the following extension principle:

1.4.1 Lemma. Suppose I, is a hereditary subcone of M. Then, each
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additive, positive homogeneous and invariant map o : I, — R, extends
to a trace T on M, with M, = {z € I : 1o(z) < oo}.

Proof. Define 7(x) = 19(z), for z € I, and 7(z) = oo for z € M \I;.
Then, since I is a hereditary cone, for z,y € M, with £ +y € I, one has
both z,y € I, and thus 7(z)+7(y) = 7(z+y) is evident from 79(z)+70(y) =
To(z + y). For z,y € M, with x +y & I, at least one of z,y must not be
in I;. Hence, 7(z) + 7(y) = oo and 7(z + y) = oo by definition of 7. Thus
additivity holds in any case. That 7 is also positive homogeneous is clear.
Finally, remind that, according to polar decomposition z = u|z| for z € M,
one has zz* = u(z*z)u* and z*r = u*(zz*)u, with the partial isometry
u € M. Since I is a two-sided ideal of M, from this one infers zz* € I if,
and only if, z*z € I;. From this in view of the definition and since 7y is
invariant on I, also invariance of 7 on M follows. O

1.4.2 Examples of traces

In the following the classical special cases of traces on M with either M =
B(H) or M = CB(H) are considered in more detail, where CB(#) is the
C*-subalgebra of B(H) of all compact linear operators on the separable in-
finite dimensional Hilbert space H. For generalities on the theory of com-
pact operators and proofs from there the reader is referred to [169, 190]
e.g.; in the following recall only those few facts and details which are im-
portant in the context of traces. In all that follows, the scalar product
HxH>{x,n} — (x,n) € ConH by convention is supposed to be linear
with respect to the first argument y, and antilinear in the second argument
7, and maps into the complex field C.

Traces on compact linear operators.

We start with recalling the characterization of positive compact linear op-
erators in terms of a spectral theorem. Let z € B(#); be a non-trivial
positive (=non-negative) bounded linear operator. Then, z is a (posi-
tive) compact operator, z € CB(H)y if, and only if, the following two
condition are fulfilled. Firstly, there have to exist a non-increasing in-
finite sequence (u1(z),p2(z),-..) of non-negative reals p(z), which con-
verge to zero as k — oo, and an infinite orthonormal system (o.n.s. for
short) {¢,} C H of eigenvectors of z obeying zy, = ux(x)ypy, for each
k € N, and with zp = 0, for each ¢ € [{¢n}]* (thus the spectrum of z is
spec(z) = {uk(z) : £ € N} U{0}). And secondly, each non-zero eigenvalue
of z has only finite multiplicity, that is, m(u) = #{k : px(z) = u} obeys
m(p) < oo, for each p € Ry \{0}.

Recall that CB(#H) is also a closed *-ideal of B(#). Hence, according to
polar decomposition, z € B(#) is compact if, and only if, the module |z| =
Vz*z of z is compact, |z| € CB(#)+. In line with this and following some
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common use, for z € CB(H) and in view of the above define uy(z) = pux(|z|),
for each k € N, and refer to the ordered sequence p1(z) > po(z) > ... of
eigenvalues of |z| (with each of the non-zero eigenvalues repeated according
to its multiplicity) as characteristic sequence of z. The terms of this sequence
can be obtained by minimizing the distance of the given compact operator
z to the finite rank linear operators (which are special compact operators)
of a fixed rank as follows:

VEkeN: pp(z) =min{|z —y| : y € CB(H), dimyH < k}.  (1.4.1a)

Alternatively, and yet more important, these values can be obtained also
from a representation of the sequence {0, (x)} of their partial sums oy (z) =
> j<k Hk(7) which arises from maximizing the following expression over the
unitaries U(H) of H and finite orthonormal systems {¢1,..., 9%} C H of
cardinality k € N:

o(z) = max{

D (uaipy,by)

i<k

cu € UH), {¢1,..., %k} o.n.s.} , (1.4.1b)

which for positive z simplifies into

Ve € CB(H)+: ox(z) = max{Z(xzpj,qu) s {1, Uk} o.n.s.}.
J<k

(1.4.1c)
Now, let us fix an arbitrary mazimal orthonormal system (m.o.n.s. for short)
{¢n} C H, and let p be an orthoprojection with dimpH = k < co. Then, for
each z € B(#) the operator zp is of finite rank, and for each o.n.s. {91, ..., ¥k}
which linearily spans p?, by elementary Hilbert space calculus one derives
the relation

> (zpon, on) = > (i, ;) - (x)
n=1 i<k

Hence, in case of compact z (1.4.1b) equivalently reads as

o

> (uzppn, on)

n=1

op(z) = max{

cu € U(H), p=p* =p? dimpH < k} .
(%)

Note that for x > 0 the expression of (x) is positive and with the help of
similarly elementary calculations as those which led to (x) one infers that
for each orthoprojection p with dimpH = k < oo and any z € B(H)4 the
following holds:

o0 o0

Z<$¢ja¢j> = Z(p\/E(Pna\/E(Pn> = E<‘Tp90m(ﬂn> > 0. (**)

j<k n=1 n=1
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Especially, since according to (1.4.1c) for positive compact £ maximizing over
the unitaries becomes redundant and may be omitted, in view of this and
(xx) for each such element the relation (x) then simplifies into the following
well-known form :

o0
Vz € CB(H)4 : ox(z) = mw{Z(ﬂcwn,son) tp=p*=p’ dimpH < k} :
n=1

(1.4.1d)
From (1.4.1b)—(1.4.1d) one now concludes some useful relations and esti-
mates. The first is a rather trivial consequence of the definition of oy(x)
and says that

Ve € CB(H), A€ C, ke N: op(Az) = |\ ok(x). (1.4.2a)

It is stated here only for completeness. In the special case of positive compact
operators from (1.4.1c) we get the following often used estimates :

Ve,y e CB(H)1,k€N: y<z = ox(y) < ox(z). (1.4.2b)

The next estimate is due to [134] and at once gets obvious from (1.4.1b),
and tells us that the following holds:

Vz,y e CB(H), k e N: oz +vy) < or(z) + or(y) . (1.4.2¢)

The third estimate deals with an upper bound of ox(z) + ox(y) in case of
positive operators z,y € CB(H)4+ and arises from (1.4.1d). In line with
the latter, let orthoprojections p,q of rank k be given such that ox(xz) =
Yor 1 (2ppn, on) and ox(y) = Y o0 1 (yqpn, pn) are fulfilled. Then, the
least orthoprojection p V ¢ majorizing both p and g has rank 2k at most.
Thus there is an orthoprojection @ of rank 2k and obeying p V ¢ < Q.
Hence, in view of the choice of p,q and with the help of (xx) one in-
fers that 20 (2Qns @) = 04(3) + 357, (0(Q — p)pns @) > () and

> o1 (YQpn; on) = ok(y) + 2o521(#(Q = )@n, on) > ok(y). In view of
(1.4.1d) from this then og(z) + ox(y) < o9z + y) follows. For positive

compact operators the previous together with (1.4.2c) may be summarized
into the following one:

Vz,y e CB(H)+, k € N: op(z+y) < op(z)+ox(y) < oul(z+y). (1.4.2d)

Note that, since CB(#) is a two-sided ideal, from (1.4.1a) for each y €
CB(H) and a,b € B(H) the estimate

VE eN: pi(ayb) < lal [|b]l mx(y) (1.4.2¢)
can be obtained. Thus, under these conditions one has

Va,beB(H), y € CB(H), k € N: ox(ayd) < [l [[b]l ok (y).  (1.4.2f)
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Especially, if z = u|z| is the polar decomposition of z € CB(#H) within B(#),
then with the partial isometry u € B(?) one has both, zz* = uz*zu* and
z*x = u*zz*u. In the special cases of (1.4.2f) with y = zz*, a =u*, b =u
and y = z*x, a = u, b = u* we arrive at estimates which fit together into
the following assertion :

Ve e CB(H), ke N: ox(z*z) = oy (zz"). (1.4.2g)

In the following, a trace 7 is said to be non-trivial if there is at least one
z > 0 with 0 < 7(x) < co. The relations given in egs. (1.4.2) are the key
facts that the theory of traces on both algebras CB(#H) and B(#) can be
based on.

1.4.2 Lemma. Lettr: CB(H); —— Ry be defined by trz = lim,,_, o0 0 (2),
for each x € CB(H)4. Then, tr is a non-trivial semifinite trace on CB(H).
Moreover, to each non-trivial trace T which does not vanish identically on
the positive operators of finite rank there exists unique A € Ry \{0} such that
A-7(x) > trz holds for all z € CB(H)+, and with equality occuring at each
z of finite rank.

Proof. The sequence {o,(z)} is increasing, for each x € CB(H)+. Thus
trz = lim,_, o (z) exists in the extended sense. Especially, from (1.4.2d)
in the limit then additivity of tr follows, whereas from (1.4.2a) and (1.4.2g)
homogeneity and invariance can be seen. Thus, tr is a trace . By construc-
tion 0 < trz < oo for each compact positive  # 0 of finite rank. Thus
tr is non-trivial. However, since H is infinite dimensional, trz = oo will
occur for some positive compact operators. To see that tr is semifinite re-
quires to prove that for x € CB(H) with tr x = oo there existed a sequence
{z,} C CB(H)4+ with z, < z and trz, < oo such that lim,_,. tr z, = oco.
Note that by definition of tr, trz = oo implies that z cannot be of finite
rank. Hence, z can be written as z = Y 7- | px(2) px, with infinitely many
mutually orthogonal one-dimensional orthoprojections py and all ug(z) # 0.
Clearly, for each n € N the operators z,, = Y ,_; px(z) pr are of finite rank
and obey 0 < z; < 79 < z3 < ... < z. Also, owing to ok(z,) = on(z)
for k > n, one has trz, = o,(x), and therefore lim,_, tr z,, = oo follows.
Thus tr is semifinite. Suppose 7 is a non-trivial trace. Thus 0 < 7(y) < oo,
for some positive compact y. Suppose 7(z) > 0 for some z > 0 of finite
rank. According to additivity and homogeneity of 7 there has to exist a one-
dimensional subprojection p of a spectral orthoprojection of z with 7(p) > 0.
The same arguments for y ensure that 7(¢) < 0o, for some one-dimensional
subprojection ¢ of some spectral projection of y. But since ¢ = vv* and
p = v*v, with v € CB(#), by invariance of 7 one has 7(q) = 7(p). Hence
oo > 7(p) > 0, and 7(q9) = 7(p) for each one-dimensional orthoprojec-
tion ¢. Put A = 7(p)~!. Then X-7(q) = trqg, and thus X\ - 7(z) = trz
for each positive operator z of finite rank. Finally, if z € CB(H)4 is
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not of finite rank, let 0 < z7 < 29 < 23 < ... < z be the above ap-
proximating sequence of z by finite rank operators z,. Also in such case
limy, 00 tr 2, = limy, 00 05 () = trz follows. Hence, in view of the above
relation over the operators of finite rank, and since 7(z,) < 7(z) holds,
trz = lim, o trzy, = A limy, o0 7(2,) < A 7(2). O

For completeness, we give yet the most famous formula relating tr and
which makes that this trace is so extremely useful.

1.4.3 Corollary. For each mazimal orthonormal system {{,} C H and
z € CB(H)+ one has trz =Y o (hn, ¥n).

Proof. Let {¢;} be ano.n.s. with zpy, = pk(x)ey, for allk € N, and be p,, the
orthoprojection with pp, = [p1,...,¢n]. Then, by positivity of z one has
(T, Yn) = (VTP VTUR) > (PkA/TUn, /Ty ), and therefore and in view of
(xx) one gets D 00 (x9n, Yn) > D02 (Prv/T%n, VTPn) = Z§:1<$<Pj>80j> =
ok(z). According to Lemma 1.4.2 then > ° | (zt)n, 1) > trz follows. On
the other hand, if g is the orthoprojection onto [t1,. .., %], according to

(1.4.1d) for each k € N certainly Z’;Zl<x¢n,¢n) = Y00 (Z@tn, Pn) <
ok(z). From this in view of Lemma 1.4.2 once more again > o7 | (zt)n, 1) <

trz is seen. Taking together this with the above estimate provides that
equality has to occur. O

A non-zero trace 7 on CB(#H) will be said to be singular if 7(z) = 0 for
each £ > 0 of finite rank. Relating this and non-trivial traces there is the
following result.

1.4.4 Corollary. Let 7 be a non-trivial trace on CB(H). Then, either
T = A-tr holds, for a unique A € Ry, or there ezist a singular trace 75 and
a unique o € Ry such that T = 74 + « - tr.

Proof. If 7 = X - tr is fulfilled, then 7(p) = A trp, for each one-dimensional
orthoprojection p. Owing to trp = 1 (see Corollary 1.4.3) then A = 7(p)
follows.

Suppose 7 € Ry tr. Then, 7 # 0, and if a decomposition 7 = 7, +
« - tr with singular 7, exists, then 7(p) = «, for some (and thus any) one-
dimensional orthoprojection p, and the following two alternatives have to be
dealt with: firstly, if 7 is vanishing on all positive operators of finite rank, 7
is singular, and 7 = 75 and o = 0 have to be chosen (see above). Secondly, if
7 does not vanish on all positive operators of finite rank, according to Lemma,
1.4.2 there exists unique A > 0 with A - 7(z) > trz, for each z € CB(H),
with equality occuring on any operator of finite rank. Hence, in defining
7s(z) = 7(z) — A tra, for each z with trz < oo, and 74(z) = oo else,
we get a positive map 75 which does not vanish identically on the positive
compact operators, but which is vanishing on all positive operators of finite
rank. From the previous and since both 7 and tr are traces, also additivity,
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positive homogeneity and invariance of 75 at once follow. Hence, 75 is a
singular trace, which is easily seen to obey 7 = 7, + - tr, with « = A7, O

Traces on B(H).

Remind in short the theory of traces on M = B(H), with separable infi-
nite dimensional Hilbert space H. Let FB(H) be the two-sided ideal of all
operators of finit rank in B(#). In the following an ideal Z will be termed
non-trivial if T # {0} and Z # B(H). Both FB(#) and CB(#) are non-
trivial two-sided ideals. Thereby, the compact operators form a closed ideal,
with FB(H) being dense within CB(#). Start with a useful criterion on
non-compactness for a positive operator.

1.4.5 Lemma. A positive operator x > 0 is non-compact if, and only if,
there exist real A > 0 and infinite dimensional orthoprojection p obeying
Ap < «zx.

Proof. Note that, in contrast to the spectral characterization of positive
compact operators, the spectral theorem in case of a non-compact x > 0 with
# spec(x) < oo provides that Ap < z has to be fulfilled, for some non-zero
A and orthoprojection p with dim pH = oo (for one A € spec(z)\{0} at least
the corresponding spectral eigenprojection p has to meet the requirement).
But then, due to normclosedness of the compact operators, and since for each
positive z one has z € {y:0 <y < z,#spec(z) < oo} (uniform closure),
such type of estimate has to exist in each case of a non-compact positive
operator z. On the other hand, if Ap < z is fulfilled, for some non-zero
A and infinite dimensional orthoprojection p, in view of this relation the
equivalence of p with the unit operator 1 will imply v*zv to be invertible,
for the partial isometry v achieving p = vv*, 1 = v*v. Thus, owing to
the non-triviality of the ideal CB(H), v*zv ¢ CB(#) has to hold. Due to
two-sidedness of CB(H) the latter requires that also x was non-compact. [

1.4.6 Corollary. Both FB(H)+ and CB(H)+ are hereditary subcones of
B(H)+.

Proof. For FB(H)4 the assertion is trivial. For non-zero z € CB(#)+ and
positive y # 0 with y < z also y must be compact since otherwise the crite-
rion of Lemma, 1.4.5 were applicable to y with resulting in a contradiction
to the assumed compactness of z, by the same criterion. O

The following is likely the most remarkable result relating ideals in B(#)
and descends from [24], see also [190, Lemma 11, Theorem 11].

1.4.7 Theorem. FB(H) C T C CB(H), for each non-trivial, two-sided
ideal T.
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As a consequence of this the defining ideal of a non-trivial trace 7
on B(H) always is a non-zero ideal of compact operators. Thus espe-
cially 7(z) = oo must be fulfilled, for each z € B(H) \CB(H)+. On the
other hand, since according to Corollary 1.4.6 CB(#)+ is a hereditary cone,
whenever 7 is a non-zero trace on CB(H), then the extension principle of
Lemma 1.4.1 can be applied and shows that upon defining 7(z) = 79(z) for
z € CB(H)4+, and 7(z) = oo for z € B(H)+\CB(#H)+, a non-zero trace T
on B(H) is given. Thus, traces (resp. non-trivial traces) on all bounded lin-
ear operators are in one-to-one correspondence with traces (resp. non-trivial
traces) on the compact operators.

For the unique extension of the trace tr of Lemma 1.4.2 from compact
operators onto B(#) the same notation tr will be used. Note that in view
of Lemma 1.4.5 with the help of 1.2.1 (x) and (%) easily follows that for
non-compact z > 0 and each m.o.n.s. {p,} one has > 7° | (zpn, n) = oo.
Hence, the formula given in Corollary 1.4.3 extends on all z € B(#) . From
this formula it is plain to see that tr is a non-trivial normal trace on B(H).
Up to a positive multiple, tr is also unique on B(#H) as non-trivial trace with
this property :

1.4.8 Corollary. A non-trivial normal trace T has the form ™ = «-tr, with
a>0.

Proof. Let p1 < p2 < p3 < ... < 1 be a sequence of orthoprojections with
rank(p,) = n, for each n € N. Then, for each z > 0, l.u.b./Z py\/T = x.
Note that z,, = /zp,/x € FB(H) holds. Since also T|cpw), is a non-
trivial trace, by Corollary 1.4.4 there is unique « > 0 with 7(z,) = a - trz,,
for each n € N. Hence, by normality of 7 and since tr is normal, 7(z) = a-trz
follows, for each = > 0. O

Note that in view of the mentioned one-to-one correspondence with
traces on the compact operators Corollary 1.4.4 extends to non-trivial traces
on B(H) accordingly. In line with this and Corollary 1.4.8 the theory of
traces on B(H) with separable infinite dimensional #H essentially is the the-
ory of the one normal trace tr and myriads of singular traces.

1.4.3 Examples of singular traces on B(H)

Examples of singular traces have been invented by J. Dixmier in [65]. Nowa-
days this class is referred to as Dixmier-traces. In the following, only the
singular traces of this class will be constructed and considered. Thereby, in
constructing these traces we will proceed in two steps.

In a first step we are going to define some non-trivial two-sided ideal
in B(H), with hereditary positive cone, which later will prove to belong
to the defining ideal of each of the singular traces to be constructed. As
has been already noticed in context of Theorem 1.4.7, each such ideal then
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is an ideal of compact operators. For such ideals one knows that these
can be completely described in terms of the classes (Schatten-classes) of
the characteristic sequences coming along with the operators of the ideal,
see [190, Theorem 12]. In these sequences, which are in £*°(N),, the full
information on the ideal is encoded.

In a second step, a class of states on £°°(N) is constructed which, in
restriction to the mentioned sequences from the ideal, yields a map which
vanishes on those sequences which correspond to operators of finite rank.
If taken as functions on the positive operators of the ideal these maps will
be shown to be additive, positive homogeneous and invariant. Hence, the
extension via the extension principle of Lemma 1.4.1 on all of B(#) finally
will provide us with a class of singular traces.

Step one: Some ideal of compact operators.

For compact = with the help of the characteristic sequence {p,(z)} define

VEEN{1}: w%(n) = kzuj 10 k) (1.4.3a)
g i<k g

Then, {v,(z) : n > 1} is a sequence of non-negative reals which may be
bounded or not. The bounded situation deserves our special interest. Let a
subset L' (H) C CB(H) be defined as follows:

LY®(H) = {z € CB(H) : supy(z) < oo} . (1.4.3b)

n>2

It is plain to see that by L1'°°(#) an ideal is given in B(#), for some corre-
sponding terminology see [154, 37, 38], and e.g. [94].

1.4.9 Proposition. L“*®(#) is a non-trivial two-sided ideal in B(H), and
thus is an ideal of compact operators, with hereditary cone LY*°(H), of
positive elements.

Proof. In view of the definitions (1.4.3) and since CB(#) is a two-sided ideal,
the validity of the first assertion follows as an immediate consequence of
(1.4.2a), (1.4.2c) and (1.4.2f) together with the fact that for each operator
z of finite rank {y,(z) : » > 1} is a null-sequence and thus is bounded.
Finally, owing to Corollary 1.4.6 for z € LY*(H), and y € B(#) with
0 <y < z one infers y € CB(H)4, and then y < z according to (1.4.2b)
implies also y € LV (H) .. O

For completeness yet another characterization of L''*°(#) will be noted
(without proof, see e.g. in [38, IV.2.4]), and a class of L!'*®-elements, which
can be characterized through the asymptotic behavior of the singular values,
will be given.
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Let L'(H) be the ideal of all operators of trace-class, that is, the defining
ideal which corresponds to the normal trace tr, cf. Lemma 1.4.2 and Corol-
lary 1.4.3. From (1.4.3b) and Lemma 1.4.2 then especially follows that the
inclusion relation L'(#H) C LY%°(#) takes place amongst L (#) and the
ideal of trace-class operators. Moreover, if in line with [154] another Banach
space L% (H) (= &, in [154]) is defined through

LY H) = {y € CB(H) : Zn_lun(y) < oo}, (1.4.4)

then it is essentially due to (1.4.2c), (1.4.2e) and by monotonicity of the
sequences of the o,(y)’s and 1’s that also L°!(#) is a non-trivial two-
sided ideal (Macaev-ideal). Note that in analogy to the above also in this
case obviously an inclusion with trace-class operators takes place, L'(H) C
L>1(#H). The ideals from (1.4.3b) and (1.4.4) are related by the duality
given through the 2-form 2(z,y) = tr zy. Namely, each x € CB(#) obeying
zy € LY(H), for all y € L (H), is in LY (H).

1.4.10 Proposition. L (H) is the dual to the Macaev-ideal.

Also, in this context note that for each z € CB(H) obeying zz € L*(#)
for all z € I, with an ideal I of compact operators, and each y € I the
relation

must be fulfilled. In fact, since by assumption for a,b € B(H) also azby €
L'(#) is fulfilled, in view of the polar decomposition of z,y the estimate
|2(z,y)| < sup,,|trulz|v|y|| can be easily inferred, with u,v extending
over the partial isometries in B(#). Also, with the help of Corollary 1.4.3,
and (1.4.1b) e.g., one finds that sup, , |trulz|v|y|| < supzY 22, pn(z)ry
must hold, with ¥ = (r1,79,...) obeying 11 > r9 > r3 > ... > 0 and
DokenTk < on(y) = D pen k(y), for each n € N (the ordering of py(z)’s
is of importance in this context). Since also the sequence of u,(y)’s is in
decreasing order, it is not hard to see that by successively exploiting the
just mentioned conditions on ¥, for n < N with N € N, the validity of
Y oe<n k(@) (pr(y) — k) > 0 can be derived, for each N € N, and any
given 7 which is subject to the above conditions. From this the left-hand
side estimate of (1.4.5a) gets evident. Now, for any two given compact
linear operators z,y in view of the polar decomposition theorem and ow-
ing to compactness of both operators partial isometries u,w can be chosen
such that u|z|w|y| > 0 holds, with the singular values of the compact op-
erator u|z|w|y| obeying un(u|z|w|y|) = pn(z) pn(y), for each n € N. In
accordance with Lemma 1.4.2 one then has |tru|z|v|y|| = tru|z|w|y| =

limp 00 on(ulzwlyl) = 3 pn(ulzlwlyl) = 35 pn(x) pn(y). Hence, since in
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our particular situation of z,y we have u|z|w|y| € L'(#) and the above
proved left-hand side estimate of (1.4.5a) has been shown to hold, (1.4.5a)
is completely seen.

Especially, in view of Proposition 1.4.10 the estimate (1.4.5a) can be
applied with z € LY (#) and I = L>'(#). Relating asymptotic properties
of singular values of z € L1 () we thus get the following information :

reLb(H) = Vye L®NH) : iﬂn(x) pn(y) < 0o (1.4.5D)
n=1

Viewing (1.4.4) and (1.4.5b) together suggests compact z with asymptotic
behavior of singular values like p,(z) = O(n~!) as good candidates for
elements of L1'*°(#).! In fact, such asymptotic behavior implies that, with
some C' > 0, for all n > 2

on(@) = Y mk(z) < C{1+ > kl} < C{1+/1n tldt} = C(1+logn)

1<k<n 2<k<n
is fulfilled. In view of (1.4.3) we therefore arrive at the following result:

1.4.11 Corollary. z € CB(H), pn(z) = O(n 1) = z € LV®(H).

1.4.12 Remark. (1) It is easy to see that for compact x with bounded
multiplicity function, m()\) < N < oo for all \, the condition imposed
by (1.4.5b) upon = amounts to pn(z) = O(n~1t). Unfortunately, in
case of unbounded m this can fail to hold.? That this can even occur
for x within LY (H) can be seen by the following counterezample :3

(2) Let x be positive and compact with pi(z) = 1, and with singular values
which for k > 2 with (m — 1)! < k < m!, m > 2, are given by uy(z) =
logm/m!. One then easily proves that ox(x) obeys o (z) < 1+logm!.
Since the function f(t) = log(1+t/m!)—t{log(m~+1)/ (m+1)!} is non-
negative for 0 < t < m-m!, from the previous also op(z) < 1+logk can
be followed whenever m! < k < (m + 1)! is fulfilled. This conclusion
applies for each m > 2, and thus according to (1.4.3) we finally get
z € LY°(H). On the other hand, limy, o m! pyu(z) = 0o holds.
Thus in particular pun(z) certainly cannot behave asymptotically like

Oo(n~1).

! As usual, for g : N 3 n + g(n) € R;\{0} the notation z, = O(g(n)) is a shorthand
notation for |z,| < C g(n), with some C > 0 (and accordingly defined with R} instead of

N

*We are grateful to C. Portenier for mentioning this fact to us.
3The counterexample has been communicated to us by J. Vérilly, see also [96, Lemma
7.35].
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Step two: Scaling invariant states.

Let us come back now to the construction of the Dixmier-traces. The con-
struction will be based on considering a certain class of states on the com-
mutative W*-algebra M = £*°. Relating special further notations, for each
k € N let e, € £° be the k-th atom in ¢°°, with j-th component obeying
(ex); = Ox; (Kronecker symbol), and let Ej be the special orthoprojection
of rank k given as Ej = 3, ;. The ascendingly directed sequence {E,}
obeys l.u.b. E, =1 and the following equivalence is valid :

2€L®: || |loo— lim Epz =2 <= limz, =0. (1.4.6)
n—oo n
Also, for x € £°, {Epx} C £ is ascendingly directed, with l.u.b. B,z = .
For the following, let a mapping s : £>° — £*° (scaling) be defined on
x € £*° through s(z); = zg;, for all j € N. It is obvious that s is a normal
*-homomorphism onto £°°. Hence, s is a unital normal positive linear map
onto itself, and £° = {z € £ : s(z) = z} is a W*-subalgebra of £*° (the
fixpoint algebra of s).

1.4.13 Lemma. There exists a conditional expectation £ : £° — L°
projecting onto the fixpoint algebra £3° such that the following properties
hold:

(1) Eos=¢&;
(2) E(x) = (limy 00 Z,) - 1, for each x € £°° with lim,_, T, existing.

Proof. Let us consider the sequence {s(n)} of partial averages s(n) = 1 3", s
n € N. Since these all are unital positive linear maps, by o(£>, £')-weak
compactness of the closed unit ball in B(£*°) the sequence of partial aver-
ages then must have a o(£*°,¢')-weak cluster point & which has to be a
unital positive linear map, too. Since then £ = (£, ¢!) — weak lim) s(n))
has to be fulfilled for some appropriately chosen subnet {s(n))}, the inclu-
sion £° C {x € £*° : £(x) = z} gets evident. Since s(n) os = sos(n) and
|s{n) o s —s(n)|| < 2 hold, for each n € N, and since owing to normality of
s for each w € £' also wos € ¢! is fulfilled, by argueing with the mentioned
subnet one infers that £os = sof = &. From this {z € > : E(x) =z} C LP
and s{n)o€& = & follow, for each n. Thus in view of the above £2 = £0& = £
follows. Hence, € is a projection of norm one (conditional expectation) pro-
jecting onto the fixpoint algebra of s and which satisfies (1).

To see (2), note first that owing to s(ex) = 0 for k odd, and s(ex) = ey/2
for k even, one certainly has s"(Ey) = 0, for each n > log k/ log 2. Hence, the
action of the n-th average s(n) to the orthoprojection Ej can be estimated
as ||s(n)(Ex)llc < [logk/log2]/n (here [-] means the integer part), and
thus for all ¥ € N one has || - [0 — im0 8(n)(Ex) = 0. From this and
E = o(£>, ') — weak limy s(n)) then especially w(£(Ey)) = 0 follows, for

k

?



1.4. CONNES’ TRACE FORMULA 59

each w € /'. Hence £(E;) = 0, for each k. Since for each y € £ with
0 <y <1lonehas0 < Epy < Ey, from the previous together with positivity
of £ also £(Eyy) = 0 follows. By linearity of £ and since £*° is the linear
span of £5° N (£*°); this remains true for each y € £*°. But then, for z € £>
with @ = lim,_, z,, by continuity of £ and in view of (1.4.6) one infers
E(x—a-1)=|"|loo—limg_y00 E(Ex(z — - 1)) = 0, which is equivalent with
(2). O

1.4.14 Corollary. There is a state w € S(£*°) satisfying the following prop-
erties:

(1) wos = w;
(2) w(z) =lim, o0 Ty, provided lim, oo x,, exists.

The set T's(£>°) of all such states is a w*-compact convez subset of singular
states. *

Proof. Let £ be constructed as in Lemma 3.5.39. By positivity and unitality
of &, for each v € S(¢®) also w = v o & is a state. In view of (1)—(2)
this state then obviously satisfies (1)-(2).> That I's(£°°) is w*-compact and
convex is evident from the linear nature of the conditions (1)—(2). Finally, in
accordance with (2) one has w(FEy) = 0, for each w € ['s(£*°) and all k € N.
Now, let p € £*° be any orthoprojection with w(p) > 0. Then, p # 0, and
owing to l.u.b. E,p = p there has to exist k¥ € N with ¢ = Eyp # 0. Thus
0 < g <pand g < Ej. In view of the above from the latter by positivity of
w then w(q) = 0 follows. Hence, each w € I's(¢*°) is singular. O

Constructing the Dizmier-traces.

For given x € LY%°(#), let a sequence y(z) be given through ~(z) =
(v2(x),v3(x),...), with v,(z) in accordance with (1.4.3a). Then, by defi-
nition (1.4.3b) one has y(z) € £3°. Hence, if for each fixed scaling invariant
state w € I's(£*>°), see Corollary 1.4.14, following [65] we define

Vo e LY°(H), : Try(z) = w(y(z)), (1.4.7)

then according to Proposition 1.4.9 and since w is a positive linear form, we
are given a positive map Tr,, : Lb®(H); 3 z > Tr,(z) € R, defined on
the positive cone of the ideal L»*°(?). The key idea of [65] is that additivity
of Tr,, can be shown.

“Let another map d (doubling) over £ be defined at = by d(z); = z(145)/2, § € N
([r] refers to the integer part of r). Then, scaling is left-inverse to doubling in B(£*°), and
thus in addition to (1) one also has d-invariance of each w € I's(£*°) as well.

’The usage of Lemma 3.5.39 might be avoided in this context; as we learned from [194]
a positivity and separation argument of Hahn-Banach type may be used instead as well.
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1.4.15 Lemma. Tr, is an additive, positive homogeneous and invariant
map from LY°(H), into R, .

Proof. Since LV*°(H), is the positive cone of a two-sided ideal of compact
operators, for r,y € LV°(H), and A € R, we have that z+y, Az, z*z, zz* €
LY (H),, and these are compact operators again. Hence, in view of (1.4.3a)
from (1.4.2a) and (1.4.2g) both A - y(z) = y(Az) and y(z*z) = y(zz*) fol-
low, which in line with (1.4.7) means that Tr, is positive homogeneous
and invariant. It remains to be shown that Tr, is additive. First note
that according to the left-hand side estimate of (1.4.2d) within £5° one has
y(z+1y) < v(z)+7(y).- Hence, by positivity and linearity of w, (1.4.7) yields

Tr,(z 4+ y) < Try(z) + Try(y) - (%)

Now, to each compact operator z let 7%(2) = (y3(2),74(2),...), that is, v%(2)
arises from 7y(z) by application of the one-step left-shift. Also, on £*° let a
linear map m be defined by m(g),, = % B, forallm € N, at 8 € £°.
One then has

VB eL® . lim m(B), =0. (%)

n—o0

Note that 7°(z) € £*° whenever z € LL'*°(H). We are going to estimate
v(z) — 74°(z) for z € LV"*°(H). Since both {0,,(2)} and {logn} are monoto-
neously increasing, in view of the definition (1.4.3a) for each z € LV*°(H)
the follwing estimates at once can be seen to hold, for all k¥ € N\{1}:

log(k + 1) log 2 log 2
_ < BT 1)< : < o -
@ (2) S ea(e) (BT 1) < 182 ) < 12 o))
On the other hand, we also have
ok (2) — op41(2) p+1(2) 1
— > - _ _ Azl
(2) = 41(2) 2 log(k + 1) log(k+1) = log(k+1) I=I

From these two estimates we infer that A(z) = y(z) —7%(2) for z € LL™°(H)
is a null-sequence in £*°, that is, lim, o A(2), = 0 is fulfilled. According
to the choice of w and in accordance with Corollary 1.4.14 (2) we thus have
the following to hold:

Vze LY®(H), w € Ts(£°) : w(y(2)) = w((2)). (% % %)

Let us come back to our above z,y € L“®(#),. Having in mind the
definitions of the positive linear operators s and m as well as the meanings
of v and 7Y, it is easily inferred that from the right-hand side estimate in
(1.4.2d) when divided by logk, and considered for all k& > 2, the estimate
v(@) +7(y) < (o2(z +y)/logk) = s(7°(z +y)) + mos(y’(z +y)) can be
followed to hold in £3°. By positivity and linearity of w from this then

w(y(2)) +w(v(y)) Swos(y’(z +y)) +wom(s(r’(z +y) (o)
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follows. Now, in view of (%%) and Corollary 1.4.14 (2) one has wom(s(y"(z+
y))) = 0, whereas from Corollary 1.4.14 (1) and (% * x) one concludes that
wos(Y(z+y)) = w(y(z+y)). These facts together with (o) fit together into
the estimate w(y(z)) + w(v(y)) < w(y(z +y)), which in view of (1.4.7) says
that Tr,(z) + Try(y) < Try,(z +y) has to be valid. The latter and (x) then
make that the desired additivity Tr,(z) + Tr,(y) = Tr,(z + y) holds. O

The Dizmier-trace as a singular trace.

We remind that according to Proposition 1.4.9 the positive cone of the ideal
LY (H) is hereditary. Thus the extension principle of Lemma 1.4.1 accord-
ing to Lemma 1.4.15 for each w € T's(£*°) allows to extend the map Tr,, of
(1.4.7) to a trace on B(#). Thereby, the extension constructed in accor-
dance with the proof of Lemma 1.4.1 will be the unique one with defining
ideal L1*°(#). For this trace the same notation Tr,, will be used henceforth.
We refer to this trace as Dizmier-trace (to the particular w € T's(¢*°)). The
essential properties of Dixmier-traces are summarized in the following.

1.4.16 Theorem. Tr, is a singular trace on B(H), for each w € T's(£*).
The following properties are fulfilled:

(1) Lb°(H)+ = {z € B(H)+ : Try(z) < oo} ;
(2) © € LY (H) 4, Flimy, 00 Tu(z) = Try(z) = limy o Yn () -

Proof. The validity of (1) follows since the traces in question all are obtained
as extensions of the maps given in (1.4.7), which satisfy Lemma 1.4.15 and
which have range R; (and not merely R, ). Since each state w € I's(£°)
obeys Corollary 1.4.14 (2), in view of the previous and (1.4.7) also (2) follows.
Finally, for each z € FB(H)4 the sequence 7(z) is a null-sequence, and
therefore especially z € L (), and as a special case of (2) then Tr,,(z) =
0 follows. Hence, Tr, is a singular trace. O

Note the remarkable feature of the Dixmier-traces coming along with
Theorem 3.4.56 (2) and saying that provided certain circumstances are ful-
filled for z, e.g. if the sequence {~y,(z)} has a limit, then independent of the
state-parameter w all these Dixmier-traces may yield the same common value
at this . It is such case of independence one usually is tacitely addressing to
when speaking simply of the Dixmier-trace of z, whereas the operator itself
then is referred to as measurable operator, cf. [38, IV.2, Definition 7]. Some
criteria of measurability, which however all reduce upon showing that the
above mentioned special case of existence of lim,,_, s 7,(z) would happen,
subsequently will be discussed in more detail.

1.4.4 Calculating the Dixmier-trace

Simple criteria of measurability.
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We start with discussing conditions which read in terms of spectral theory
and which ensure that - for a given operator z € L (%) which is not simply
of finite rank —the above-mentioned special case of measurability occurs,
that is, the limit lim,,_, v, (z) exists. As a first result of that kind one has
the following one:®

1.4.17 Lemma. Suppose z € CB(H), with jin(z) ~ L'n~t. Thenlim, o yn(z) =
L’

Proof. For compact operator z suppose lim,, o 7 p,(z) = L to be fulfilled.
Then, in case of L > 0, for 6 with L > ¢ > 0, let M () € N be chosen such
that

Vn>M=M®6): (L-8n"t < pu,(z) < (L+8)nt.

From this for each n > M we get

L-0) Y < Y m@<@+o) Y kL (%)

M<k<n M<k<n M<k<n

Since 0 < t — t~! is a strictly monotone decreasing function and the
sequence of the singular values is decreasingly ordered, with the help of

n mn
/ dtt ! < Z k—lg/ dtt 1
M+1 M<k<n M

which holds for n > M the above estimate (x) implies
n n
/ dt (L — 6)t~" < o(z) — on () g/ dt (L+6)t~.
M+1 M

From this for all n > M = M(0)
(L—8){1—log(M+1)/ log n} < ya(z)—0r(2)/ logn < (L+8){1—log M log n}
is obtained. Considering these estimates for n — co then yields

(L —¢) <liminfry,(z) <limsupy,(z) < L+6.

n—00 n—00

Note that in case of L = 0 by positivity of all 7,(z) instead of the pre-
vious one finds 0 < liminf,, o y,(z) < limsup,_, Yn(z) < 6, for any
6 > 0. Thus, since § > 0 can be chosen arbitrarily small, in either case
limy, 500 Yn(x) = L follows. O

5We are grateful to C. Portenier, Marburg, for suggesting some details around this and
related subjects [178].

"For f : N = Ry and g : N = R;\{0} the notation f(n) ~ L - g(n) stands for
limy, 00 f(n)/g(n) = L (and accordingly defined with Ry instead of N).
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Now, let us suppose z € CB(H), with u,(z) = O(2). According to

Corollary 1.4.11 we even have z € LY®(#), and since 3, n~ 09 < oo is
fulfilled for each € > 0, then |z|* at each z € C with Rez > 1 has to be of
trace-class and the definition

Cz(2) = Zun(x)z = tr|z|? (1.4.8)

n>1

will provide us with some holomorphic function {, in the half-plane Re z > 1.
For this modification of the Riemann (-function the following holds.

1.4.18 Lemma. Let z € CB(H), with py(z) = O(%). Suppose (; admits an
extension onto the half-plane Rez > 1 which is continuous there except for
a simple pole with residue L at z = 1, at worst. Then even p,(z) ~ L-n~!
holds.

Proof. In case of z € FB(H) one has lim,, -, (z) = 0 as well as lim. o4 tr |z|'T¢ =
tr|z| =), pn(z) < oo, by triviality. From the latter lim,_,14 (s —1) (z(s) =
0 follows. Hence, for each operator z of finite rank the assertion is true, with
L=0.

Suppose now that z is not of finite rank, z ¢ FB(#). In view of defini-
tions (1.4.3a) and (1.4.8), upon possibly considering instead of z a scaling
Az by a suitably chosen real A > 0, without loss of generality it suffices if the
assertion for x > 0 with pi(x) < 1 can be shown. In line with this assume
such z € CB(H)+\ FB(H).

By the spectral theorem there exists a spectral representation of = as an
operator Stieltjes-integral z = [;~ A E(d)), with projection-valued measure
E(d)) derived from a left-continuous spectral family {E(X) : A € R}, that
is, a family of orthoprojections obeying E(t) < E()), for t < A\, E(s) =
0, for s < 0 and E(A\—) = Lu.bycxE(t) = E()), for each A < oo, with
Lub.icooBE(t) = 1. By convention, for a < b, then [~ E(d\) = E(b) —
E(a) = E([a,b]) and fab E(d\) = E(b+) — E(a) = E([a,b]), and so on
accordingly, where e.g. E(b+) stands for the greatest lower bound E(b+) =
glbt>bE(t)

By means of some functional calculus and owing to normality of the trace
tr it is easily inferred that (1.4.8) can be represented as an ordinary Stieltjes
integral :

VzeCRez>1: (o2) :/ % dat), (1.4.92)
1+

with the monotone increasing function «a given by
a(t) = tr E([1/t, o0]) . (1.4.9Db)

But then, if the assumptions on (, are fulfilled with lim,_,;4(s — 1) (z(s) =
L, all conditions for an application of ITkehara’s theorem [109], are given
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(we refer to the formulation in [223, THEOREM 16]). In line with this the
conclusion is that asymptotically

a(t) ~ Lt (1.4.9¢)

has to be fulfilled as ¢ tends to infinity. Since z is a compact operator, in
view of the properties of the spectral resolution F together with normality
of tr the definition (1.4.9b) provides a right-continuous, integral-valued step
function which is constant between inverses of neighbouring spectral values
of z. Especially, in case of n € N with pp,(x) > pin+1(x) one infers that « for
all ¢ with p,(z) ! <t < ppi1(z) ! yields a(t) = n. A moments reflection
then shows that with respect to each term of the ordered sequence ni; < ngy <
ng < ... of all subscripts where the value of y,, jumps the relation (1.4.9¢) in
view of limy, o pn(2) = 0 and by continuity of the parameter ¢ in particular
also implies both limg_,o0 g 11 pin,, () = L and limg_yo0 g pin,, (2) = L
to be fulfilled. But then, since pn(r) = pn,,,(z) holds for ny < n <
Nk+1, also limy,_yo0 1 pupn(z) = L can be obtained from these limit relations.
Thus under the condition of the hypothesis also p,(z) ~ L-n"! in case of
z > 0 and which is not of finite rank. In accordance with our preliminary
remarks the assertion then has to be true, in either case under the mentioned
hypothesis. O

1.4.19 Remark. (1) Relating Lemma 1.4.17 remark that there are exam-
ples of operators where lim, o Yo (2) = L exists but pu,(z) # L-n~1,
see [219, Beispiel A.27] or [96, Lemma 7.35].

(2) On the one hand, the conditions imposed on pn(z) and (; in Lemma
1.4.18 simply reproduce the usual conditions for the standard results
of Tauberian type® to become applicable. On the other hand, that the
behavior of the extension of (; at the whole line Re z = 1 (and not only
at z = 1) has to be of relevance can be seen also by example : there is
z € CB(H) with pin(z) = O(L) and lim,_14(s — 1)¢y(s) = 1 but for
which pn(x) # 1/n.°

A residue-formula for the Dizmier-trace.

The most important from practical point of view special case of measura-
bility for an operator z occurs if the limit lim,, y,(z) exists. In particular,
according to the previous considerations the latter will happen e.g. provided
some function-theoretic assumptions on z can be satisfied. In these cases
a formula arises which allows us to calculate the (singular) Dixmier-trace

8This especially concerns theorems of Hardy and Littlewood [107] and Tkehara [109],
see [106, Chap. VII, 7.5] and [223, see especially on p.126 and THEOREM 18].

9J. Viarilly has informed us about this fact and examples and counterexamples around
this question which will appear in [96]. Also we are very indebted to J. Vdrilly for some
clarifying remarks and hints to the literature.
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with the help of the ordinary trace as a limit of some function-theoretic ex-
pression of the operator in question. In fact, in view of Theorem 3.4.56 (2)
and upon combining Lemma 1.4.18 and Lemma 1.4.17 we get the following
result :

1.4.20 Corollary. For each x € CB(H) with pn(z) = O(2) one has z €
LY (H)y, and then by (.(z) = trz® a holomorphic function in the half-
plane Rez > 1 is given. Suppose (; extends onto the half-plane Rez > 1
and is continuous there except for a simple pole at z = 1, at worst. Then
the Dizmier-trace of = is obtained as

Tr, (z) = limvy,(z) = lim (s — 1) trz®. (1.4.10a)
n s—1+

Especially, when (, extends to a meromorphic function on the whole complex
plane, with a simple pole at z =1 at worst, this formula turns into

Try,(z) = Res|,=1(C) » (1.4.10D)
with the residue Res((y) of the extended complex function, taken at z = 1.

For completeness remark that by our Corollary 1.4.20, which is suffi-
cient to cope with our later needs around Connes’ trace theorem, in the
special cases at hand the implication (1) = (2) of [38, IV, Proposition 4] is
reproduced.

Clearly, from both the theoretical and practical point of view, in con-
text of the previous those situations deserve the main interest where for-
mula (1.4.10b) could be applied. According to the results in [99, THEOREM
7.1,7.2] this happens e.g. if the context of the classical pseudodifferential
operators of order —n acting on the sections I'(E)) of a complex vector bundle
E — M of a n-dimensional compact Riemannian manifold M is considered.

In fact, in [99] one proves that as a consequence of the good function-
theoretic properties of (, for each such operator the Weyl’s formula of the
asymptotic distribution of the spectral values [221] can be seen to hold.
Thus, in particular the condition ug(z) = O(1/k) is then fulfilled automat-
ically and does not appear as an independent condition any longer.

But then, upon combining formula (1.4.10b) with a method [99, THEO-
REM 7.4, 7.5] (or see [225]) of expressing the residue in terms of the principal
symbol of the classical pseudodifferential operator in question, one finally
will arrive at Connes’ trace theorem.

1.4.5 The Connes’ trace theorem and its application, Pre-
liminaries

In the following we are going to comment on the way along to Connes’ trace
theorem in a more detailed manner and will give some indications on appli-
cations of this formula as to classical Yang-Mills theory.
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Basic facts about pseudodifferential operators.

Let © be an open set in R”, and let C§°(€2) be the space of smooth functions
with compact support inside 2.

1.4.21 Definition. Let p € C*®°(Q2 X R). p is called a symbol of order (at
most) m € R, if it satisfies the estimates

10200p(2,€)| < Capr(1+ €)™ ®, z €K, £eR, (1.4.11)

for any choice of multiindices o, B and compact K C ). The space of the
symbols of order m is denoted by S™(2 x R™) or simply S™.

Note that our definition corresponds to the special case with ¢ = 1 and
d = 0 of a more general class of symbols as considered e.g. in [203, Definition
1.1.], to which and to [73, 74] the reader might refer also for other details on
pseudodifferential operators.'® It is obvious that S™ C S* for m < k. For
p € S™, let p(z, D) denote the operator

(p(z, D)u)(z) = (27r)_”/2/p(waf)e“w’f)ﬂ(&)dé- (1.4.12)

a(e) = (2m) 2 / e~i(w6) g (1) dz (1.4.13)
is the Fourier transform of u. Note that different p, p’ € S™ may lead to the
same operator, p(z, D) = p'(z, D).

1.4.22 Definition. A pseudodifferential operator (yDO) of order (at most)
m is an operator of the form

P = p(z,D), (1.4.14)
where p € 8™ . The class of Y DO’s of order m is denoted by L™.

The mapping S™ — L™, p — p(z, D), is surjective, but not injective.
Its kernel is denoted by S~°, the corresponding 1¥)DQ’s form the space L=
of smoothing operators. The principal symbol o,,(P) of a DO P of order
m with symbol p € S™ is the class of p in §™/S™ 1.

1.4.23 Definition. p € S™ is called classical, if it has an “asymptotic
expansion”

o
P~ Pmjs (1.4.15)
7=0

'ORelating notions, conventions and terminology, we do not follow the usage of [203] into
any detail, but instead join some slightly simplified conventions and notations which are
suitable for our purposes and which we borrowed from some survey lectures of E. Zeidler
[227], and which are the same as in [75] and [98, 10.4., especially §10.4.7.].
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i.. Pm—j € S™=I and

N-1

pP—> pmj€S™N, VN, (1.4.16)
j=0

and if py—j s positive homogeneous in § “away from 07, i.e.

P (@, t€) =t Ipp_j(,6), €I =1, t>1. (1.4.17)

A Y DO is said to be classical if its symbol is classical. The spaces of classical
symbols and ¥ DOs are denoted by ST} and L7} respectively.

Let p,_ ;(z,£) be homogeneous functions in £ on 2 x (R™\{0}) coinciding
with pp,—; for ||{]] > 1. These functions are uniquely determined, and one
writes also

o
P> (1.4.18)
7=0

instead of (3.4.43). The principal symbol of a classical Y DO can be identified
with the leading term p? in the asymptotic expansion (1.4.18).

1.4.24 Theorem. Let F : Q' — Q be a diffeomorphism of domains in R™.
Then to every ¥ DO P on Q with symbol p € S™(Q x R™) corresponds a
DO P' on Q' with symbol p' € S™(QY x R™) such that:

F*(Pu) = P'(F*(u)), ue€C§(Q), F*— pull-back, (1.4.19)
P (2,€) — p(F(z), ("F'(2)) 7€) € STH(Q x R). (1.4.20)
If P is a classical DO then so is P'.

The theorem makes it possible to define ¥»DO’s on manifolds. Let M be
a paracompact smooth manifold, and consider an operator A : C§°(M) —
C*®(M). If Q is some coordinate neighborhood of M, there are a natural
extension map ig : C§°(2) — C°(M) and a natural restriction map pq :
C®(M) — C*®(R). A is called ¥DO of order m if all the local restrictions
Aq :=pgoAoig: CP(Q) — C*°(N) are DO of order m. By Theorem
1.4.24, this is a good definition, and also classical ¥DO can be defined in
this manner. Moreover, equation (1.4.20) says that the principal symbol has
an invariant meaning as a function on the cotangent bundle 7™ M.
On the other hand, ¥DO on a manifold can be constructed by gluing: Let
Uj 1; = M be a locally finite covering of M by coordinate neighbourhoods,
and let A; be ¥DO’s of order m on ;. Furthermore, let Zj 1p; =1 be a
partition of unity subordinate to the given covering, and let ¢; € C§°(£;)
with ¢;lsupp y; = 1. Then A := 37, ¢; 0 Aj o9, (¢;, 9, considered as
multiplication operators) is a ¥DO of order m on M whose restrictions Agq;
coincide with A;.
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1¥DQO’s acting on sections of vector bundles are defined with appropriate
modifications: They are glued from local ¥DO’s which are defined using
matrices of symbols. The principal symbol is then a function on T*M with
values in the endomorphisms of F, i.e. a section of the bundle 7*(End(E)),
where 7 : T*M — M is the projection of the cotangent bundle, and
End(F) is the bundle of endomorphisms of E.

9¥DO’s are operators from C§°(M) to C*°(M). $DO’s of order m can
be extended to bounded linear operators H*(M) — H* ™(M), s € R
(Sobolev spaces). Notice that, by the Sobolev embedding theorems, ev-
ery DO of order < 0, H®* — H*®*™™, can be considered as an operator
H?® — H?. In particular, taking the case s = 0, every ¥ DO of order < 0
may be considered as an operator L? — L?. For the case of manifolds, a
Riemannian metric is used in the definition of the L? scalar products, for
vector bundles in addition a fibre metric. L?(M, E) denotes the correspond-
ing space of L? sections. We will need the following list of facts (for some
terminology and the corresponding generalities see [203, Definition 3.1.,24.3]
and [63, 23.26.12.] e.g.):
1. The product (which exists, if at least one of the factors is “properly sup-
ported”) of two ¢¥DO’s of orders m, m' is a DO of order m + m/'.
2. The principal symbol of the product of two ¥DO’s is the product of the
principal symbols of the factors.
3. A DO of order < 0 is bounded. For order < 0 it is compact.
4. A ¥DO of order less than —n on a manifold of dimension 7 is trace class.
5. If A is a 9DO on a manifold, and if ¢; and 1); are as above, then A may
be written

A=) 4Ad;+ A
J

with A" € L~ (smoothing operator).

1.4.25 Remark. Note that the classical ¥ DO’s form an algebra which is an
example of a more abstract object which usually is referred to as Weyl alge-
bra. According to [99], it is a Weyl algebra corresponding to the symplectic
cone Y = T*M \ {0} ({0} the zero section), with its standard symplectic
form w and R -action py(x,&) = (z,t€). That is, Y is an RY -principal bun-
dle such that pfw = tw. The properties listed above, however, are only part
of the conditions assumed in [99, 2., A.1.-E.].

Definition of the Wodzicki residue.

There are at least two equivalent definitions of the Wodzicki residue: As a
residue of a certain (-function and as an integral of a certain local density
[225], [124]. We take as starting point the second definition which can be
used most directly for writing classical gauge field Lagrangians. The first
definition will show up in the second proof of Connes theorem.
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1.4.26 Definition. Let M be an n-dimensional compact Riemannian man-
ifold. Let T be a classical pseudodifferential operator of order —n acting on
sections of a complex vector bundle E — M. The Wodzicki residue of T
is defined by

1
Resw (T) =

= W/S*MtrEan(T)u, (1.4.21)

where o_,(T') is the principal symbol of T, S*M is the cosphere bundle
{€ €T M : |&|lg =1} and p is the volume element defined by a multiple of
the canonical contact form on T*M. trg is the natural pointwise trace on
™ (End(E)).

The form p is defined as y = %a A (da)M"=1) | where « is the
canonical 1-form on T*M, a = ), &;dz* in local coordinates.

Also Resy is defined for classical ¥y DO of any order, using the same
formula with p_,, instead of o_, for integer order m > —mn, and putting
Resw = 0 else.

It should be noted that the Wodzicki residue can be defined without
using the Riemannian structure [225]: One starts defining for a DO T on
a chart domain in R? a matrix-valued local density

resy(T) = ( A Pl 1D s,

where dé = >, (—1)"&dé A - - - Ad&; A--- A&y is the normalized volume form
on the standard Euclidean sphere ||£]| = 1 and dz is the standard volume
form in the chart coordinates. Note that dédr = . Then one shows that
this has good functorial properties, i.e. is indeed a density (an absolute
value of an n-form) on M , and defines

Resw (T) = n(217r)” /M tr resg(T).

Due to the homogeneity property of p_,(z,£) (using the Euler formula),
p_n(z, €)dE is a closed form, thus ||¢|| = 1 can be replaced by any homol-
ogous n — l-surface, in particular by any sphere |||, = 1 with respect to
a chosen Riemannian metric on M. This leads to formula (1.4.21) used
above. Thus, Resy (T') does not depend on the choice of the Riemannian
metric defining the cosphere bundle. It may, however, depend on the metric
through a metric-dependence of 7.

1.4.27 Remark. The residue Resw defined above coincides, up to a uni-
versal factor which depends only on dim(M), with the residue defined in [99,
DEFINITION 6.1/.
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Properties of the Wodzicki residue (see [225, 124] and [99, PROPOSITION
6.1]):
1. Resw is a linear (in general not positive) functional on classical ¥DO’s.
2. Resw is a trace on the algebra of classical 9/DO’s.
3. It is the only trace if M is connected, dim(M) > 1.
4. Resw vanishes on operators of order < —n or noninteger.

1.4.6 Connes’ trace theorem

Formulation of Connes’ trace theorem.

We are now ready to formulate the famous trace theorem [37].

1.4.28 Theorem. Let M be a compact Riemannian manifold of dimension
dim(M) = n, let E — M be a complex vector bundle over M, and let T be
a classical pseudodifferential operator of order —n on I'(E). Then

(i) The extension of T to the Hilbert space H = L*(M, E) belongs to the
ideal L1 (H).

(i) The Dizmier trace Tr,(T') coincides with the Wodzicki residue,

1

To(T) = Resw (1) = /S oD (1422)

As a consequence, Tr,,(T) does not depend on the choice of the functional w
in this case.

The following two parts will be devoted to proofs of this theorem exclu-
sively. Two variants of proving will be presented :

In the first variant we are following roughly the line of the original argu-
ments given in [37], but see also [136] and [94] for some details!!, and the
special case of scalar operators is dealt with, essentially. Thereby, to keep
short, in some parts the proof will be left a bit sketchy. However, in any case
it will be at worst detailed enough to convince the reader of the validity of
Connes’ trace theorem for the example of the scalar operator (1+A)~"/2 on
special compact manifold like the n-torus T" or the n-sphere S™, respectively
(A is the Laplacian there).

The second variant of proving will be based on an application of Corollary
1.4.20 and formula (1.4.10b), together with some of the knowledge gained
while proving Connes’ theorem in one of the above mentioned special cases
which were completely treated in course of the first variant of the proof.
Thereby, according to the arguments found in [99], we firstly learn that

1We are very indebted to B.Crell, Leipzig, who kindly placed to our disposal his
manuscript [57] and the reading of which was strongly facilitating our understanding
of some of the peculiarities of Connes’ approach towards formula (1.4.22).
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(1.4.10b) gets applicable, and secondly see that a complete proof only re-
quires to consider this formula explicitely for a non-trivial example (i.e. one
with non-vanishing Dixmier-trace). We emphasize that it is due to the pec-
ularity of this second line of argumentation that along with a special case
then validity of the theorem in its full generality —not only for scalar oper-
ators —can be concluded.

On the proof of Connes’ trace theorem.

The idea is to see first that the theorem is true if it is true on one manifold
and then to prove it on a manifold one likes, e. g. T" or S™.

First, the theorem is true on a manifold M globally iff it is true locally.
This is due to property 5. of 4/DQ’s given above and the fact that smoothing
operators are in the kernels of both Resy and Tr,,. Now one can transport
the local situation, using a local diffeomorphism, to a local piece of another
manifold M’'. Both sides of the desired equation do not change under this
transport. Using now again the above local-global argument, we can think
of this local operator as part of a global operator on M’ (gluing by means
of a partition of unity). Thus, if the theorem is true on M’, it must also be
true on M, otherwise we would have a contradiction.

Let us prove point (i) of the theorem for scalar operators on T™. First
we show T' € L1 for any /DO of order —n on T". The Laplacian A (with
respect to the standard flat metric on T") is a differential operator of order
2, therefore (14 A) /2 is a DO of order —n, and T' can be written in the
form T = S(1 4+ A) "/2, where S is a DO of order 0, therefore bounded.
Since L1 is an ideal, it is sufficient to see (1 + A)™/2 € L1,

For the proof we need yet a little result from the general theory of com-
pact operators. Suppose z > 0 is compact but not of finite rank. Let
A1 > Ag > ... > 0 be the ordered sequence of the non-zero eigenvalues of z,
with multiplicity my, for Ag. Then, for each integer ¢ € [0, my11], & > 2, let
us consider

@) Dok Ai My + Apyrt
M <h mi+t} - 10g{2].§k m; + t} )

(1.4.23a)

which yields all terms 7, (z) of the sequence (1.4.3a) with 37, , m; <n <
> j<k+1 ;- From (1.4.23a) with the help of the properties of the logarithm
one then easily infers that for the mentioned #’s the following estimate holds :

o1 VS, mi} (@) S VS, comi+ (@) < a1 VS, oy myd (2), (14.23D)
with cp1 = 14 {log(1 + (me+41/ D25, mj))/10g > <) m;}t. In view of the

structure of the latter coefficients from (1.4.23b) then the following and often
useful auxiliary criterion can be seen to hold.
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1.4.29 Lemma. Let z € CB(H)\FB(H). Suppose limy_ o0 v(y._, m;}(7)
exists. If the sequence {mgy1/3 ;<p,m; : k € N} is bounded, then also
limy, 00 Yn(z) ezists. B

Now we are ready to start our considerations around (1 + A) /2. The
spectrum of the Laplacian A = — Y7 | §? on T" = R" /27Z" is pure point,
consisting of the values ), k?, k; € Z. The corresponding eigenfunctions
are e** Lk € Z", r € R". The multiplicity of an eigenvalue A of A is
m(\) = #{k € Z"| >, k} = A\}. From this follow analogous facts for the
operator (1 + A)~™2. Let my, be the multiplicity of the k-th eigenvalue of
the latter. Let

k<2 (1 + [E]%) /2

5 -n/2y —

7

where N}, is the number of lattice points in Z" with 1 + ||k||> < R?. By
construction it is easily seen that convergence of {§g((1 + A) ™?) : R €
R \{0}} as R — oo implies the limit limgyoo (5., m;} (1 + A)~/2) of
the considered subsequence of the sequence (1.4.3a) to exist (in which case
then both limits have the same value). It is not hard to see that for ge-
ometrical reasons with the above multiplicities also the other condition in
the hypotheses of Lemma 1.4.29 is fulfilled; this e.g. can be concluded as
a by-result from our estimates given below and relating the asymptotic be-
havior of the ratio between the surface of an n-sphere to the volume of the
n-ball of the same radius R within R". Hence, in view of Lemma 1.4.29 the
conclusion is that if the limit

Sy rpcre (L [16]7) "2
A -n/2y _ 1 HIk[Z<E
A, TR ST = g log N,

can be shown to exist, then by Theorem 3.4.56 (2) it has to equal Tr,, (1 + A)~"/2
(independent of w). Also, it is not hard to see that the latter limit exists if

<k IR
lim —/——=———
R—o00 log NR

exists, where Ng is the number of lattice points with ||| < R, in which
case then both limits yield the same value. We prove that the latter limit
exists, computing its value. It is well known [218] that

Nr=Vg+ O(RnTil)a

where Vg = %R” (volume of the ball of radius R in R"), Q, = FQZrn—n//;) (area

of the sphere S™ 1). Neglecting terms of lower order in R, we have

Qy
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In order to determine 3, - ||k|| ™" for large R, we first count the number
of lattice points in a spherical shell between R and R + dR,

Ngidr — Nr = Vgyar — Ve + ... = QR YdR +....

Integrating this, we obtain asymptotically for large R

R
> kI = Qn/ r e 4 = Qulog R+ ...
kl|I<R !

Together with log Np = nlog R + log 2, — logn + ... this leads to

. k<r KT Q,
lim ——=—— = —
R—oco  log Np n’
ie. Q
Tr, (14 A)™™2 =2, (1.4.24)
n
It is much easier to determine the Wodzicki residue of (1 + A)™/2: the
principal symbol of (1 + A)™2 is o_,((1 + A)™/?)(z,£) = [|€]| ™, where
||l.]| denotes the standard euclidean metric on R". Therefore,

1 - 1
Resw ((1 + A)—n/z) _ / déde = ———— dr =
S*T7n

~ n(2m)n n2m)""" Jon
1 Q
= ——0,2n)" = =
n(2m)" n(2m) n’

coinciding with the result for the Dixmier trace. Thus, the theorem is al-
ready proved for a special operator on T".

To prove point (ii) of the theorem, we start with some general remarks
about Tr,. It is a positive linear functional on the space L™ of 4/DO’s of
order —n with L™"~! C ker Tr,,, because elements of L~"~! are trace class
(see property 4. above). Using L™" ~ §"/S§~ % it follows that Tr, may
be considered as a linear functional on $™"/S"~! the space of principal
symbols of 9/DO’s of order —n. By restriction, it is also a linear functional
on the space of principal symbols of classical ¥DO’s of order —n. On the
other hand, this latter space and the space C*°(S*M) coincide, since every
element of C*°(S*M) by homogeneity defines a classical principal symbol,
([63], 23.29.11.). Thus, we end up with a linear functional on C*°(S*M). It
follows from symbol calculus that this functional is positive (see [57]). Thus,
we have a positive distribution, which is always given by a positive measure
on S*M ([62], 17.6.2).

Since an isometry of M gives rise to a unitary transformation of L?(M, vg),
and the spectrum of an operator does not change under unitary transfor-
mations, the Dixmier trace is invariant under isometries. Therefore, the
corresponding measure on S*M is invariant under isometries.
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Considering now the case M = S", the standard n-sphere with the metric
induced from the euclidean metric on R**!  the group of isometries is SO(n+
1), and S*M is a homogeneous space under the induced action of SO(n+1).
It is easy to see that the volume form of the induced Riemannian metric
on S*S™ is invariant under the action of SO(n + 1). Uniqueness of the
invariant measure on a homogeneous space shows that the positive measure
corresponding to the Dixmier trace must be proportional to the measure
given by this volume form vy,

Tr,(T) = const./ o_n(T)vyg.
S*M
It is an easy exercise to show that v, coincides in this case with the form
u defined above. Moreover, the constant, which neither depends on the
operator nor on the Riemannian manifold, is determined by the example of
the torus.

1.4.30 Remark. Note that it follows from Corollary 1.4.20 and 1.4.28 that
the Wodzicki residue in some cases coincides with a residue of the zeta func-
tion (p(z) = trT% (see also below).

An alternative proof of the Connes’ trace formula.

In this part another derivation of the trace formula (1.4.22) will be pre-
sented. Thereby, the line will be to make the abstract formula (1.4.10b)
directly accessible for Connes’ trace formula in the special case of a classical
pseudodifferential operator T of order —n. Thereby, by some continuity ar-
gument, it suffices if the case of positive-definite operators of that kind can
be dealt with.

According to the hypotheses in Corollary 1.4.20 under which (1.4.10b)
is supposed to hold, for this aim it is sufficient to know that the ‘right’
asymptotic behavior of the spectral values of 7" holds, and in which case
then the extensions of the (r-function of (1.4.8) have to be analyzed.

Both exercises can be achieved at once and almost without proof by
means of V. Guillemin’s methods given in [99]. In demonstrating this way
towards formula (1.4.22) we finally will end up with an alternative proof of
Theorem 1.4.28.

Before doing this, we recall the special settings corresponding to the
assumptions of Theorem 1.4.28. In line with these and in accordance with
Remark 1.4.25 the Weyl algebra W of all classical 9/DO’s corresponding to
the symplectic cone Y = T*M\{0} will be considered. We then have the
Hilbert space # = L?(M, E), which is the completion of the sections T'(E)
under a scalar product descending from a symplectic volume element p on
Y and a fibre metric on E. If these are fixed, each classical yDO T which
is at most of order 0 corresponds to a bounded linear operator, and can
be identified with its unique bounded linear extension z = T from sections
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['(E) onto the whole L?(M, E). Accordingly, in such case we use the same
notation T for both the 9/DO and its unique bounded linear extension on
all of L?(M, E).

Now, let  be a bounded linear operator on H. Then, in the special case
that x is positive-definite, there exists in a unique way the inverse of x on H,
that is, a densely defined, positive-definite self-adjoint linear operator z~!
on H, with 7'z = 1 and zz~! C 1. In this case we then define P, to be
the n-th (positive) root of this inverse, P, = Vz 1.

Especially, if T € L_"(= W™ in the terminology of [99]) is supposed to
be positive-definite, by compactness and in view of the definition of —and the
properties coming along with—the term ellipticity, for £ = T the operator
2z~ !, and thus also P, is positive-definite, self-adjoint, elliptic and of order
one.

Now, from [99, (1.1)] one in particular learns that for the asymptotic
growth of the singular values of a positive-definite, self-adjoint elliptic dif-
ferential operator P of order one the Wey!’s formula [221] holds. This equiv-
alently says that the singular values behave like ug(P) ~ [ ¥k, with some
constant [, see [203, (13.18) and Proposition 13.1]. Hence, in the above-
mentioned special case P = P, this asymptotic law amounts to ug(7) =
pr(z) ~ L - k™!, with some constant L > 0, for each positive-definite
T € L,"(= W™). Especially, in line with Lemma 1.4.17 we then have
T € LY*®(H), for each such operator. Since L1*°(#) is an ideal from this es-
pecially L, C L*°°(#) is seen, which demonstrates that Theorem 1.4.28 (i)
can be equivalently followed also from the main result of [99].

On the other hand, owing to Weyl’s asymptotic law, the applicability of
formula (1.4.10b) now will rely on the extension properties of (, from the
half-plane Re z > 1 onto C exclusively. This matter we are going to discuss
NOW.

We start with some preliminary considerations about various existing
definitions relating to {-functions which can be associated to some positive
operator.'?

Firstly, in accordance with the above and Corollary 1.4.20 the (,-function
as given in (1.4.8) for compact positive z € L7, C LY*(#) is holomorphic
in the half-plane Rez > 1. Thus for given fixed n € N upon defining
¢*(w) = (z(2z) at w = n(1 —z), Rez > 1, one gets another complex function
w +— (¥(w)(= (¥(w)) which is holomorphic in the half-plane Rew < 0.
Recall that in view of the arguments given in context of (1.4.8) the operator
family Rez > 1 : z — z% consists of trace-class operators. But then, by
functional calculus this operator family may be equivalently re-defined at
each w € C with Rew < 0 and z = (1 —w/n) as Rew < 0, w — zPY.

12%We have to thank H.Upmeier, Marburg, who outlined to us some of the relevant
details.
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Hence, if another (-function
VweCRew<0: ((z,P)(w) =trzP" (1.4.25)

is defined for bounded-invertible, positive-definite self-adjoint linear opera-
tor P, and bounded z > 0 such that zP¥ € L'(H) for all w with Rew < 0,
in view of the above in the special case of P = P, we may summarize as
follows.

1.4.31 Lemma. Suppose x € L;" to be positive-definite. Then, in the
special case of P = P, the complex function w — ((z, P)(w) is holomorphic
in the half-plane Rew < 0, and there ((z, P)(w) = (z(2) is fulfilled, at
z=(1—-w/n).

Now, from [99, THEOREM 7.4] one also knows that the nuclear dimen-
sion of W is n (the conclusion of Theorem 1.4.28 (i) being in accordance with
this), where n is the dimension of the basic manifold M. Hence and espe-
cially, if z =T € L™" is a classical DO (€ W~" in the terminology of [99]),
then for each positive-definite, self-adjoint elliptic operator P € W! (that
is, P is of order one, and among other facts, has to be bounded-invertible on
H, e.g.) the (-function w — (T, P)(w) of (1.4.25) may be considered. In
fact, as a consequence of positive-definiteness and ellipticity of P and since
T is of order —n (which is the negative of the nuclear dimension of W) all
the conditions under which (1.4.25) is to hold are fulfilled, and thus the re-
striction to the negative half-plane of the trace of the operators T'(w), whose
operator family is given as T'(w) = T P* € W*™" C WY for w € C, makes
sense. Thereby, the mentioned operator family itself is known to possess a
canonical property; it is a so-called kolomorphic family of operators '3.

The latter especially means that the conditions of the hypothesis of [99,
THEOREM 7.1] are fulfilled, and then in line with the conclusion of this
result (T, P)(w) has to be holomorphic in the half-plane Rew < 0 and has
a meromorphic extension to the whole complex plane, and at w = 0 has,
at worst, a simple pole. Moreover, according to [99, THEOREM 7.4] the
residue of this meromorphic extension depends only on the symbol o_,(T)
of T, and has the form

Res|w=0 (T, P) = go Res(o_,(T)), (1.4.26a)

with a non-zero constant, gy # 0, which depends only on the Weyl algebra
W under consideration. Now, remind that we are in the special context
described in Remark 1.4.25. But then, the cosphere bundle S*M = {¢ €
T*M : ||&|| = 1} appears as the (compact) base of the symplectic cone Y =

13For the precise definition and basic properties around ellipticity and holomorphy for
1DO’s of a given order and operator families, respectively, we refer to [99, DEFINITION
2.1, PROPOSITION 4.1, and eq. (3.18)]
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T*M\{0}. Denoting by 7’ : Y — S*M the projection of Y, one defines for
a homogeneous (of degree —n) C'*-section f of the bundle 7*End(E) — Y,
according to [99, DEFINITION 6.1],

Res(f) = / trpfi =/ - (1.4.26b)
5*M 5*M

Here i = a A w™"™1) ig the volume element defined by a salar multiple of
the canonical contact form on 7*M (and thus in accordance with Remark
1.4.25 one has pf i = t"[i, py is the uniquely determined (2n — 1)-form
defined through trgfii = 7" () and trg is the natural pointwise trace on
7*(End(E)). As mentioned above there is a basic fact saying that homo-
geneous C*®-sections of 7*End(E) — Y in our case exactly yield all the
principal symbols to classical 9/DO’s of order —n.

Thus, the above-mentioned conclusions about the possibility of a mero-
morphic extension of ((T, P) and its singularity structure at w = 0 apply
with P = Pr. In view of Lemma, 1.4.31 and as a consequence of the just said,
upon changing the complex variable w into z in accordance with w = n(1—2z)
we will see that analogous facts hold in respect of (1 and at z = 1, accord-
ingly. That is, (7 possesses a meromorphic extension into the whole z-plane,
with a simple pole at z = 1, at worst. Having in mind this, and taking into
account that from w = n(l — z) a geometric factor 1/n arises while pass-
ing from the residue of the one extension at w = 0 to the residue of the
transformed extension at z = 1, in view of (1.4.26a)—(1.4.26b) we then may
summarize as follows:

1.4.32 Corollary. LetT € L™ be positive-definite. The holomorphic func-
tion (r(z) has a meromorphic extension from the half-plane Rez > 1 into
the whole complex plane with, at worst, a simple pole at z = 1. The residue
of the extension obeys

Wesl.o1 r(z) = (oo/n) [ trpo-u(Th,

with a constant gy # 0 which does not depend on the special operator T.

Foremost, according to Corollary 1.4.20 and by the above-mentioned
asymptotic spectral properties the Corollary guarantees that formula (1.4.10b)
can be applied for positive-definite classical ¥ DO’s of order —n, with the
result that

Tr,(T) = (go/n)/ trpo_n(T)p (1.4.26¢)

S*M
has to be fulfilled, for each positive-definite T of order —n. Also, in order
to fix the constant gy it obviously suffices to deal with one particular case
of such an operator. Moreover, once more again according to the local-
global and the M-to-M' arguments, which we have already mentioned at the
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beginning of 1.4.6 while proceeding the first variant of the proof of Theorem
1.4.28, we have to conclude that the constant gy within (1.4.26¢) has to be
the same, in each case of an n-dimensional compact manifold M. Hence,
we may content with the known result for 7 = (1 4+ A)~™?2 on the n-torus
M = T". According to our calculations therefore go = 1/(2m)™ has to hold,
and then (1.4.26¢) will yield that (1.4.22) has to be valid, for each positive-
definite T" of order —n on an arbitrary compact n-dimensional manifold M.
From this the validity for all positive T' of order —n can be concluded, since
for fixed positive-definite Ty of order —n and each positive T the family
T(e) = T + €Ty, € > 0, consists of positive-definite 9DO’s of order —n,
for which according to the above the assertion of Connes formula holds. In
fact, according to Lemma 1.4.15 one knows Tr,,(T'(¢)) = Tr,(T) + € Tr,(Tp)-
On the other hand, the map A — o_,(A4) between ¥YDO’s of order —n and
their principal symbols is a homomorphism, and therefore also o_,(7'(¢)) =
0_n(T) + e0_n(Ty). Hence, since the expression on the right-hand side of
(1.4.26¢) obviously is a linear form with respect to the o_,(T")-variable, the
validity of (1.4.22) in the general case can be obtained simply via the just
mentioned linearity and upon taking the difference between a relation of
type (1.4.26¢), taken at one particular T'(¢), for some ¢ > 0, and a multiple
of the relation of type (1.4.26¢) at Tp with €.

1.4.7 Classical Yang-Mills actions

Here we make some remarks about the construction of the bosonic part of
classical (pure) gauge field actions in terms of the Dixmier trace and the
classical Dirac operator. This was considered in more detail in the lec-
tures by R. Holtkamp and K. Elsner/H. Neumann. We will make use of
the fact that the de Rham algebra of exterior forms is isomorphic to the
differential algebra Qp(C°°(M)) coming from the classical spectral triple
(A = C®(M),H = L?>(M,S),D), D the Dirac operator on the compact
n-dimensional Riemannian spin manifold M, S the spinor bundle (see the
lecture by M. Frank). The representation 7 of A on H is given by sending
f € A to the operator of multiplication with the function f.

The classical Dirac operator and integration on manifolds.

First, we notice

1.4.33 Proposition. Consider f € C*®°(M) as left multiplication operator
on L?(M,S). Then

Tr, (f|D™") = ﬁ/Mf v, (1.4.27)

where v, denotes the Riemannian volume element, ¢(n) = 2"~ ["/2=177/2pT (n/2),
and Tr,, is the Dizmier trace with respect to any invariant mean w.
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Proof. (see [136], p. 98) The principal symbol of the Dirac operator is (&)
(Clifford multiplication on spinors), thus D is a first order (elliptic) ¥DO.
Multiplication with f is a zero order operator, therefore f|D|™ is a DO of
order —n. Its principal symbol is o_,(z, &) = f(2)||€]| " 15n/21, where 1op/2
is the identity map of the fibre S, of S. This principal symbol reduces on
the cosphere bundle S*M to f(z)1ym/2;. Thus, Theorem 1.4.28 gives

1
n(2m)"

9[n/2] -
= @ /Sn_l dé /Mf(:c)da:.

n

The area [ J— d¢ = 12(7;2 //22) of the unit sphere S”~! leads to the right factor
c(n). O

Tr, (f|D|_n) =

/ trs (f (@) 1ym/2 )dadé
S*M

Since |[D|™™ is in LM we can define the following inner product on
m(QFA):
(T, Ty)y, := Tr, (TYT2|D| ™). (1.4.28)

In order to really have an inner product, one needs some assumptions
about A which are fulfilled in the classical case, but which also hold in
more general situations of spectral triples, see [35, 136, 217].1* The or-
thogonal complement with respect to this inner product of the subspace
m(d(Jo N QF1)) C m(QFA) is isomorphic to %A (both are images of sur-
jections with the same kernel). Thus, the inner product (1.4.28) can be
tranported to QkD.A.

1.4.34 Proposition. Under the isomorphism between Q%A and T'(AcT* M)
the inner product on Q’BA is proportional to the usual Riemannian inner
product,

(w1, w20 = (—1)FA(n) /M w1 A *ws (1.4.29)

for w; € W8 A ~T(AcT*M), where
oln/2l+1-n—n/2

A) = = F a7

Proof. We refer to [136], p. 120. O

Classical gauge field actions in terms of Dizxmier-trace.

Now, in usual gauge theory, the gauge field F may be interpreted as a
two-form with values in the endomorphisms of a vector bundle F over M
(curvature of a connection). (Such vector bundles typically arise as bun-
dles associated to a principal bundle with the group of inner symmetries as

“Thanks to J. Vérilly for pointing out this fact to us.
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structure group). The (pure) gauge field action is then constructed by com-
bining the scalar product on the right-hand side of (1.4.29) with a (fiberwise)
product and trace of the endomorphisms,

YM(V)= const./ tr(F A *F).
M
By (1.4.29) this can be written equivalently in terms of the differential
algebra Q%A and the scalar product there.
Moreover, it is almost obvious from the definition of the inner product
that the classical Y M action can be obtained as an infimum over a “univer-
sal” Y M action defined over universal connections (which are elements of

T(EndE) ®ceo(ary 22(C*® (M)). More precisely [38], [136], one shows that
1QT:EQUNA—ER4NLHA

(€ := T'(F)) gives rise to a surjection from universal connections to usual
connections. If @ is the curvature of a universal connection V,,,, one defines

I(Vn) = T, ({(L®7}(0)[1© D 7).

and finds
Y M (V) = const.inf{I(Vy,)|7m(Vun) = V}.

Thus the classical Yang-Mills action can be entirely written in terms of
objects which have a straightforward generalization to the noncommutative
situation.
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1.5 The Einstein-Hilbert Action as a Spectral Ac-
tion (B. Ammann, C. Bér)

1.5.1 Generalized Laplacians and the heat equation

We start by examining the analysis of so-called generalized Laplacians. A
detailed exposition can be found in [12]. Throughout this section let M be
a compact Riemannian manifold, let £ — M be a Riemannian or Hermitian
vector bundle over M. Let V be a metric connection on F, i.e. for smooth
sections ¢ and 9 in E and X € T M we have

aX(‘;Oaw) = <VX(;01¢> + <(P,VX'¢)

Here (-,-) denotes the Riemannian resp. Hermitian metric on E. If ¢ is a
smooth section in F, then Vi is a smooth section in 7*M ® E. Note that
the Riemannian metric and the Levi-Civita connection on M together with
the metric and V on FE induce a metric and a compatible connection on
T*M ® E, again denoted (-,-) and V. Similarly, the k** covariant derivative,
V¥, is a section in T*"M ®...® T*M ®F and this bundle carries a natural

k t;;nes
metric and connection. For ¢ a smooth section in E, ¢ € C*®°(E), we define
the L%-scalar product

(%) 2 = /(wﬁ) dv

M

and the associated L%-norm

lllZs = / (¢, ) dV.

M

More generally, for any k we have the Sobolev-norms
k
lellze = llellZe +1Vel7e + .. + Vil Z.

The completions of C*™(E) with respect to these norms are denoted L?(FE)
and H*(E), the spaces of square-integrable sections and Sobolev-sections in
E.

The C*-norm is defined in a similar manner,

lpllce := sup e,
M k
lellgr == max{[l¢co, [[Vellco,.--, [VFellco}-
The two families of norms, || - || = and || - || o, are equivalent in the following
sense: It is trivial to see that || - || g+ can be estimated against || - ||k,

1 1
[ellge < vol(M)2 - (k+1)2 - [lollce.
Conversely, we have [146, Thm. II1.2.5]
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1.5.1 Proposition (Sobolev Embedding Theorem). For each k there
ezxists a constant ¢ = c(k, M, A) such that

leller < e llollae
whenever £ > k + %, n = dim(M).
Now let V* be the L2-adjoint of V, i.e. (V,%)r2 = (@, V*) for all

p € C®(E), ¢ € C®°(T*M ® E). For any symmetric endomorphism field
K € C*(End(E)) the operator

A= V*V + K : C®(E) - C®(E)

is called a generalized Laplacian.
Since AF is a differential operator of order 2k we have

A%l < C- [l 2.
But A is elliptic and this implies the following converse [146, Thm. II1.5.2]

1.5.2 Proposition (Elliptic Estimates). For each k € N there is a con-
stant C = C(k, M, A) such that

Il < C- (llellze + 1Akl 12 ) -

Finally, we need the following fundamental result [146, Thm. I11.5.8]

1.5.3 Theorem. There exists a Hilbert space orthonormal basis @1, 2, ...
of L*(E) and real numbers A1, Xg, ... such that

App = g+ Pk,

A< XA < A3 < ... 2 Hoo, and each A is repeated only finitely many
times. All ¢y, are smooth, ¢, € C*°(E).

The theorem says in particular that the eigenvalues tend to +oco. To
get started we need some control on how fast they grow. The following

proposition will later be improved considerably, c.f. Theorem 1.5.11.

1.5.4 Proposition. There ezists a positive constant ¢ = ¢(M, A) such that
4
A > c-kntnt8) + A — 1

for all k.
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Proof. Replacing K by K — A; -id will shift the spectrum of A by A;. Hence
we can assume w.l.o.g. that A; = 0. Now let e > 0 and let {p1,...,pn} be

a minimal e-dense subset of M, i.e. M = U B(pi, €) with N minimal. Here

B(p, €) denotes the ball of radius ¢ about D. It is not hard to see that there
is a constant ¢; = ¢1 (M) such that for all e > 0

N=N(e)<c1-e™
Let V C L?(E) be the subspace spanned by ¢1,...,¢;. Consider ¢ =
f: ajp; € V and assume ¢(p;) = 0,7 =1,...,N. Given z € M choose p;
ZsTli:h that dist(z,p;) < e. Differentiation along a shortest geodesic from p;
to x yields

lo(@)] = le(@)| —le@)| < e IVellco < el

Integration over M gives
1
lpllze < e gller - vol(a)b.
Let £ := [%] + 2. By the Sobolev embedding theorem we have

leller < ca-llellme-
By the elliptic estimates

Ielae < e (ol + 1815 g 2)
(4]
< a- (14A77) el
£
< e (1 MF ] o
ny3
< e (1) gl

Combining these estimates we obtain
1
lellze < e-vol(M)2 - e -5+ (1+2) "4 [l 2
n+6
= e-co-(T+2) 4 - lellre.

For e = ﬁ -1+ )\k)_nT+6 we conclude [|¢llz < %[/¢l|L2, hence ¢ = 0.
Thus for this € the linear mapping

V — Ep@---®E,
o — (w(pl),---,w(pw))

is injective. Therefore

E = dimV <dim(E,, &...® E,,) = N -rk(F)

n(n+6)

< € rtk(E)=c5- (14 Ag)

in _4
Hence 14+ X > ( 5) 59 = cg - kn(n+6) O



84 CHAPTER 1. FOUNDATIONS OF NC GEOMETRY

The main purpose of this section is to study the heat equation

Oy
— + Ap; =0
o + Apy

where @; is a smooth section in F for each ¢ > 0 and ¢; depends smoothly
on t.

The connection V on F induces a connection, again denoted V, on the
dual bundle E*. The endomorphism field K of E gives the endomorphism
field £* on E*. Hence we obtain a generalized Laplacian

A=V*'V+K*
on E*.
For a section ¢ in E we define the section ¢* in E* by
o (¥) == (p,9) VY €E.

One easily checks Vx(p*) = (Vxy)* for X € TM, (Kp)* = K*¢*, and
(Ap)* = A(p*). Hence if @1, o, ... is an orthonormal basis of L%(E) con-
sisting of eigenvectors of A, then we get an orthonormal eigenbasis of L?(E*)
by ¢7, ¢5, ... for the same eigenvalues.

Now we form the bundle E X E* over M x M whose fiber over (z,y) €
M x M is given by

(ER E*)(py) = By ® E = Hom(Ey, Ey).

Again, we get an induced connection V on E X E*. We put K = K ® id +
id ® K* and obtain the corresponding generalized Laplacian

A=V'V+K.
If ¢ and 1) are sections in E we get a section ¢ X ¢* in E X E* by
(¢ R9%)(z,y) = p(x) @ P (y).

One sees that A(p; K p}) = (Ap;) Bep +0; K (Ag) = (X + ) (0 K p).
Hence ¢; Xy, j, k > 1, form an orthonormal basis of L?(EX E*) consisting
of eigensections for A.

Definition. The infinite sum

ki(z,y) =Y e Moi(z) ® i (y),
j=1

z,y € M, t >0, is called the heat kernel of A on M.

1.5.5 Proposition. Letty > 0. Then the heat kernel and all its t-derivatives
converge uniformly in t > ty in all H*-norms and all C*-norms. In par-
ticular, ki(z,y) is smooth in t, x, and y, and we can differentiate term by
term.
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Proof. In view of the Sobolev embedding theorem it is sufficient to prove
the proposition for the H*¥-norms. All but finitely many Aj fulfill A; > 1.
By the elliptic estimates we then have

e Bl < erse™ - (llog B gjllce + 1A% (e R g)l2)

c1-e . (1 + (2)\j)k)

S co - A‘I; . e_t)‘j
< ¢y )\f ce oA
Since for large enough z we have z¥e~%%/2 < 1 we have for almost all j:
e~ ; illg2r < c2- etoXi/2,
By Proposition 1.5.4 we have
A > ¢+ 74
. Ca -+ C. o =
] = 3 .7 4 9 n(n + 6)7

and therefore

le™i 0 R @il < c5- e 7"

Convergence of the series Y e~%7* follows from finiteness of the integral
J

o0 o0
p —a 1
/ece't dt =c7- /es sTatds = c7-T (—) .
@
0 0

We have shown that

DTN Ry

J=1
converges in each H*-norm, uniformly in ¢ > . The same argument applies

to the t-derivatives

o0

E : tA X E : 2 X
d —tAj * m ,—tA; *
It v = Pj - 'Pj J*
(dt) (6 ! J) ( A]) € ¥ ¥

=1
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Since we are allowed to differentiate term by term we compute for y fixed
0 0 —tAj *
akt( y) = Ezj:e 7o W @]
0 _i
= D5 ViR
J
= Z (=25) e p; K}

= Ze A(pj |Z<p]
= _Azkt(xay)

For ug € L*(E) we put uy(z) := [ ki(z,y)uo(y) dV (y) and we see
M

Hence u; solves the heat equation. Moreover,

/kt(w,y)wk(y)dV(y) = > e N (), 08)
i j
e—t)\k

Pk-

Thus k¢ (x,y) is the integral kernel of the operator e *2. As ¢ \, 0 the heat
kernel becomes singular. Indeed, since e=%2 = id we expect the heat kernel
to concentrate along the diagonal {(y,y) € M x M |y € M'}. We next want
to examine the asymptotic behavior of k;(z,y) for ¢ 0.

1.5.2 The formal heat kernel

We start with the Fuclidean heat kernel

n dist 2
qt - M x M — ]R, Qt(.'E,y) = (47‘(‘t)_5 exp (_M> .

4t

A formal series

k(z,y) = qi(z,y) - th - ®

®; € C*(EX E*), is called a formal heat kernel if for each N € N there
exists mg such that for all m > mg

0 Ui
(amz) G308 b = g O().
=0
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1.5.6 Lemma. Let Ag denote the standard Laplace-Beltrami operator acting
on functions. Then

(55 +0e) ate) = “22 (o)

where a is smooth on (M x M), and a vanishes along the diagonal, a(z,z) =
0. In geodesic polar coordinates about y we have

a(z,y) = gdir (Indet(d exp, (rX))),

T = exp,(rX), X € TyM, ||X| = 1. Hence a is essentially given by the
radial logarithmic derivative of volume distortion of the exponential map.

Here exp, : TyM — M denotes the Riemannian exponential map.

Proof. Fix y € M. We express A in polar coordinates about y:

9? )
A= A5 — — —-1)-H. - —.
0 8r2+(n ) or

Here S, denotes the distance sphere of radius r, S, = {z € M | dist(z,y) =
r}, and H is its mean curvature. A direct calculation yields

0
(a + A0,$) qt

. (9 Sy 82 a _n 7"2
= (E—I-A —w—k(n—l)-H-E) ((47rt) 2 exp <_4_t)>
1+ Hr

2t

qt-

Hence a(z,y) = —251(1 + Hr).

In order to identify this term we fix X € T, M, | X|| =1, and let ¢(r) =
exp, (rX) be the unit speed geodesic emanating from y in direction X. Let
er = X,es,...,e, be an orthonormal basis of T, M. Let V; be the Jacobi
field along ¢ determined by the initial condition V;(0) = 0 and £V;(0) =
ei, t = 1,...,n. It is well-known that [121, 1.2.2] the differential of the
exponential map at the point rX is given by

dexp, (rX)(e:) = Vi(r).

Thus (%dexpy(rX)) (e5) = —=Vi(r) + LY Vi(r). In particular, Vi(r) =

T

rc!(r) and hence (%dexpy(rX)) (e1) =0. Fori = 2,...,n we have %Vi(r)
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—B(Vj(r)) where B is the Weingarten map (second fundamental form) of
S, [121, 1.2.6]. Tt follows

(%dexpy(rX)) (ei) = (-:—zid - %B) Vi(r)
- (-%id — B) dexp, (rX)(e;)
and thus
dirdet(dexpy(rX)) = det(dexp,(rX)) (( dexp, rX)) - (dexpy (rX ))‘1)

= det(dexp,(rX)) (—_lde_ - )

n—1

= det(dexp,(rX)) (— "

—(n— l)H)
2
= det(dexp,(rX)) - a.
Hence

T 4 d
a = idet(dexpy(rX)) -gdet(dexpy(rX))

rd
= 35 In det(d exp, (rX)).

1.5.7 Proposition. Let ¢y be the injectivity radius of M. Then there exists
a unique formal heat kernel with ®; defined and smooth on (M x M), =
{(z,y) € M x M | dist(z,y) < €9} such that

By (z,7) = idp, € Hom(E,, B,) = B, ® EX.

Proof. We first show uniqueness of the ®;. To do this we differentiate the
formal series ki(z,y) term by term, order the result by powers of ¢ and
equate the resulting coefficients to zero. We use the formula

A(f-9) = (Bof) - © = 2Vgraasp + fAp

where f is a function and ¢ a section in F. Now

9 .
A
(3t+ >kt
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d o .
= ((a"‘AO,x) qt>.ZtJ(I> _2vgradzqt2tq> +Qt(at+A )ZtJQ.

J

a . 1
= ;qt'zthﬁj—*—ﬂ'q gradw Zt](b + qs - Zt]A @ + qs - Z]t] 1‘1’]-
J

(o]
= g >t {a- Bt +rVgraa,r ®ji1 + Aa®j+ (5 + )B4}
j=—1

where again r = dist(z,y), y fixed, and with the convention that ®_; := 0.
Along any unit speed geodesic ¢(r) = exp, (rX) emanating from y we obtain
singular ordinary differential equations (®;(r) := ®;(exp, (rX), y)):

. v
(+1+a(r) Bpalr) + 78500 (1) + (A,85) () = 0. (15)
To solve this equation we introduce the integrating factor

r

R;(r) = rit! . exp /Mdp
p

Then we have

w7 3 BB
B R-T(r) ' {j . le(r)q)jH(r) + Ry(r) - @ ®j11(r) + Rj(r)d_Z‘I'jﬂ(r)}

= —(As%;) (r).

We denote parallel translation along ¢(r) from ¢(r1) to ¢(rz) by 7, r, and
we obtain

T

R0201() = = [ 2, (8,8)) (5)dp + 70, .
0

Evaluating this equation for j = —1 at r = 0 yields
1-idg, =0+ C_1.

Hence C_1 = idEy and

T

a .
q)()(’l") = R_l(,r) * o, C—l =exp | — / % dp WO,TldEy
0

=

= det (dexpy(TX))f SO -
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We have computed ®:

Oy (z,y) = det (d(expgl)(m))% Ty

where 7y ,, denotes parallel translation from y to z (along the unique shortest
geodesic connecting y and z).
For j > 0 we get at r = 0:

0-9;,1(0) =0+ C;.
Hence C; = 0 and

50) =~y [ T (Ar) () dp
0

This way we can recursively determine the ®; and uniqueness is proven. For
the existence part simply use the above equations to define the ®; recur-
sively. O

Remark. By assumption we have
Po(y,y) = idg,.
Plugging = 0 into (1.5.1) for j = 0 we obtain
9,(0) = — (Az®0) (0).

Let us compute this term. We use the Taylor expansion of the metric in

normal coordinates about y(=0):

1
9ij(x) = 0i5 + 3 ZRikﬂ(O)ﬂ?kiBl +O(|=]®). (1.5.2)
ki
Hence
1
det (dexpy) = det ((9z’j)i,j:1,...,n)2
. 2
= [1+tr (g > Rig(0)z*a! + 0(||$||3)) + 0(||$||4)]
kl
= 13 Y riu(@)ats! +0(al)
kl
Here ricyy = Y. ¢"Riry; = — Y. g Rixji denotes Ricci curvature. Thus
ij tj

det(dexpy)_% =14 & > ricy(0)z*z! + O(||z||®) and therefore
kl

Ao (det(dexp,)H) = —¢ 3 rice(0) + O(ll)
k

_ —éscal(ﬂ) +O(|z))-
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Here scal = ) ricgy denotes the scalar curvature.
k

Now (A;®p) (z,y) = (AOJ (det(dexpy)_%)) '7Ty,x+det(dexpy)_% Kyo

Ty,e and therefore Ay ®¢(y,y) = —gscal(y) + Ky.
We have shown

1 .
élﬁhy)==6&ﬂKy)ﬂdEy——Ky.

This is of greatest importance to us because this function will give us the
Einstein-Hilbert action.

It remains to see what the formal heat kernel and the true heat kernel
have to do with each other. Pick a smooth cut-off function x : R — R, such
that x(r) = 1 for r < 9, x(r) = 0 for r > 2%, and 0 < x < 1 everywhere.
We define R B

ki(z,y) := ki(z,y) - x (dist(z,y)) -

Hence Et coincides with the formal heat kernel Et on a neighborhood of the
diagonal, but k; is defined and smooth on all of M x M (or, more precisely,

A m .
its finite partial sums kgm) (z,y) == x(dist(z,y)) - @t(z,y) - D 7P, - (z,y)).

J=0
1.5.8 Proposition. Et is asymptotic to kg, in symbols

k%,

in the following sense: For each N € N there exists my € N and tg > 0 such
that for all m > myq there is a constant Cn , > 0 with

[ke(z,9) = B™ (2,9)] < Oy - ¢
for allt € (0,ty), z,y € M.

Proof. Let ¢ € C°(E) such that the support of ¢ is contained in a ball
of radius 9. Recall that ¢¢ is the injectivity radius of M. Since ¢; is the
FEuclidean heat kernel we see

lsy / Gu(, 1) o (1) () AV (3) = Bo(z, 2)p(z) = ().

A partition of unity argument yields for arbitrary ¢ € C°(E)

lim [ Y (.v)p) dV () = (o).
M

Since higher powers of ¢ do not contribute to the limit for ¢ \, 0 we have
lim [ %™ av(y) =
im [ k7 (z,y)e(y) dV (y) = ¢(z)

t\0
M
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for all m € N and ¢ € C°(E). On the other hand, since e7** tends to
e 92 =id, we also have

tim [ ke, 1) (0) 4V (1) = p(a).
M

Thus for 5§m) =kt — Egm) we get

lim 8™ (z,y)p(y) dV (y) = 0
M

t
Now put (% + A, )5(m) =: (m) and (5 = [e~(t=)Aay ™ dr. We know
0

that 5 5
(m) _ (m) _ )
n™ = (8t+A>k = (at+A)(x )

where x(z,y) = x(dist(z,y)). Hence

m 8 T.(m T.(m

g™
= ¢ -0")+R™.

Now R,Em) is of the form g;x smooth section vanishing for dist(z,y) <
For dist(z,y) > % we have

€0
3 -

C2
gr(z,y) < c1-exp (—7) - qat(, y)
for suitable constants c1,co > 0. Therefore

™ = gy - O(tY).
5™

From the definition of we have

0

t
8t6( m)  _ e(tt)Amngm)_*_/‘_Awe(tT)Azngm)dT
0

= m(m) - Awggm)'

Therefore (2 + Az) 6 m = ngm) and (2 + A,) (;ﬁm) — 6t(m)) = 0. Since
;51 m) (5(m) AT 0 it follows (5( m) 5(m) = e 20 =0, thus

t
5m) _ 5m) _ / ¢ (=) ep(m) g
0
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and hence

165 g < £+ sup e8| g - sup [0 e = O (+¥H1).
TE[O,t] TG[O,ﬂ

The Sobolev embedding theorem implies for k >

ke =B lco = 67 |co = O (EVF1).

O
1.5.9 Corollary.
ky(z,z) 'O ic\t(a:,a:) = ky(z, z)
=  (4rt)"7-Qidg, +1- (%scal(m) -idg, — ICw) + O(t2)} .
1.5.10 Corollary.
ieft/\i =Tr (efm) = /tr (kt(z,z)) dV (z )t\‘o
i=1 i
(4mt)" 2. { rk(E) - vol(M) + t - (rk(ﬁE)/scal(a:) dVv (z) — /tr(le)dV(m)) +O(t2)}.
M M

1.5.11 Theorem (Weyl). Let A : C®°(E) — C®°(FE) be a generalized
Laplace operator over an n-dimensional compact Riemannian manifold. For
each X\ € R let N(X) be the number of eigenvalues of A less than \. Then

N 1k(E) - vol(M)
Ao A3 (4m)3 T (2+1)

For the proof we need the following tool:

1.5.12 Lemma (Karamata). Let du be a positive measure on (0,00), let
a>0and C > 0. We assume

00
/et’\d,u(/\) < 00
0

for all t > 0 and

o0

Ii a —tA - C.

tl\r‘not /e du(A\) =C
0

Then for all continuous functions f on [0,1] the following holds:

%l\i%ta/f t)\ t)\du /f —t ta 1 —tdt
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Proof. (of Theorem 1.5.11) Since a shift of the spectrum by a constant

N

will not alter the limit lim VF  We may w.l.o.g. assume that all eigen-

A—00
values )\; are positive. We apply Karamata’s lemma with a =

n o0
(4m) " 2rk(E)vol(M), and the spectral measure dy = ) dy,. Since

=1
o0 o
/et)‘d,u()\) = Ze_t’\i =Tr (e_m) < 00
0 =1

and

o

Ii a —tA — 1 E-TI‘ —tAY _

t{‘%t /e du () t{%w (e =C
0

by Corollary 1.5.10 the assumptions in Karamata’s lemma are satisfied.
Let € > 0 and pick a continuous function f : [0,1] — R such that
f(zx) =0forz < e (F9), fz) =z ' forz > e ' and 0 < f(z) < 27!

everywhere. For the left hand side in Karamata’s lemma we get

(1+e)t1!

e o]

.o A —tA el i) A

%{T(l)tZ/f<e )e du(N) = %{%w / f(e )e du ()
0 0

t_l
> limsuptg/du(/\)
t\,0
0
= limsuptzN(t™})
N0
NN

n
2

= limsup
A—00

For the right hand side we obtain

i i e—t a—le—t - =
r<a)0/f( )T = w1

IN

Thus
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and e N\, 0 yields

hmsupN(nA) < c rk(E;)-vol(M).
roe Az Dla+1)  (4m)eT (2 +1)

The proof of lim inf N >

Asoo Az~ Dlet)
tinuous functions f : [0,1] = R satlsfylng f(x)=0forz <el, f(z) =21

1]
for z > e '*€ and 0 < f(z) < 27! everywhere. O

¢ ) is completely analogous. One uses con-

Proof. (of Lemma) By Weierstrass’ theorem the polynomials lie dense in
C%([0,1]) (w.r.t. the C%norm). Hence it is sufficient to prove the lemma
for f a polynomial. Then we can assume w.l.o.g. that f(z) = z*. For the
left hand side we get

o [e o]
s —tA) -t — Tin O —(k+1)tA
}{‘%t /f(e )e dp(N) }1\1‘%75 /e du ()
0
a o
o) Jroen
0
B C
(k+1)e

The right hand side turns out to be the same

c 7 c T
*t ta 1 *tdt — /tal *(k+1)tdt
T() / I e () ¢
0 0
o
. C / s \*' ., ds
T T/ \k+1 © Tk+1
0

C IN()!
T(a) (k+1)2

1.5.3 Dirac operators and Weitzenbock formulas

Again, let M be a compact Riemannian manifold. Let Cl(M) denote the
Clifford bundle of M, i.e. at each point p € M the fiber ClI(M), is the
Clifford algebra of T, M. There is a canonical vector bundle isomorphism

~ n
ClI(M) — @ A"TM which we use to define the Levi-Civita connection V

on Cl(M). For an orthonormal basis e1,...,e, of T, M this isomorphism is
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given by e;, ... e, — ey N...ANe;, 11 <ig < ... <1, Note that this is
not an algebra homomorphism.

Now let E — M be a Cl(M)-module bundle, i.e. for each p € M there
is an action of Cl(M), on E,. We will assume that this action depends
smoothly on p. Suppose furthermore that E carries a Hermitian or Rieman-
nian metric with respect to which the action of vectors X € T, M C Cl(M),
is skew-adjoint,

<X'<p7¢>:_<(an'¢>7 (P,’l,beEp,

and a metric connection V¥ which is compatible with the Levi-Civita con-
nection in the following sense:

VRw: ¢) = (Vxw)-¢+w-Vip

for all X € TM, w € C®° (Cl(M)), p € C*(E).
Now the Dirac operator D : C*°(E) — C*°(F) is defined by

n
Dy := Zek . Vfi(p.
k=1

This definition is independent of the choice of local orthonormal frame
€ly...,€En.

The Dirac operator is an elliptic differential operator of first order. It is
self-adjoint in L?(E) with domain H'(E).

Example. If M is a Riemannian spin manifold, then we can take
E = XM, the spinor bundle. The resulting operator D is the classical
Dirac operator, sometimes also called Atiyah-Singer operator.

Example. If E is a Cl(M)-module bundle as above and V' is another
Hermitian or Riemannian vector bundle over M with a metric connection,
then £ ® V is again a Cl(M)-module bundle. Here the Cl(M)-action is on
the first factor,

w-(pRv)=(w-p) R, w e CYM)p, ¢ € Ep, v €V,

and E ® V carries the induced metric and connection, VF®V = V¥ @ id +
id®@ VY. The resulting Dirac operator is called a twisted Dirac operator with
coefficients in V.

For any Dirac operator direct computation yields

D(f-¢)=gradf o+ f Dy (1.5.3)

for ¢ € C*°(F) and a smooth function f on M. This can also be expressed
by saying that the principal symbol of D is given by Clifford multiplication.
The link to the previous section is now established by
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1.5.13 Proposition (Bochner-Weitzenbdck formula). Let E be a C1(M)-
module bundle over M. Then the square of its Dirac operator is a generalized
Laplace operator

D* = (VF) VP + K

n
where K = % E € €5 RE(ei,ej).
1,j=1

Proof. Fix p € M and choose an orthonormal frame e1,...,e, near p syn-
chronous at p, i.e. (Veg) (p) =0 for all k. Then at p

D%y = Zez (eJVE )
= Zeiejveivg.go

_ ZévaEMZ(ezejv VE 4 eeiVEVE) g
1<j

= Y VEVEG+ Y e (VEVE vfjvg)w
7

1<J

= (VE)*VE(p + Z eiejRE(ei, ej)<p.
1<j

Example. In the case of the classical Dirac operator acting on spinors
the curvature endomorphism K takes a very simple form [147, 196]

1 .
K, = Zscal(p) -ids, p
Example. In the case of a twisted Dirac operator we have
RE®V(X)Y) = RF(X,Y)®id+id® RV (X,Y)

and hence

1
KF*V(p@v) = 3 Z eie;R"®Y (ei, e5)(p ® v)

= Ze,e] (€irej)p ®@v+ = Zemﬂp@R (i, €5)v
ij

= ICE(p®v+}"V(<p®v),

ie. KE®V = KF gid + FV.
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Here FV is the so-called twisting curvature. If E is the spinor bundle as
in the previous example, then the twisted classical Dirac operator has

1
K= Zscal-id—k]—"V

as its curvature endomorphism. In particular, we can write down the heat
asymptotics. By Corollary 1.5.9 we have for the heat kernel of D?

n 1
ky(z,z) 'O (4mt)"% . {idgmM +t- (Escal(ac) -ids, r — ic$> + O(t2)}

NI

1
= (47Tt)7 . {idEmM —t- (Escal(x) sidy, v + f;f) + O(t2)} .

Since the rank of the spinor bundle is 2(*/?! integration yields
'I‘I' (e_tDQ) t\ 0

2[n/21(47rt)%-{vol(M) —t- /M (%scal(m) + 272 (FY )) dv (z) + O(t?)
(1.5.4)

1.5.4 Integration and Dixmier trace

In noncommutative geometry one replaces a “classical” compact Rieman-
nian spin manifold M by the tripel (A,H,D) where A = C*®°(M) is the
pre-C*-algebra, of smooth functions on M (with respect to the C°-norm),
H = L2(X M) is the Hilbert space of square-integrable spinors, and D is the
classical Dirac operator. The algebra A acts on ‘H by pointwise multiplica-
tion. For any f € A the commutator of f and D is given by Clifford multipli-
cation with the gradient of f, cf. (1.5.3). Hence the condition ||[D, f]|lco <1
means that the gradient of f is bounded by 1. This observation is important
since it implies that we can reconstruct the distance function and hence the
metric on M from the triple (A, #, D):

dist(z, y) = sup {|f(z) = fF(W)| | f € A, D, flllco <1}.

In order to get noncommutative generalizations we have to express classical
geometric operations in terms of the triple (A, #, D). We will do this now
for integration of functions over M.

Let A1, A2, ... be the eigenvalues of a generalized Dirac operator, ordered
by increasing absolute values, |[A1] < |A2] < ... 7 co. We assume that 0
is not an eigenvalue of D. The square D? is a generalized Laplacian with
eigenvalues 0 < A2 < \2 < ... /' oo. By Weyl’s theorem limy_, o k/| A" =
C with C = (tk(E) - vol(M))/((4x)™? - T'(n/2 4+ 1)). In particular, there
exists a constant C' > 0 such that
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for all but finitely many k. Therefore

N

1

D <ol -
Tro(1DI7) = N—)oolog Z|)\k| ¢ Nl—Igolog Zk

The number Tr,(|D|™™") is called the Dizmier trace of |D|™". Let ¥ €
C*°(End(E)) be an endomorphism field, for example ¥ = f - id where f €
C>®°(M). Connes’ trace theorem tells us that the Dixmier trace is a residue,
more precisely

1
Tr, (Vo |D| ™) = Epli\r‘ré(p—n)Tr(\IJo ID|7P). (1.5.5)

In order to apply this we have to control the integral kernel of |D|™ with
p > n. Let k; be the heat kernel of the generalized Laplacian D?. We perform
the following Mellin transformation: After restriction to the A-eigenspace of

D we have
o
r(g) ID|? = |A|_p/ e~tP/2=1 gy
0

o
= |\ / e (sA2)"* 71 X245
0

o0 2
= / e~ N P27 1gg,
0

hence
1 *° 2
D[ = / /21D gy
T'(8) Jo
Therefore |D|™P has the integral kernel
_ 1 < /2
kw1 7) = gy [ 7 el v
2

Then ¥ o |D|™P has integral kernel

1 o

k(a,y; W o |D|P) = @) /0 2710 (x) o ky(x, y)dt.

2

Therefore

Te(T o [D|P) = /Mtr(k(m,x;\llo|D|p))dV(x)

= 1 - p/2-1 (VU (x)ki(z, T
= w7 ek ) @

For any tp > 0 the integral

/t:o p/2-1 /M tr (U () ki (w, 7)) dV (z)dt
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remains bounded for p N\, n (remember that e™tD? < A% tends to zero
exponentially fast for £ — 0co) and hence does not contribute to the residue.
For 0 <t < ty, o sufficiently small, we have by Corollary 1.5.9 that

ky(z,z) = (4nt) " 2id + Ot~ 2 +1).

Thus

to
/ /21 / o (U (2) by (, 7)) dV (z)dt
0 M

= (4n)"3 /tO (/ £73" L (U () dV(a:)+0(tpE")) dt

_/tr dv(z) + O(1)

and therefore by (1.5.5)

n

Try(T o | D) = (4m)" 3 ﬁ /M tr (U () dV (z).

We have shown

1.5.14 Proposition. Let ¥ € C*°(End(E)). Then

Try(T o [D| ™) = (4r) 3 / r (U (x)) dV(x).

2
nl'(n/2) Ju
In particular, for ¥ = f-id

T D1 = )3 0 [ f@)av

2rk(F)
nl'(n/2)

This justifies to call |[D|™™ the operator theoretic volume element and to
interprete Tr,, as integration, c.f. [38, 119].

and for f =

Tr,(|D|™™) = (4x)" 2 vol(M).

1.5.5 Variation formulas and the Einstein-Hilbert action

In this section we want to calculate the variation of the gravity action

/ (scalg + ) dV
M

under changes of the Riemannian metric g. Here ) is twice the cosmological
constant as we will see at the end of this section. The Euler-Lagrange
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equations of this functional will turn out to be the Einstein equations of
General Relativity. In this section we follow [17, Ch. 1.K].

At first we fix some notation.

Let M be the space of smooth semi-Riemannian metrics on a mani-
fold M. In contrast to all other sections of this article the manifold M need
not be compact and g need not be Riemannian. We view the Riemannian
curvature tensor R as a functional M — C®°(T3*M), g — Ry, where T% M
denotes the bundle of (i, j)-tensors on M.

The corresponding differential R; at g is defined as

d
R W(X,Y)Z = o Rowin(X,Y)Z
t=0

where h is an arbitrary smooth symmetric (2,0)-tensor on M. Similarly
we consider the Ricci curvature ric, the scalar curvature scal and the Levi-
Civita connection V, and we denote their differentials in the direction of A
by ricyh, scalyh and Vih.

Connections are not tensorial in the second slot, but differences of two
connections are. Therefore V{h is a (2, 1)-tensor.

If v and w are symmetric (2,0)-tensors, we define the composition v o w
to be the (2,0)-tensor given by

n
(UOUJ)(X,Y) :ZgiU(Xaei)w(eiaY) XY ETpM7
=1

where ej,...,e, is an orthonormal basis of T, M, i.e. g(e;, e;) = €;0;5 with
g; = £1. In the Riemannian case all ¢; = +1.
The Riemannian curvature tensor acts on symmetric (2, 0)-tensors via

n
Roh(X,Y) = eih(R(e;, X)Y, e;).
=1

In Corollary 1.5.17 it will be proven that Io%gh is actually a symmetric (2, 0)-
tensor.
The Lichnerowicz Laplacian Aj on symmetric (2,0)-tensors is defined
by
Aph = V*Vh +ricg 0 b + horicy — 2R,h.

The semi-Riemannian metric ¢ on M defines a scalar product on the
bundle T*M ® T*M given locally by

n
(h1,ha)y ==Y eigjha(ei, ej)ha(es,e5)
2,j=1

where e, ..., e, is an orthonormal frame, i.e. g(e;, e;) = €;;.
Now we can formulate the variation formulas for the curvature.
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1.5.15 Proposition. Let (M,g) be a semi-Riemannian manifold and let h
be a symmetric (2,0)-tensor on M. The differentials of R, ric, scal and V
at g, in the direction of h, are given by the formulas:

(a) Levi-Civita connection
9 (Vh(X,Y), 2) = S {(VxR)(Y, 2) + (V¥h)(X, 2) ~ (VR)(X,Y)}

(b) Riemannian curvature tensor

R\W(X,Y)Z = (VxVyh) (Y, Z) - (VyV,h) (X, Z),
(¢) Ricci tensor
. 1 . 1
ric,h = §ALh — &g (6gh) — §ng(trgh),

(d) scalar curvature

scalyh = Ag(trgh) + 64(3,h) — (ricy, h),-

Proof. (of (a)) We set g; := g + th. Then
Ti(X,Y, Z) := g(VxY, Z) - 9(VxY, Z)

is a (3,0)-tensor field on M for any ¢ near 0. We want to compute %Tt 0"
We can assume that X, Y and Z are vectorfields on M that are synchronous
for g at a fixed point p € M. That is, V), X = VY = VY, Z = 0 for any
W € T,M. This implies that the commutators of X, Y and Z vanish at p,
too.

By the Koszul formula we get at p

20/(V5Y,Z) = 29(V%Y,Z) +t{0x(h(Y, Z)) + v (h(X, Z)) — 02(M(X,Y))}
= 29(VXY,Z) + t{(Vxh)(Y, Z) + (Vyh)(X, Z) — (Vzh)(X,Y)}.
On the other hand, the left hand side is equal to
29(V&Y, Z) + 2th( V&Y , Z) + O(t?).
~——
=0 at p

Therefore

% T/(X,Y,7) = %{(Vxh)(Y, Z) + (Vyh)(X, Z) — (Vh) (X, V)
t=0

which proves part (a). O
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Proof. (of (b)) The Riemannian curvature tensor is defined as
Rg(X,Y)Z = VXVYZ —_ VYVXZ —_ V[X,Y}Z

We will calculate its differential (Rjh) at the point p € M. For the calcu-
lation of (Rjh)(X,Y,Z) we can assume that X, ¥ and Z are synchronous
vector fields at p.

(RLR)(X,Y,Z) = (VLh)(X,VyZ)+ Vx((VLh)(Y, Z))

—(Vgh)(Y,Vx Z) — Vy ((Vyh)(X, 2)) — (Voh)([X,Y], Z)
(Vx(Vah)(Y, Z) = (Vy (Voh))(X, Z)

Before we go on proving the proposition, we will prove a lemma and a
corollary.

1.5.16 Lemma. Let h be a symmetric (2,0)-tensor, lete,..., e, be alocally
defined orthonormal frame, i. e. g(e;, e;) = €;0;5, € = £1.
Then for any X € TM

n
Z 5ih(VXe,~, ei) =0.
=1

Proof. We write Vxe; = Z?Zl aj;ej. Differentiation of the orthogonality
relation yields

0 = O0x(g(ei,ej)) = 9g(Vxes, e;) + glei, Vxe;)

n

= Z (ki€rOrj + OkjEROks)
k=1
= ji€j + 5€;.

Using this we calculate

n n
ZE,‘h(VXei,ei) = 5ih(akiekaei)
=1 ik=1
1 n
= 3 > (omiei + cier)hler, €)
ik=1
1 n
= 5 ik (oick + auke;) hieg,e;) = 0.
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1.5.17 Corollary. Let h be a symmetric (2,0)-tensor. Then ]o%gh, defined
as above, is a symmetric (2,0)-tensor.

Proof. We have to show that

(Jizgh) (X,Y) = (f?,gh) (Y, X).
( ) Z gih(R(e;, X)Y, e;)

for any orthonormal frame ej,...,e,. Using the Bianchi identity this is
equal to

By definition

n
—Zeih( (X,Y)e;, e;) Ze, R(Y,e;)X,€;))-
i=1

The second term is just (Io%gh) (Y, X), so we have to show that the first term
vanishes.

h(R(X,Y)ei,ei) = h(VxVyeiei) —h(VyVxei, e) — h(Vixyei, ei)
= 0Ox(h(Vye;e)) — (Vxh)(Vye;,e;) — h(Vye;, Vxe;)
-0y (h(Vxei, e)) + (Vyh)(Vxe; e) +h(Vxe;, Vye;)
—h(Vix,y€i €i)-

If we apply Lemma 1.5.16 to the symmetric (2,0)-tensors h, Vxh and Vyh
we get

Z‘SZ R(X,Y)e;, e;) =0. O

We return to the proof of Proposition 1.5.15.
Proof. (of (c)) The Ricci curvature is defined as
ricg(X,Y) :=trRy(-, X)Y.

Since here tr denotes the trace of a linear map it does not depend on the
metric. Therefore tr commutes with differentiation in direction h. Using (b)
we get

ric, "h(X,Y) Zez ) (X,Y,e;) — (Vx(Cyh)) (e;, Y, €;)},

(1.5.6)
with Cyh(X,Y, Z) == g(Vi(X,Y), Z).
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The second term can easily be computed using (a). We will suppose that
X and Y and the orthonormal frame ey, ..., e, are synchronous at p. Then
we get at p:

Y & (Vx(Coh)) (e, Y, e)

i=1

- —Zeﬁx (Ve h) (Y, i) + (Vyh)(ei ei) — (Ve h) (e, Y)}

= —8X3y(trg ) = (Vd(trgh)) (X,Y).

Now we turn to the first term of (1.5.6). Applying (a) shows that the first
term is equal to

—ZEZ{ V2 xh) (V,e) + (V2 yh) (X,e0) = (V2. h) (X,V)}. (15.7)

The last term hereof is one half the connection Laplacian

V*Vh = Z El e’L;el
The first term of (1.5.7) can be rewritten using the curvature tensor on the
bundle of (2,0)-tensors:

Rxy = Vg{,y - V%’,X’

(V2. xh) (Y,ei) = (Vieh) (Y, e) + (Re; xh) (Y, ). (1.5.8)

The curvature of a (2, 0)-tensor can be expressed in terms of the Riemannian
curvature tensor:

(Ra,gh) (V,W) = —h(R(A,B)V,W) — h(V,R(A, B)W).

On the other hand note that

n
(horicg)(X,Y) = > eigsh(X,e:)g(Ry(ej, €)Y, e))
ij=1

= ) &h(X, Ry(Y,¢))e;)
j=1

and similarly

(ricg o h)(X,Y) Zsj (X, ej)e;, Y).
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Altogether we obtain
. 1
ric,h(X,Y) = ~3 (Vd(tryh)) (X,Y)

+ % [V*Vh +ricg o h + horicg — 21°%gh] (X,Y)
1 n
5 e [(Vieh) (Ve) + () (X, €)] (1.5.9)
i=1

Now we calculate the divergence of h
n
Sgh ==Y i (Ve;h) (e, -)
i=1

and applying the formal adjoint, d5, we get

(53050) (X,¥) = —3 32 e { (Taesh) (e6:¥) + (VEieih) (e, X))
=1

which is up to a sign the last term of (1.5.9). As the second term of (1.5.9)
is one half the Lichnerowicz Laplacian, we have

i 1 . 1
ricyh = ﬁALh — 0400h — §Vd(trgh)

which proves (c). O

In the following we will generalize our previous definition of the compo-
sition: If A and B are tensors, then A o B means contraction of A ® B in
the last slot of A with the first slot of B.

For the semi-Riemannian metric g which is a (2,0)-tensor there is a
unique (0,2)-tensor L(g) such that L(g) o g = id|;,,. If e1,..., e, are or-
thonormal with respect to g, i.e. g(e;, e;) = €;0;5, then L(g) = Y " €; €;Qe;.

Now the metric trace try(h) of a (2,0)-tensor h can be expressed as a
metric-independent trace via

trg(h) = tr(L(g) o h)
and the metric on symmetric (2, 0)-tensors hy, hy fulfills
(hisha), = tr(L(g) o h1 o L(g) o hg).

1.5.18 Lemma. For symmetric (2,0)-tensors h and r we have

trgen(r) = = (1),

dt 1o
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Proof. Because of

0 = % . (Lig + thyo (g + th)
= Lihog+L(g)oh
we get
L)h = —L(g) o ho L(g)
and therefore
L ) = L te(Elg + th) or)
dt |, dt |,
= tr(Lyhor)
_ —tr(L(g) ohoL(g) o r)
= —(h,1),.

Now we are ready to calculate the variation of the scalar curvature.

Proof. (of (d))

- t ( ic )
r Il
It o g+th g+th

_ (4
\dt],_,

1 1
= —(h,ricy), + tr <§ALh — §50gh — EVd(trgh)) :

scalfqh =

trg+th(ricg)> + try (ric;h)

Note that Ayf = —try(Vdf). Furthermore for any 1-form w we have
N 1
5w(X,Y) = (V) (X,Y) = (VW) (Y, X))

n

= trg(fyw) = Zei(Vw)(ei,ei) = —d,w.

1=1

Now we want to compute trgAph. It is straightforward to show that

trg(h oricy) = try(ricg o h) = try (Ioigh).
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So we have trgAph = trg(V*Vh). On the other hand, since L(g) is parallel
we get

Aglirgh) = Ag(tx(L(g) o h)

=1
= —tr (L(g) (M givgi,eih)>
i=1
= try(V*Vh).

Hence
Ag(trgh) = trg(ALh).
Putting everything together we obtain
scalyh = Ag(trgh) + 6404k — (ricg, h),
and therefore the proposition is proven. O

As a next step we want to calculate the variation of the volume element.

1.5.19 Proposition. Let (M, g) be a semi-Riemannian manifold. Then the
differential of the volume element dVy is given by

AVih = 3(ixh)dV.

Proof. We consider dV' as a map from symmetric (2,0)-tensors to volume
densities, locally given by

z”: gijdz’ ® dz? — /| det(gi;)| dz'dz? - - - dz".
ij=1
For A € End(TM) we write g&A(X,Y) := g(AX, AY). Then
dVaga = dVy - | det Al
If h is a symmetric (2,0)-tensor, then H := L(g) o h € End(T'M) satisfies
hMX,Y)=¢g(HX,Y)=g(X,HY)
and
hoh(X,Y) = g(HX,HY)=g&H(X,Y),
g&(id +tH) = g+ 2th+t*hoh,
dVyiothiizhon = dVg |det(id + tH)|.
We differentiate w.r.t. ¢ at ¢ = 0 and get
24V h = dV, tr(H) = (trgh) V. 0
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Now we calculate the Euler-Lagrange equations for the gravity action
[(scaly + X) dV.

In order to have a finite integral, we suppose that the variation h of the
metric has compact support contained in an open and relatively compact
subset U C M.

The variation of Sys == [,,(scaly + X) dVj is given by

Syh = Syh = / scalyh dVy + / (scaly + A) dV,h
M M
_ / {Ag(trgh) +6,(6,h) — (ric,, h)g} dv,
M
1
+ = / (scalg + A) (trgh) dVj.
2J/m

The first two summands of the first integral vanish since they are diver-
gences. We rewrite (trgh) as (g, h),.

1 1
vafh:—/ <ricg—§scalg-g—§)\-g,h> dvy.
M 9

We have shown

1.5.20 Proposition. Stationarity of the functional Sp; at g is equivalent
to the Einstein equations

1
ricg—iscalg-g—j\-g:()
of the vacuum with cosmological constant A = \/2.

1.5.6 Einstein-Hilbert action and Wodzicki residue

In the fourth section we have seen how to characterize integration of func-
tions over a closed Riemannian manifold using the Dirac operator and the
Dixmier trace. This was based on the first coefficient ®( in the heat asymp-
totics. In the previous section we have shown that the total scalar curvature
functional gives rise to the field equations of General Relativity. But this is
exactly the second term @1 in the heat asymptotics. Therefore the question
arises if we can extract the second heat coefficient using some kind of a trace.
This is what we do in this section. Here we follow closely the work of Kalau
and Walze [119].

Let P : C*°(E) — C*(E) be a classical pseudo-differential operator of
order m over the closed Riemannian manifold M. After choosing a system
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of local coordinates and a trivialization of the bundle F we can look at the
total sysmbol of of P and develop it into a formal series

&)~ opi(®,8), (1.5.10)
k=0

where each UJ]-J is a matrix valued function homogeneous of degree j in ¢ (for
& > e > 0) and satisfies an estimate

020f0T (, )] < cap(1+ €]~

for all multiindices a and 8. Conversely, given a formal series as in (1.5.10)
there exists a classical pseudodifferential operator with this development.
The pseudodifferential operator is unique up to smoothing operators.

The “Leibniz rule” gives us a multiplication in the space of formal de-
velopments of symbols which corresponds to the composition of operators
[146, Ch. III]

> 1
oP1oP2 (g €) ~ Pt o o2 = Z (_i)\al_'aggPlagng, (1.5.11)

al
=0

Except for the leading part o,,, the principal symbol, the total symbol
does depend on the choice of local coordinates and trivialization. However,
for p € M the quantity

[ etame) a
s

is invariantly defined and independent of the choices [224]. Here integration
is over the unit sphere Sg_l in the cotangent bundle T,;M. One further
integration over the manifold gives us the Wodzicki residue,

Res(P ﬂ-n/Q/ /S” . (p,£)) d¢av (p).

1.5.21 Lemma. In Riemannian normal coordinates z” based at the point
p we have for the Christoffel symbols T},

Z o 05T, = —I‘le

Hyv=1
where §* is the Kronecker symbol.

Proof. We use the Einstein summation convention in order to keep notation
at a reasonable size. The Koszul formula for the Levi-Civita connection
reads in coordinates

2T%, = g™ (Oprgur + Ouv Gur — Oprguv)
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which together with (1.5.2) implies

1
PZU = E gm\ (RV;LAJ + Ru&)\u + R,uu)\(i

+ Ru&)\u - Ru)\ud - Rudu)\)m(s + O(“:EHZ)
So we get

1
szrﬁu % g (RVN/\P + Ryprp + Ruvxp

+ Rup)\u - Rp/\up - Rupuz\) + O(H'T”)
and therefore at the base point p (corresponding to z# = 0)

2 ) 2 .
O 05T, = 3 g™ric,, = 3 ric;,

Now the main result is

1.5.22 Theorem (Kalau-Walze[119],Kastler[125]). Let M be a com-
pact Riemannian manifold of dimension n, n even, n > 4. Let

A=V'V+K
be an invertible generalized Laplacian over M. Then for each p € M

(%) A-(n/2)+1 _n-
st fo 0 (5 ) e =

In particular,

2ir (1(p,p)) -

Res (A-0/241) =222 [t @145, dV ().

Proof. (i) With respect to any system of local coordinates and to any lo-
cal trivialization of the bundle E we write down the total symbol of A,
o2 (z,€) := o9 + 01+ 0¢ . In particular, o, is proportional to idEnd(E) =
1. We introduce a new pseudodifferential operator P by inverting the prin-
cipal symbol of A, o%(z,¢) = o, := (02)7!. By (1.5.11) we have

0o
O.AoP—l ~ Z \a| aao,A 8a0_2 -1
a|=0
2 k
~ DL '—3§0|a\+2 kOioy’
k=1|a|=0

= —r(z,§)
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In other words 02 o (¢F o (1 — r)™!) ~ 1. Using the geometric series in

symbol-space (this can be done because r is of order —1) we obtain

o0
-1
o2 (x,8) ~ oy OZrok
k=0

We begin to compute

k
. 1 1
k(z,8) = — Z (=) o 0g0o/42—k 0505
|ae|=0
T_l(.’E,f) = —05101 — Z'O';2 8@0’2 awuaz ,
7",2(56,5) = — 05100 — 0;2(i 85#0'1 Oprog + % 85!‘85”0'2 Opre ;cvaz)

+O’2_3 8,5”8&02 8zu02 azuO'Q ;

r_k(z,§) 0 VE>2.

Furthermore we write

(1.5.12)

o0 o0
E rok = E S—j with so=1, s.1=r_1, s.9= r%1+7“_2,

k=0 j=0
From this we can read off the symbol of A~! :

-2

o
_ ) 1 _
&~y 0% " owith 0% (z,6) = > (- i)l o 0goy " 058|041 -

=2 la|=0
We will only need the first three non-vanishing terms :

_ -1 _
ot -2 (37 §) = 0217 093 (xaf):%lrfl,

-1 .-

More generally we get

o0
- —m+1 -1 i 1 - -
o2 (@,8) ~ 02T 00T~ E (=)l o ago—A e oo =

|a|=0

1—2m  2+l—|a|-2m

with o2 " (z,6) = > Z (—Z)""‘ -1 %a Bire 020

la[=0

(1.5.13)

o0
—m
2,

I=2m

1
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m

Using this and o2, = 0,™ we get the recursion relations

A_k+2 —k+3 k)-|—3 A 1

05 o (@,6) =08y 03! +oy — 10,05 9oy (1.5.14)

and
2 4—|a 1
GATkH B laf * ATkF2 o AT
0 9k (xaé) - Z Z( ) a‘fo-|a\+g 2k aac 0
al=0 j=2
AR+2 g AR+2 AL —k+2 A~ : A~R+2 —1
= 0O9_9 09 +0'3 2k O0_3 +U + 0'_4 - 7'86;1.0-3—2]6 83;!1»0'2
— 05,05 "2 0oy — L 8, 06,052 0pudpoy .
(1.5.15)

(ii) Since the formula for Res(A~!) in an arbitrary coordinate system con-
tains a lot of terms it is more convenient to specialize our formulas to Rie-
mannian normal coordinates z# about the base point p for which z# = 0.
We will also use the Einstein summation convention for all Greek indices.
By (1.5.2) the (0,2)-tensor corresponding to the metric has the Taylor ex-
pansion

g =" — 3 R ¥ 5(p) 27’ + O(|||*) -

We also have to trivialize the bundle E. Then the connection is given by
Vgr = Ogr + A, with A, matrix-valued functions. We choose the trivializa-
tion such that it simplifies the calculations. Parallel translation of a basis of

E, along the radial geodesics emanating from p yields a trivialization such
that A, (p) = 0.

In these coordinates the generalized Laplacian takes the form
A = V'V+K
= _g/w {vuvu - Vvua u} +K
= =g {0 + 4,) (Br + A)) =T}, (005 + 4p) } + K
= ¢ {00 — 24,00 + rﬁuazg — (O Ay) = Ay Ay + T8, 45} + K.

Therefore A has the symbols
o2 = g’“’fufu

o1 = —2igh" A&, +ig"Th ¢g
oo = —g"(0mAy) —g" Ay AL+ g“”I‘ﬁ,,Ag + K.
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At p we get
02(p5 é) = 61“16/151/
g1 (pa 6) =0
O'o(p,f) = —6’“’8qu,, +K (1.5.16)
0uno1(p,€) = —2i(OnAL)E +1i 07 0pTh, &g
—_———
=(2/3)rich
8:8”0-2(1)’ 6) =0
2 v
aw'Yaz‘so-Q(paé) = _g Rury (55#51/
O¢,02(p, &) = 2¢&M.
So we obtain
4
6560-2(])’ 5) a’L"Y 8z502(p7 é) = - g R“'yyd 5#51/5(5 =0. (1517)
With these quantities we can calculate
7'_1(]),6) = 0, 7"—2(1755) = _051 oo + %UEZ(SPU R“pya gufu ;
Ot _1(p,€) = —0y  Opuoy — 1052 26Y OpuOyw oy

-1 4. -2 4
— Oy 8:51‘0'1 + 320'2 R’yu Vfuffyf(s

(1.5.17)

= — 09 (9;5#01
_ _ -1
0-92 l(paé) = 09y ! ’ O-é3 (p,&) = Oa
‘794_1(17’5) = _‘72_2‘7(J‘|“72_3 (_2i Opuoy £ + %5’)0 R, 51151/) :

= —05%00405°% (—4(0mAy) EPEY + 2+ 2ric,p E#EP — Zricy, EHEY)
= —0;2004—053 (—4(‘3qu,,+ %ric,w) EHEY.

(1.5.18)
We define Ceis
ap =05 9 (p,€)-
It is easy to check that as = o', (p,&) = 0. The recursion formula (1.5.14)
reads as

— -1
Q = 109

and therefore
ap = 02_k+2a2 =0.
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Now we set
+1 (

p,€) o5 (p,¢&).

Obviously, we have b; = 0 and the recursion formula (1.5.15) yields for by

A~k
b == 07y,

bk = bk_1+U%O'é4_1 —iagagﬂaz_k”awaég_l
L 4 & ~
_50286,/,66:/0-2 +28$u v 09 1 (1519)

The term aég " can be expressed in quantities we know already

A_l (1.&13) -1
0 3 = 0y T 1

= —0;201 — z‘ag?’a@@aﬂag,

so its zH-derivative at p is

-1 _ .
(8;gu0'é3 )(p,f) = —09 28;5#0'1 — 109 3(9@02(9;,;# v 09

(1.5.17) _
= -0, Qazual

2
= 2i0,% (OmAy) & — giag%icﬁ &g

Now we are ready to calculate the summands of the recursion formula
(1.5.19). We already know the second summand. The third one yields

. _ -1
—iok O¢, 0 K2 Opno®y

= —2iok(—k+2)o,er (3zuaé;)

2
4(=k+2) o5  e* (O A,)E —2- 3 (=k +2) 05! P ric,s €.
It is straightforward to transform the last summand of (1.5.19).

1 4 —k+2 1

_E o 8@ 8@ 0, Ogn Opv 0'2_ = (—k + 2) Ug_lric/w 6/161/‘

Wl N

The above formulas yield

- 4
by = by i +os02, s oyt (—k + 2) EreY {4 Opn Ay — 3 ricwj}

2
+3 (—k + 2) 05 'ricy, E1€¥

_ 2
= by +0202, +o5' (—k+2)Ere” {48WA,, - gricw}.
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Using b; = 0 and an induction over k we get
2 Al -1 L.
by = (k—1)o502, —oy (k—1)(k—2) {2 O A, — 3 I‘ICMV}
5. 2
(1.5.18) (k—1) {— oo+ 05t ((— 4(0gnAy) + 3 ric,w) f”{”)

—2 ricu,,> 5%‘5”}

— (k N 1) {_o_o +O'51 (_Qk(aIuAy) + gl‘i(}“u) 5“5”} .

k
+o,t ((—2k +4) (O Ay) +

Now we want to integrate End(F)-valued (0,2)-tensors over the unit
sphere in T* M. For this we have the formula

/ dgTH £u8, = 2T
- WV = BT(ny2)

Note that 277° is the volume of S~ C R*. We get for every fixed p
)

T'(n/2
/ o, " = / dé by, 5(€)
Sn—l Sn—l
272 (2 —1) n
_ Nz ) _ _ uv -
= 2T (n/2) { noy — n (0* OmA,) + 6 Scal}.

From (1.5.16) we know that K = o + (6*¥9,A,), hence

/Sn_l d€ bp/a(§) = % {—IC + %scal}.
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1.6 Spectral Action and the Connes-Chamsedinne
Model (R. Nest, E. Vogt, W. Werner)

We have seen so far that the Dirac operator not only comprises the (geodesic)
metric of a spin manifold: It also reproduces the Einstein Hilbert action in
form of a coefficient of the asymptotic expansion of the heat kernel for the
operator D12,

The universality of this operator has led Alain Connes to the conjecture
that a great deal of physical information is encoded in properly chosen Dirac
operators. If one tries to couple gauge fields to gravity within such a frame-
work, a first idea might be to substitute the pure Dirac operator D in the
action

Res(D™"1?)

by a twisted Dirac operator D; defined on a bundle S ® F, where S is the
spin bundle and F a bundle carrying the coupled gauge field. Unfortunately,
the resulting gauge potential is traceless and does not show up in such an
action [119], [125].

A more successful attack uses real spectral triples, and is the objective
in the following: We will briefly explain the Spectral Action Principle, and
then quite closely follow the lines of the paper by Connes and Chamseddine
[31]: We start with an example illustrating the basic technique in some
detail and finally sketch how to obtain a coupling of the standard model to
gravity, thereby omitting, however, those parts of the theory that deal with
the important question of renormalization.

1.6.1 The spectral action principle

1.6.1. In the following, M denotes a compact spin manifold of dimension
4, equipped with a (positive definite) Riemannian metric g and a fixed spin
structure. — In all applications of noncommutative geometry to physics, the
(underlying classical) geometry is Euclidean, i.e. we change the signature of
the Riemannian metric from ———+ to ———— and ++++ (Wick-rotation),
hoping that this won’t ruin the underlying physics. We furthermore will
denote by Int 2, Out 2 and Aut 2l the group of inner, outer and, respectively,
all automorphisms of an algebra 2.

1.6.2. The invariance group underlying general relativity is Diff (M), the
group of diffeomorphisms of M. For an additional gauge field F' with (global)
gauge group U minimal coupling (which restricts the present consideration
to low energies) leads to an action functional

IJ=3r+73JF.
The natural invariance group for such a functional is the semidirect product

G = U x Diff(M).
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of the (local) gauge group U with Diff(M). A basic idea behind the following
is the similarity of the exact sequence

1 - U - @ - Diff(M) —— 1

with

Int2A — AutA —— Out
for certain algebras 2. For example, if A = C*°(M) ® M, (C), then

IntA={f—u" fu|ueC?M,U(n))},
Out® = Diff(M),  and
AutA={fop| feIntAand ¢ € OutA}

— Tnt A x Out 2,

which is the expected invariance group for gravitation coupled to one U(n)-
gauge field.

A little care should be taken in the presence of fermions. In such a
case we wouldn’t like diffeomorphisms to change the spin structure and so it
might be appropriate to expect G = U x Diff(M) as a group of invariance
and make changes in the above accordingly.

1.6.3. Motivated by this observation, it is very convincing to address the
group of inner automorphisms of the algebra 2 in a real spectral ‘triple’
(H, U, 7, Dy, J) as an underlying gauge group. Physically relevant informa-
tion must be invariant under the action of this group, and an important
object which is invariant under Int 2 (acting on H via h — uJuJ 'h) is
the spectrum of the Dirac operator. The spectral action principle as pro-
posed by Connes has as its basic axiom that the physical information is all
contained in the spectrum of the Dirac operator Dy of a given real spectral
triple.

The exact recipe that eventually leads to an action functional is the
following;:

First step Choose an appropriate real spectral triple (H,%, w, Dy, J)
Second step Identifying elements of 2 with operators on H via m, we

denote by A the operator a;[Dg, b;]. Suppose then that A is self-
adjoint and calculate the ‘gauged’ Dirac operator

D=Dy+ A+ JAJ !
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Third step Compute the spectral action

D
jD,.A,'([) = tr;f (m_()) + <¢7D¢>a

where 9 is an element of H, X ideally is a cut-off at 1, like x|o 1],
the characteristic function of the unit interval, and my is a cut-off
parameter.

Let us remark at this point that, for technical reasons (see [77, Section 5)),
X[0,1] actually is not a good choice for the cut-off function . Rather, X
should be sufficiently fast decreasing and non-negative, equal to 1 at the
origin and have higher derivatives at 0 equal to zero. Among other things,
SZ(W%) then is of trace class. We also point out that a cut-off is necessary
here in order to avoid terms which are known to be non-renormalizable —
a topic which we won’t touch here.

Note also that in order to obtain the time dependence of the system in
a forth step, the Dirac-operator itself has become a parameter in the Euler-
Lagrange equation. More on how such derivatives can be carried out can be
found in [20].

1.6.2 Example: Gravity coupled to one gauge field

1.6.4. Before we examine a first example, we fix some notational conventions
since they vary substantially in the literature.

To begin with, tensor components are expressed either in local coordi-
nates with Greek indices, i.e. 0z, = %, p=1,....4, ordx*, p=1,....4,
or in terms of local orthonormal frames of TM or T*M with Latin indices
and Greek letters, usually v. Thus v,, a = 1,...,4, is a local orthonormal
frame of TM and v%, a =1,...,4 is a local orthonormal frame of 7% M.

Lowering and raising of indices is done with the help of the metric tensor
g = 9(0zy, 0xy) or g* = g(dz*,dz") via

2. s — Hp2 .- [s
Tl/l...llr,‘)\ - gAuTVI---Vr a'nd
AUT . AVt ..
TIJ1...I/7-_31 - g TI/1...I/,«S_1U

For Latin indices = g% = §,,. so that
Jab g ab»
ajl...s __
Tbl___brs - Tbl...bral...as -

To avoid any ambiguity, for us the Clifford algebra associated to a bilinear
form b on the vector space V is by definition the algebra with unit generated
by V satisfying

z-y+y-x=-2b(x,y)-1 for =z,y€eV,
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and for an element ¢ € T M we denote by ¢(¢) - — Clifford multiplication
by the element v € T, M such the £(w) = g(v,w) for w € T, M.

1.6.5. Let us see how the spectral action principle applies to the simplest fea-
sible example, one N-dimensional gauge field (minimally) coupled to gravity:
Fix a compact (oriented) spin manifold M, denote the spinor bundle on M
by S, write L?(M, S) for the space of measurable sections of S which are
square integrable with respect to the volume form, and denote by V¥ the
spin connection defined on smooth sections of S. If we let D be the Dirac
operator, then, in a local frame y® we have D¢ = c(y“)V‘iﬂﬁ for any
P € C*(S). We also write 9¢ for the (pointwise) charge conjugation, as
defined previously. Now let

A := C®(M) ® My(C)
H:=L*(M,S) ® My(C)
with (1 ® B, ® Ba)r = (1, %2) 12(um,5) tr(B1B3)
m(f®B)(y®C):= fp ® BC
J(¥ ® B) := ° @ B*
Dy:=D°®1d

It is then straightforward to check that this is a real spectral triple.
1.6.6. We first put
D =D°®Id+ a;[D° ®1d,b;] + J (a;[D° @ 1d,b;]) J~*

into a more convenient form. Omitting explicit reference to m throughout,
we have in local coordinates z# and for elements a,,, = (a]}), by = (b]}) €
C®(M) ® MNy(C) and ¢ = ( Z) € C®(S) ® M,(C) that the operator
A = ap[Dy, by, satisfies

iy g L0k I
Aty = c(dz")a;] Wiﬁkl =: ¢(dz")G 9
Since A* = —[Dy,b},Jay, = —c(dz*)G}, and A was supposed to be self-

adjoint, we have G|, = —G7,, and G turns out to be an element of C*°(M) ®
u(N). Invoking the definition of J yields

(A+JAT ) ¢ = c(dat) (Gutp + YG}y) = c(da™)[Guyp — pG).

In this action, however, the trace part of G is irrelevant. So A + JAJ 1,
which is of the form dz# ® A,, might be understood as the action of an
su(N)-valued 1-form (i.e. the potential of an SU(N)-gauge field) via the
adjoint representation. It also follows that D is a twisted Dirac operator



1.6. SPECTRAL ACTION 121

on S @ My(C), the tensor product of S with the trivial bundle with fiber
Mp(C) and (spin-) connection

V=V'®l+1®A4
on S ® My(C). This means that D is the composition of

Vi®1+1QA c®1
—_—_—

C*(S ® My (C)) C®(T*M ® S ® My(C)) C*(S ® My (C))

1.6.7. In order to better understand the action of Jp, 4, we will restrict

attention to the bosonic action, Jgo, a=trx (72—2), since the summand

(v, DY)

essentially is the usual fermionic action (see e.g. [16, 12.4]). For the bosonic
part we will slightly change ¥ and actually write

D2
B
IDg,A = trX (m—%) :

This is formally closer to the Lagrangian of gauge field theory and will permit
to make use of the several techniques that are available for the square of a
twisted Dirac operator.

1.6.3 Asymptotic expansion

1.6.8. Recall the following definition: Suppose (fn) is a sequence of func-
tions and ¢y a point in R so that f,(t) # 0 for t # ¢y and fr11(t) = o(frn(t))
as t — tg. A function f is said to have an asymptotic expansion f ~ > a, fn
as t — to, iff for each n € N

F@) = avfy +O0(fara1(t), ast—to

v=0
In this way, every smooth function has, for example, the asymptotic expan-
t—tg)"
f~ Zf(”)(to)g, as t — t.
n

n!

sion

1.6.9. Our goal will be to find an asymptotic expansion in mq for 3}3)0, A
To this end, we will use the coefficients of the asymptotic expansion of the
heat kernel of D?,

tre P’ NZtnT_Llan(DQ), ast — 0.
n>0

They vanish for odd values of n. For every ¢ € R, denote by H, the open
half-plane {z € C| Rez > o }. We claim that
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1.6.10 Proposition. If x € C*°[0,00) is a function which extends analyt-
ically into Hy with ¢(z) = O(|2|7%), a > 3, then x(tD?) is an operator of
trace class, and

tr x(tD?) ~ Z Xnt™ 2ag, (D?), ast— 0,
n>0

where the coefficients x, are given by

X0 = / ux(u) du, X1 = / x(u) du, xn = (=1)"x™(0) forn > 2.
0 0

1.6.11. Before proving this result, let first collect some feautures of the
Laplace transform which will be used later on. Details are in [199] and [222,
11.2, IL.5].

1.6.12 Proposition. (i) Suppose F: H, ={2€ C|Rez>c}—>C
is analytic, and F(z) = O(|z|*), as z — oo, with a > 1. Then

~

there is a function F : Rf — R so that for Rez > o, F(z) is the
Laplace transform of F,

Flz) = /0 " e R(s) ds.

(ii) Suppose F(z) is, for Rez > o0y, the Laplace transform of the func-
tion F, then:

(a) F is analytic in the open half plane H,, and
FM(z) = (—1)"/ s"e " F(s) ds.
0
(b) For any o > oy

/0 " B(r)dr = o(e7s).

1.6.13. We now prove Proposition 1.6.9. Denote the eigenvalues of D? by
A1 < A2 < ... and define functions ¥, : [0,00) — R by

o
Ty(t) =12 e Ml
k=n

It is well-known (see [79, 201]) that U, is differentiable at 0, and ¥’ = ¥
has an asymptotic expansion

o0
V() = 2t tr(e™ ") + 2 tr(D%7P") ~ Y (n+ Dt"azni2(D?), 0.

n=1
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() = NN | a9, (D?) + Ry n(t) and ¥ (t) = SN (n+1)t"agn12(D?)+
Ry n(t) this also means that

Ry n(t) = Ry, n—1(2). (1.6.1)

By Weyl’s Theorem, X\, ~ O(k'/?), so that for ¢ > t; > 0 and any real
number a < /\,21 we have

o0 o0

o0
D et <M / e Volds = 2M; /

k=n n A%

o0
oe b do < M, / e~ 7(=t0) do < Mye ™,
A

2
with constants M 23 that do not depend on n. Hence,

U,(t) = O(e™™) and, similarly, ¥/ (t) = O(e™), as t — 00,
(1.6.2)
where the condition a < A2 is the only dependence on n. If x is as in the
anouncement of Proposition 1.6.9, then any x2 with x5 = x is by Proposition
1.6.11(i) the Laplace transform of some function x2. It then follows from

1.6.11(ii)(a) that for Rez > 0

o0
x(2) :/ s2e 5% (s) ds.
0
We now show that for ¢t > 0

2urx(tD?) =223 xOt) = 3 / 212~ MRy () ds = / W(st)Ra(s) ds.
k k 0 0

(1.6.3)
To this end, note that for 0 < 7, 0 < ¢y < at and 0 < a < A2, we have by
(2) and Proposition 1.6.11(ii)(b),

T T T s
[ ema| < waenl| [ |+ [l [ 2o o as
0 0 0 0
T
< B (eT<t°“t>+ / tes(to—al) ds)
0
<

t
B, [ eT(to—at) )
2 (e + al — 1o

Here, By does not depend on T or n, thus proving (3). Similarly, since
1 — e ¢% doesn’t vanish for s,e > 0, we have for any A > 0

S S COeA(tO —at) .

/ T (1 - o) W(st)Rals) ds

A

/ T W(st)Ra(s) ds

A
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Also, whenever t,ty are as above and 0 < a < )\%, e >0,

/O ? a(s) ds

A
+/0 |ee 2 W (st) + (1 — 7)1 W' (st)|

< @ -e )T T)|

+

A
/O (1— =) U(st)Rals) ds

ds

/ " 50(0) do

0

A
< Ci |:(1_esA)eA(toat) +/ 6(1+3t)e(toat)sd8:|
0

) e(1 +At)] |

< 02 eA(tofat) +
- at — 1o

where the constants C o are independent of €. In total, we have for any
A>0

/0 T (1= e) W(st)Ra(s) ds

< Cy |:eA(to—at) n 8(1 + At):| + CoeA(tO_at),
at — t()

so that choosing A first and then € acordingly yields

o

/000 U(st)x2(s) ds = lim e “U(st)xa(s) ds. (1.6.4)

e—0 0

Fix N € N and recall that for Ry n(t) with ¥U(t) = 27]:]:1 t"ag, (D?) +
Ry, n(t) we have, for allt € R, |Ru,n(t)| < Ko[t|¥*1 and, by (1), |Re v (2)] <
Kyl|t|N for all ¢ € R . Proceeding similarly as in the derivation of (4) yields
forT>A>0

R\p,N(tT)e_ET

™ +

T
/ sN%9(s) ds

T
/ ¢ Ry (s1)%2(s) ds
A

A

g ‘

T ,—eT s
e —eo N
-I-/A SNT | [stRy/ n_1(st) — eRw n(st) — NR\p,N(st)H ‘/A e 70N %o(0) do| ds

so that for some constant K; which does not depend on &,

T
/ e % Ry (st)Ra(s) ds| < Kre 3 TN+, (1.6.5)
0

Writing e *° Ry n(st)X2(s) = Ry, n(st)s ¥ le =55V +1%,(s) and proceeding
as before yields a constant K5, independet of ¢, with

_eT
Kye™ 2 (N+1
7

<
- T

(1.6.6)

o0
/ e Ry n(5t)%a(s) ds
T

Let o
pn (e, t) = / e “*Ry n(st)X2(s)ds.
0
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(5) and (6) then show that there are M,a > 0 not depending on ¢ such that
lon (e, )| < Mema5¢gV+1 (1.6.7)

Let pn(t) = lime_,0 pn(g,t). Combining (3), (4), and (7) shows
9 o
— — 3 —E&S§ )
tr(tD*) = Ek o(Agt) = 31_13(1) | e “*W(st)x2(s)ds

N
= ) ay(D*)t" lim e™*"s"X2(s) ds + lim p (e, 1)
€
n=1

£—0 0
N
= > az (D) (0) + pw (2),
n=1

where |pn (t)] < CJt|V*! as t — 0. Recalling that x4 = x, Proposition 1.6.9
has been proven.

1.6.14. We still need some information on how large the class of functions
appearing in Proposition 1.6.9 is. To this end, note that x,(z) = 1 —

exp(—z~ ") is infinitely differentiable for z > 0, 1, (0) = 1, ¢£&k)(0) =0, and

1
[n(2)] < =Tk 2] > 1.

We obtain

1.6.15 Lemma. The space of functions
{x € C®[0,00) | x extends analyticlly into Hy with x(z) = O(|z|~*), o > 3}

contains for each pair (n,k) of integers with n < 0 and n < k a function
ok S0 that

an,)c(O)zé,ik, k=n,n+1,...,

where for k < 0,

ozn'j“,)c(O) :/0 u "ok (u) du.

1.6.4 First example, final calculation

1.6.16. So we are finally faced with calculating the coefficients a,(D?).
Let us fix some further notation: With regard to the Christoffel symbols,
Riemannian—, Ricci—, and Scalar curvature of the Riemannian manifold we
follow the conventions of Besse [17, pp.30,31,43]. Thus,

1
re, = 5990 (049, + 0%u9us — OTsGuv)
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which agrees with the convention of Connes—Chamseddine.

The Riemannian connection on M is denoted by VL€ for Levi-Civita,
so that
LC
Ve, 02y =TY,0z,.

The corresponding curvature 2-form we denote by K¢ and the Riemannian

o i
tensor R7,, is given by

K"©(01,,01,)0z, = R0z,
K"(X,Y)Z = [V5°,V{€)Z - Vv Z,
X,Y,Z € C°(TM). (This convention differs from Connes-Chamseddine:
their Rf,,, is our R, ).
The Ricci tensor is the 2-tensor on M given by

Ric(X,Y) = tr(Z — KLO(X, Z)Y).

This agrees with [31] as does the definition of the scalar curvature of M
which is just the trace of the map ric: TM — T'M given by

g(ric(X),Y) = Ric(X,Y).

Attention: A straight forward calculation, using coordinates around
a point a such that g, (a) = d,, and I'/,(a) = 0, shows that the scalar
curvature of the unit 2-sphere equals —2.

In terms of the Riemann tensor R, the Ricci-tensor is given by R, :=

1vp
Ric(0z,,0z,) = R and the scalar curvature is given by

1%
uvp?
R:= RY(= Ruwg"™") = R,;,9"".

1.6.17. With respect to the calculation of D? (Lichnerowicz—formula) some
more terminology will be useful.

To each connection V on a bundle V' over a Riemannian manifold M
one has the associated Laplacian Py : C®(V) — C*°(M) defined as the
composition

C® (V) v C®(T*M QV)

VICR1I+10V —g®1

COT*MRTMQV)

c=(V)

where as before VU is the Levi-Civita connection but acting on forms.
Thus locally

(V¢ ®1+1@V)oV=(VC®1+1V)(d2’ ®G))

= —dz" @I, dz" ® G, + dz’ ® dz"' G, G
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Therefore, we obtain

Py = —g"(G,Gy — T}, G)). (1.6.8)

This formula will be useful for our description of a,(D?). To do this
we follow Gilkey [90], Section 4.8. There a,(P) is calculated for any second
order operator P on a vector bundle V over the Riemannian manifold (M, g)
with the leading symbol of P equal to g*¥, i.e. operators of the form

—g" 0z, 0z, + A0z, + B,

with A,, B endomorphisms of V. For any such operator one finds a con-
nection V and bundle endomorphism FE such that P = Py — E. It is not
difficult to show that V and E are determined by P. Then Gilkey expresses
an,(P) in terms of covariant derivatives of the Riemann tensor R4, of the
curvature 2—form 2 of V, and of the endomorphism F.

In our situation, the connection V= V¥ ® 1+ 1 ® A is the one we need
to obtain D? = Py — E.

1.6.18 Lemma. (Lichnerovicz). Let V.= VS ® 1+ 1® A and locally
V =dz* ® G,. Let D = c(dz")G. Then

1
D? = —g,, (GG, —T),G)) + ic(dx”)c(dw”)[Gu, G
Proof:

D? = ¢(dz")G e(dz”) Gy = c(dz™)e(dz”)G LGy + c(dzh)[Gy, c(dz”)]G,,

(c(dz*)c(dz”) + c(dz”)c(dz")) GGy

DN | =

c(dzt)e(dz”) |Gy, Gy) + c(dzt)[Gy, c(dz”)]G,.

N | =

_|_

But V is a twisted spin connection and thus compatible with Clifford
multiplication. Consequently,

(G, c(dz”)] = c(ng(;;d:c") = —FZ)\C(d{E}‘).

Therefore, the last summand equals —c(d:c”)c(dx”)I‘;\“,G A- We use the defin-
ing relation for the Clifford algebra

c(dzt)e(dz”) + e(dz” )e(dzt) = —2g*

and '), =T%, (since V€ is torsion free) to obtain the desired formula. O
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1.6.19. Now [G, G| = Q(0z,, Oz,) for the curvature 2-form of V because
[0z, 0z,] = 0. Therefore

—%c(dx“)C(dﬂﬂu)[Gw Gyl

is an endomorphism of A ® My (C) which equals the E in [90]. In our
situation V=V® ® 1 + 1 ® A and we can proceed further in describing E.

1.6.20 Lemma. If R is the scalar curvature of M and K* the curvature
2-form of the connection A of M x My (C), then

1
4
Proof: We have [G,,G,] = Q(0z,,0z,) for the curvature 2-form Q of V.

Thus for any local frame of T'M and its dual, in particular for the orthonor-
mal frame {7,} and its dual {7y*} we obtain

1

F = —EC(’)’G)C(’Yb)Q('Yaa Vp)-

E=-R®1- %c(dx“)c(dm") ® K4(0z,,0z,).

Furthermore,

Q(Vaavb) = KS(’Yaa’Yb) ®1+1® KA(’Yaa’Yb)a

where K% is the curvature 2-form of the spin connection and K* is the
curvature 2-form of A. The 2-form K¥ can be calculated from the curvature
K€ of the Levi-Civita connection, the metric g, and Clifford multiplication:

K5 (Ya, ) = %g (K" (Yar %)Ves Ya) (Ye)e(Va)

In terms of the Riemann tensor we obtain

o)) K5 (garm) = 7¢(1)e(r’elr)e(r") R

It is easy to check that for any a, b, c we have

c(y)e(r)e(v%) =

£ 3 sign (0)ely ety )ely”®)  57clr) — ¥ela?) + 8%c(?)
oES3

where S3 is the symmetry group of the three symbols {a, b, c}.

Also, by the algebraic Bianchi identity (Rgped + Reapd + Rocad = 0) the
antisymmetrization of Rg.q with respect to a,b, ¢ is 0. Thus we obtain

c(¥)e(V")e(v)e(v") Rabea = —c(v*)e(v*) Ravva + ¢(¥*)e(¥*) Rebed

= —2¢(v")e(v") Rappa = 2Rapba = —2Rapab
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(Here we used the antisymmetry of Rgp.q with respect to a,b.) With our
conventions Rgp,p is the scalar curvature of M:

— — — pab _
R:=R},,g"" = R,7 = Rgpy = Rapap-

This establishes the lemma. O

1.6.21. We are now in the position to apply the results of [90], Theorem
4.8, to our situation. The ag,;1(D?) =0 for all n > 0 and

1 N .

aO(‘TaP) = 1672 tI(I) = A2 (1)
1 N ..

a2(.’L‘,P) = mtr(—R I+ GE) = 487‘(‘2R (ll)

The last equation holds by lemma 1.6.19 and the fact that K“(0z,, 0z, )
is trace free since A is an SU(N)—connection.

- 1 1
1672 360

— 2RiCab . RiCab - I+ 2RabcdRubcd -1

as(z, P tr(—12R.qq - I + 5R?T (iii)

—60R - E + 180E” + 60E. 04 + 30Q45Q0p)

where everything is expressed in an orthonormal frame and 7.4, means sum-
mation of the second covariant derivative of T" in direction -y,, expressed in
the orthonormal frame {~,}. Traces of these endomorphisms give divergen-
cies which will vanish when integrated over M (after multiplication with the
volume form).

1.6.22. We use lemma 1.6.19, the equation
Qab = K% (va, 1) ® 1+ 10 K4 (74, )

and express elements of su(/N) in terms of a basis i-T7 with tr(T7T*) = 267*.
The T7 are sometimes called Gell-Mann matrices and will be very useful
when calculating traces of compositions.

Writing (conventions differ by a factor —3 from [31])
KA('Yaa'Yb) =1- ngTj
we obtain

N . .
tr QgpQap = E tr (RabcdRabc’d’C(’Yc)c(’)'d)c(')’c’)C('Yd’)) —4- TT(ngFbe]Tk)
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Now, the calculation

tr (c(ve)e(va)e(ve)e(va)) = tr (e(ve)e(ve)e(va)e(ra)) =
= tr (c(ye)e(ya)c(ya )e(ver ) = — tr (c(ve)e(va)e(ve )e(rar)),
if ¢ #¢,dand ¢ #d' , shows that

N . .
t1 QapQap = —7RabcdRabcd —8-Fy,Fl,

trR-E = N-R? since the T7 are trace free,

tr B = N - Ryq

N 1 | g
B = SR~ tr (clw)elmelr)elra) © B L)

N o
= ZR + 4F2, F2,.
1.6.23. Altogether we obtain

N 1
as(2, P) = 1o " 50 [ — 48R4 + 60R, 4, + 20R? — 60R?

. . 240 720 -
— 8RicgpRicey + 8Ruped Raped + 45R? — 15Rgpca Raped + <_T + W) ngFib]

N . . 480 i i
= m (IZR;aa + 5R2 — 8RicgpRicey — TRaped Rabed + Wngng>
or in local coordinates (here we use the fact that for an orthonormal frame
one can freely raise and lower indices and that for an (n,n)-tensor the

coefficients T;f;: are independent of the frame)

B N
16360 - 72

(note that our Fﬂ,, equal —%F,f,, in [31]).

480

as(z, P) (12R!4+5R*—8Ricy, Ric" —TRps R’“‘””"+WFIZVF“”J' )

We can further simplify the expression above by using

1.6.24 Lemma. For a closed oriented Riemannian 4—manifold M the Euler
form (with respect to the Levi—-Civita connection)

VO]M . )
12872 sign o sign TRy, gori o Rosoarsma
T,0€ S4
equals
VO]M ) )
327(RabcdRabcd — 4RicgpRicy, + RQ)

where volyr is the volume form.
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Proof: The proof is easy but a little lengthy and uninspiring. We need to
show that

. . 2 . .
4RgbcdRabed — 16RicqpRicey +4R” = Z sign o+ sign TRy oyri 1y Rosoursry -
0,TE€Sy

For this we split up each summand on the left hand side into subsummands
which can be brought into the form

Ry, 6ymims Rogoarsr, for some o, 7 € Sy

and into the rest. We show that the rest vanishes and that the other sum-
mands correspond bijectively (including signs) to the summands on the right
hand side.

(1) RapedRabed = RabedRedah, s0 we obtain the desired form if (abed) =
(01090304) is a permutation. Then

4RabcdRabcd = RabcdRcdab - Rabchcdab + Rabchcdba - RabcdRcdba-

In this way we get four summands Ry, syr 7 Rosoyrsry With (01020304) =
(abed) in all four cases and four different 7’s. Notice that sign o sign 7
corresponds to the sign in the equation above.

(ii) RiCabRiCab = Ralbl - Rakbk = Ralblekak- We get the desired form if
(albk) is a permutation. This time we have 16 summands available and we
write

16 R bt Rkak
into 16 summands with coefficients +1 by transposing the first and second

and/or third and fourth index of either factor. Notice if

RU’l 02T1T2 R030'47'37'4 = Raupi Rokak )

then signo - signT = —1 (which corresponds to the —16RicgpRicgs)-

(iii) R? = Rupap - Reded- We obtain the desired form if (abcd) is a permu-
tation. We again have a coefficient 4 and write

4RababRcdcd = RababRcdcd - Rabadeccd + Rbaadeccd - RbaabRcdcd-

Notice that in combining (i), (ii), and (iii) we have picked for any o € Sy 4
+ 16 + 4 different 7 € Sy, so that in fact we have for any pair 0,7 € Sy a
summand Ry, gyr 7o Ros304m7, With the correct sign.

To show that the remaining terms add up to 0 we look at the remaining
terms of

—16RicabRiCab = _16Ralblekak s
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(albk) not a permutation. There are three cases

b=aand ! #k with terms Ryjq Rokak, | # k (ci)
l=kanda#b with terms Ry Rapi, a £ b (cii)
=k, a=b with terms Rgjq 1 Roai- (ciii)

The terms in (ci) are cancelled by the 16 terms of
4R? = 4Rapap Reded
of type
(c=a,d #b), (c=b,d+#a), (c£a,d=0), (c#b,d=a).
The terms in (cii) are cancelled by the 16 terms of
4RapcdRavea = 4Rapea Redab

of the same four types for (abcd). So there remains (ciii), from RgpeqRedab
the 8 summands

4lzababRabab + 4RabbaRabba = SRababRabab’

and from 4R? the same 8 summands. O

1.6.25. Apart from the Euler form there is another aquaintance present in
the expression of a4(z, D?): the Weyl tensor. It shows up when we split up
the curvature tensor into its irreducible components.

The symmetries of Rgp.q (for simplicity we use again an orthonormal

frame)
Rabcd = _Rbacd (Sl)
Rabcd = Rcdab (Sll)
Raped + Reavd + Rocad = 0 (algebraic Bianchi) (siii)

show that the curvature tensor is a section of C(M) := S%(A2T* M) Nker b,
where b : @*T*M — Q*T*M is the Bianchi map

1
bT)(X,Y,Z,U) = 3 (T(X,Y,Z,U) +T(Z,X,Y,U) +T(Y, Z,X,U)) .

On each fiber C;(M) the orthogonal group of the Riemannian metric acts
and induces an orthogonal splitting

C(M)=R(M)®W(M)
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where W(M) = kerpNC(M)
p: SE(N*T*M) — S*(T*M)
is the Ricci contraction, i.e., in an orthonormal frame,
P(T)ac = Tabeb -

R(M) can be expressed with the help of the Kulkarni-Nomizu product as
the image of
— Qg : S*(T*M) — C(M) .

Here, for T € S%(T*M), again with respect to an orthonormal frame,

(T ®9)abea = Tacbba + Toadac — TadSbc — Tocbad -
Obviously,
p(T DY) =(n=2)T +tx(T) - g,
where n = dim M and tr(T) = Ty, (in an orthonormal frame, or T}/ in

general). Thus, if we denote for a tensor T of C(M) = R(M) & W(M) its
summands by R(T"), W(T'), then

1 B o(T)
2(n—1)(n—2)

By ,

where o(T) = tr (p(T)) is the ”scalar curvature” of T (while p(T) is the
"Ricci curvature” of T').

Notice: While for each z € M the O(n) representation Wy(M) is irre-
ducible, the representation R, (M) splits into a 1-dimensional space corre-
sponding to the scalar curvature part and a further space corresponding to
the trace free Ricci part.

W(T) is called the Weyl part of T. If T = K¢ is the Riemann tensor
then W(T) is called the Weyl tensor of M with components Wp.q. We are
interested in WypeqWapeq for n = 4. Now, if U, T are any tensors in C(M) a
straight forward calculation shows that

(T?i(g)(jb(f)2) + n i 2p(U)“bp(T)ab .

UabcdR(T)abcd = -
Since p(T) = p(R(T)) we obtain, again for any tensor T in C(M)

4 2
WI(T)abecaW (T )abed = TaveaTabed = ——5 P(T)abp(T)ab+ a(T)>.

2 (n—1)(n—2)

So, in particular for the Weyl tensor on a 4-manifold we obtain

. . 1
WeabcdaWabed = RapedRaped — 2RicgRicgy + §R2
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1.6.26. Setting R*R* = RypeaRabed — ARicgpRicgy + R? so that YoM R* R*

3272

is the Euler form (by lemma 1.6.24), and plugging this and the formula for
the Weyl tensor into our expression for a4(z, D?) we finally obtain

N 3 - 4
(3: D2) <__Wabchabcd+ —R'R" + 1 Raa+ F F )

4872 \ 20 120 0 N~ ab”ab
(1.5a)
or in local coordinates
N 3 4 . .
D? W oo WHPT + R*R* R,/ + —FI Fri ).
as(@, D7) = 487r<20 np 120 +10 TN )
(1.5u)

The discrepancy of (1.5u) with [31, (2 24)], comes from the introduction
of a coupling constant gy and a factor —3 in the description of the connec-
tion Von S® M N((C) So writing our connectlon A on the trivial My (C)
bundle as A = A (see [31, (2.4)], the last summand in the above formula

becomes gWOFﬂ,,F’“’J which is the last summand in (2.24) of [31].

1.6.27. The particular form of equation (1.5) shows that as(D?) = [, as(z, D?) voly
is conformally invariant, where, as before, voly, is the volume form Vg dx of
M with respect to g. This works only in dimension 4. To see this note that
Rl as a divergence can be ignored, and F}, is independent of the metric
(but F*J depends on g). Furthermore, and this is the important fact, the

(3,1)-Weyl tensor W, is a conformal invariant.

Thus, if § = f2 - g for some positive function f, we have Wu,,pg =
f2 ) W;wpaa WHvPe = f_6 : W;u/paa voly = f4 volar, FHi = f_4ijj'
Finally

/ R*R* voly, = 32-7?x(M) = [ R*R* voly ,
M M

where x(M) is the Euler characteristic of M.

Of course, neither Vol(M y) = [}, vol( Mg) = %ao(DQ) nor the average

scalar curvature [, R- vol( Myg) = 4% az(D?), which make up the Einstein

action, are conformal invariants.

1.6.28. So, putting it all together, we choose a function X as in Proposition
1.6.9 (and section 1.6.14) with [ ux(u)du = fo, [;° x(u) = fa2, x(0) = fa,
and x((0) = 0 for every n € N. Then the "bare” actlon 3B Do,4 has an

asymptotic expansions in powers of m3 as
D? N
IPga =t ~ 5 2 O(my ™ as mg —
Do, A Ty (mo) 1872 (aomo + agmg + a4)+ (mo )a mo 00,
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where
ag — 12f0/ VO](M,g)
M
ag = fg/ RVO](Myg)
M

3 4472 4 . ;
as = fa /M (_%Wuupawuupo + 15 x(M) + NFAJWFMU]> VO](Mag)'

1.6.5 Gravity coupled to the standard model

1.6.29. Let us start by recalling some of the basic facts. Besides the car-
riers of strong and electroweak forces, all elementary particles are in one of
two classes: They either feel the strong force — which is the characteris-
tic property of hadrons — or they don’t — in which case they are called
leptons. There exist three generations of leptons, which ordered by their
respective masses are (e, ve), (i, v,) and (7, v, ), consisting of the electron e,
the muon x and the tauon 7, together with their respective neutrinos (and
antiparticles). All leptons are fermions.

The fermions among the hadrons are called baryons and the bosons are
mesons. There is a large number of hadrons which nowerdays are successfully
classified by their quark content: There are six quarks up and down, (u,d),
strange and charm, (s,c), as well as top and bottom, (¢,b). The ambitious
reader is advised to consult [28] for a complete and up-to-date picture of all
known hadrons.

Quarks are fermions and pay due credit to Pauli’s exclusion principle by
showing an additional degree of freedom, which is called color. The three
existing colors are called blue, red and green, and to each color exists a com-
plementary anticolor which is shown by the respective antiquark. Baryons
contain three flavors of quarks, the color degrees of freedom arranged such
that they are singlets with respect to SU(3).. (For the terminology see
below.)

1.6.30. Each particle is assigned a number of generalized charges, like lep-
ton numbers, baryon numbers, (strong) isospin and several flavour quantum
numbers. (The lepton number, e.g. is 1 if the particle is a lepton, —1 if
it is an antilepton and 0 in all other cases. Baryon numbers, and flavour
are defined in a similar way.) Charge conjugation on the level of elemen-
tary particles is the transforamtion that maps a particle to its antiparticle.
The antiparticle is obtained by a change of sign of all charge-like quantum
numbers, and, in the case of fermions, by an additional change of parity. (If
9 (x) is the state of the fermion then 1(—zx) is the state after a change of
parity.)

Fermions can further be discriminated by the orientation their spin has
relative to the direction of motion. For right-handed particles the spin is
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parallel to the direction of motion, the spin of left-handed particles shows
in the opposite direction. Mathematically, these states of a particle cor-
respond to the eigenspaces of the chirality operator y = —y%y'y%43 (in 4
dimensions). Note that chirality is a preserved quantity only for massless
particles and that x does not yield a complete symmetry since for neutrinos
only the left-handed variant exists.

1.6.31. Mathematically, elementary particles are usually treated in the fol-
lowing way: Quantum numbers are preserved quantities, at least in suffi-
ciently idealized situations, and thus correspond to the infinitesimial gener-
ators of a Lie group acting on the set of solutions of the underlying equations.
Whatever the picture, elementary pariticles are certainly distinguished as
those states for which none of the known invariants is capable of further dis-
tinction. Hence, all elementary particles are usually assigned to irreducible
representations of a properly chosen Lie group G. Speaking quantum me-
chanically, the infinitesimal generators H, corresponding to the set of all
quatum numbers then forms a maximal set of commuting generators of g,
i.e. they generate a Cartan subalgebra f). The quantum numbers themselves
show up in an irreducible representation 7 as (simultaneous) eigenvalues of
the generators H,. It is costumary to organize these tuples into weight vec-
tors pertaining to the basis elements H,, of h for g in standard form. (That
this assignment is independent of the Cartan algebra chosen is a well-known
result from Lie group theory). The edges of the emerging weight diagrams
then label the different multiplets of elementary particles.

1.6.32. As an example, for G = SU(3) the Lie algebra su(3) consists of all
antihermitian, traceless matrices, and a choice for § is lin {Y, I3}, where

3 0 0 3 0 0
Y=(0 % 0 and Iz=[0 —3 0
00 -2 0 0 0

correspond to (strong) hypercharge and the third component of the isospin,
respectively. For the particles known at the beginning of the 60’s these
quantities were connected to the electrical charge @Q/e by the Gell-Mann-
Nishijima-formula /e = Is + Y/2. Also, there seemed to be 6 physically
relevant irreducible represenations: The trivial one, written 1, the ‘funda-
mental one’ denoted 3 (which has this name since all other irreducible repre-
sentation show up as summands of tensor powers of 3), in which SU(3) acts
naturally on C3, the one conjugate to 3 denoted 3 in which u € SU(3) acts
as u* on C3, the adjoint representation 8 where su(3) acts on (the vector
space) su(3) by A — [4, X] and a 10-dimensional representation, 10, which
is the restriction of 3 ® 3 ® 3 onto the invariant subspace of symmetric ten-
sors. The credo of this time was that mesons and baryons correspond to the
equations

33=80¢1 and 333=10080801,
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respectively, and that these assignments could be attributed to three new
particles, the quarks u, d and s. The resulting weight diagrams correspond to
the quark triplet (u, s, d), octets of pseudoskalar mesons and vectormesons,
an octet of spin-1/2-baryons as well as a decuplet of spin-3/2-baryons.
With the advent of further quantum numbers in the following decades,
the number of different quarks (not counting antiparticles and disregarding
color) has grown to 6, and the multiplets of mesons and baryons had to be
generated from the fundamental representation of SU(6). Note, however,
that this picture seems to be more and more blurred for higher generations,
since the mass differences among the members of the quark duplets increase.

Leptons can be treated in a similar way, whith symmetry group SU(2).
It turns out, for example, that the six known quarks belong to three duplets
that are naturally grouped with the three knwon generations of leptons. For
a more extensive coverage of the basic ideas the reader should consult e.g.
[38], [170], [206] or [207].

1.6.33. All groups of the previous section are, in terms of gauge field theory,
global gauge groups which yield globally invariant charges. In order to set
gauge theory of the standard model to work, it is neccessary to specify a
gauge group G and to say which particles are to be coupled to the gauge
fields by fixing a suitable representation of G. It must also be decided in
which way the different particles interact and which will become massive.
As an effect, the carrier of forces, which have been excluded from the picture
so far, will show up as spin-1 fields associated to the generators of g.

The standard model uses the (global) gauge group U(1)y x SU(2), X
SU(3)., where the Lie algebra generators correspond to hypercharge, the
three carrier of the weak force, the massive bosons W+ and Z, as well as the
massless eight gluons mediating the strong force. All elementary particles
interacting with the gauge fields then appear as basis vectors of a Hilbert
spaces belonging to a a suitably chosen irreducible representation of G.

In the following, we will describe a spectral triple that will result in the
gauge fields of the standard model with gravity switched on. It will consist
of two parts. The first part reflects the interior, noncommutative geometry,
the second one is responsible for gravity, and both will be combined within
a tensor product. Assigning masses and coupling constants will be the task
of the inner Dirac operator and will thus be based on the geometry of the
model.

1.6.34. We start with the interior spectral triple’s Hilbert space, Hipt, which
turns out to be the space for the underlying gauge theory: Its basis consists
of all known elementary fermions. Violation of parity by the weak force
makes it necessary to consider left- and right-handed particles separately,
so that for the first quark generation of one color, the corresponding basis
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elements of Hiny are given by

ur, dg,
ur dg

and similarly for the remaining two colors. Leptons of the first generation
are
vy, €r,
€R,

where the lack of a right handed neutrino reflects the famous asymetry of
the B-decay. Adding the list of antiparticles brings us to 30 basis elements,
and, for the time being, there seems to be no reason to assume existence of
more than 3 generations, thus dim H;,; = 90.

The space Hiyz consequently splits into lepton, quark, antilepton and
antiquark subspaces,

Hing =ity @ Hiy = H @HS @ H, o H,,

and each of these subspaces decomposes according to chirality. Thus, for
Hf, H, ", and H; we have H = H, ® H;; and similarly in the other
cases. (Note, however, that dim%& = dimH,; = 6 whereas dimH}R =
dimH,, = 3.) We also will account for the different particle generations by
an internal tensor product with C3.

1.6.35. The interior algebra will reflect the gauge group U(1) x SU(2) x
SU(3) of the standard model. Let

Q'[int =CoHo M3(C)

We note that this algebra is a real involutive algebra. This has the conse-
quence, that those axioms of a real spectral triple that explicitly resort to
complex algebras have to be checked for the the complexification of Uint (as
an algebra acting on Hipg.) If ¢ € H is a quaternion, we will write

_(« B

where «, 8 are complex numbers.
The representation 7y, of Uiy on Hiyy will be defined as a direct sum of
representations on the lepton, quark, antilepton and antiquark sectors:

— -+ - _ -+ + — -
Tint = Mipy @ My = 7 D7y D7y, D7y

For the quark sector, we have

,HZ]'— = [C12Ld ® Cgen ® Cgol] R D [(Cid ® (Czen ® (Cgol] L
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and we let, for A in C, ¢ in H and m in M3(C),

(A, q,m) :=

OO O
o O O

™R oo
|
i

Here, the first matrix is supposed to act on a vector of type (ug, Vg, pr, VL),
where p € {u,c,t} and v € {d, s,b} vary according to generation. Note that
the colour indices have been omitted. For the lepton sector with massless
neutrinos, put

A0 O
)= (0 o 8o,
0 -8 a

where the first matrix acts on a vector of type (er,er,vr), and everything
takes place on the Hilbert space

M = Hpy ©HE, = [Co ® Chanl  © [CF @ Con]

The action of iy for antiparticles is simpler. For the antiquark sector we
have
H; = [(Cid ® (Cgen ® (Cgol] L @ [(C%Ld ® (Cgen ® (Cgol] R’

and for antileptons,
/HZ = [Ce &® Cgen]L S [Cgu ® Cgen]Ra
so that we may put
T, (A gm) =14®138m and 7, (A g, m) = A® 13.

The full action of 7j,; can be summarized as follows:

€e 7y &
f) &g UpE

in )‘a 3 — | = Tin /\a ) _ = g
" t( 7 m) (”] T t( 7 m) Te )\W
Mg milq

1.6.36. For the operator J, let J = C' ® Jint, where C' is charge conjugation
on L?(M, S) and Jin is charge conjugation on Hig, i.e. for (¢,7) € H;: OHit

we have e
(&) = (7
s (5) = (3

1.6.37. We finally describe the Dirac operator that will be used within the
real spectral triple under construction. As in the previous definitions, D will
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be defined according to the tensor product structure all other components
have. So,

Dy=Dg® Id'Hint + '}’5 ® Din,

where Dy is the ingredient that requires some extra effort in the definition.
It splits into lepton and quark parts:

(D 0
Dine = (0 Dq®13)'

With respect to the right-left splitting, each Dirac operator is a Yukawa
coupling matrix, has the dimension of a mass, and is of the form:

_ 0 Myq
by ().
Specifically,
Mq = (mg ®H0 m’o‘ ®ﬁ0)

and
M, = mg ® Hy

Here, mg, m¢§ and m§ are 3 x 3 positive definite matrices of Yukawa coupling
constants, acting on the space of generations. Also,

0 ~ 1
Hy=up (1) and Hy=p (0) .

1.6.38. To see the effect of these defintions one has to observe the following
facts: The full Dirac operator

D=Dy+A+JAJ !

yields through a calculation which is similar to (though more complicated
than) the corresponding one for one gauge field (section 2) U(1), SU(2) and
U(3) gauge fields as well as a Higgs field. The computation of A + JAJ ™!
together with A = A* removes, again as in section 2, a U(1) part from
the above gauge fields, and the full matrix is traceless. The fermion sector,
(1, D1}, yields the corresponding action of the standard model, and, a long
and cumbersome calculation, again similar to the one we have explained in
more detail in sections 2—4, shows that the bosonic part of the Lagrangian
has an asymptotic expansion

D? 1 B
=t () ~ 755 a0 + 0z + as) +O(m5™),  as g >,
0



1.6. SPECTRAL ACTION 141

where
ag = 45f0/ vol (g, g)
M

5 1 .
as = 3fo /M ZR — 2tr (|mg|2 + |m¥)? + §|m8|2> H*H vol(,g)

and

]. 5 3 3 14
as = f4 /M (51(12R;NN +11R*R" — 18WuupUWH pU)

1 1
+ 3tr (|mg|2 + |m@ + g\m8|2) H*H (DMH*D“H — 6RH*H>

. . 5
+ gg:sGZuGWZ + QSQF,%FWQ + 5931BWBW

1
+3tr ((\mg|2 + |mg|?)? + §|mg|4) H*H(H*H)?

1
— tr (\mgﬁ + |m& % + §|m8|2) H*H(H*H);u“) vol(ar,g)-

1.6.39. At this point, second quantization would have to enter the scene.
Also, all known constants should be inserted and the the physical conse-
quences would have to be discussed. We nevertheless stop here and refer to
[31], [25], [159] and [197] for a detailed account.
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Chapter 2

The Lagrangian of the
Standard Model derived
from Noncommutative
Geometry

This chapter gives a detailed exposition of the Standard Model of elemen-
tary particle physics from the point of view of noncommutative geometry.
In this sense it is a continuation of the main ideas of Chapter 1, but with
emphasis on the full structure (fermionic and bosonic field content) of the
Standard Model and other physically realistic theories. The aim is to derive
the Lagrange densities for the bosonic and fermionic fields, both in Eu-
clidean and Minkowski space-time, within a uniform notational framework.
Although the analytical foundations of noncommutative calculus, such as
Dixmier trace and pseudo-differential calculus, are fully established only
in the case of compact Riemannian manifolds, the resulting trace formulas
are also meaningful in the pseudo-Riemannian case, leading to the detailed
expression for the physical Lagrange density.

According to the four known interactions (electro-weak, strong and grav-
itational interaction) the presentation proceeds in three steps

e electro-weak model,
e Standard Model including the strong interaction,

e Standard Model coupled with gravity.

The first two models are Yang-Mills theories of Connes-Lott type, the
third model involves the spectral action of Connes-Chamsedinne. In order
to compare the models, the fermions are listed in a way to make the electro-
weak model a restriction of the complete Standard Model. In this manner,

143
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the similarities and characteristic differences of the three approaches be-
come more transparent. The all important Higgs mechanism of symmetry
breaking is discussed in detail, both within the noncommutative geometry
framework and from the point of view of physics.
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2.1 Dirac Operator and Real structure on Euclidean
and Minkowski Spacetime (H. Upmeier)

2.1.1 ~-Matrices on flat and curved spacetime

In this section we collect the basic facts concerning spinors and the Dirac
operator on space-time M. We assume that

n:=dim M = 2m
is even, with m = 2 the physically relevant case. Throughout, we fix k €

{1,4} in order to treat space-times of Euclidean type (x = i) and Minkowski
type (k = 1) simultaneously. Let

n=n")= " (2.1.1)

denote the corresponding flat metric. Our first goal is to construct the -
matrices for 7 in an explicit way. The y-matrices v/ = v, (0 < j < 2m) of
size 2™ x 2™ and the associated grading operator

T =Ty, = k™ 10 .. y2m=1 (2.1.2)

are constructed by induction as follows: We put

01 0
0._ 1.
r 01 0 s\ (-10
L=%0/\-k0) " {01
and for the induction step 1 < m — m + 1 we put

. 0 Ip
’ym—|—1 = Im 0 )

71 :< 0 ’V)'Pn)
Tkl 007
. 0 iyl
1 .
vznil:z( g 0’”) (1<) <2m),
—1Ym
0 kI
2m41 m
et =( )
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Here I = I, is the 2™ x 2™ unit matrix. Then

k%I, 0
| 0 k2L ) (2.1.3)

From the construction it is clear that we have
=1 (2.1.4)

and
T = —T'y/ (2.1.5)

for all j. This also follows algebraically from
2.1.1 Proposition. The y-matrices satisfy the anticommutation relations
Vol it =2V ] (2.1.6)
Proof. By induction on m > 1. O
In the following we fix m and simply write 4* := %, and
[ = k™ 140, y2m L (2.1.7)

2.1.2 Lemma. For 0 <1,j,k <n we have

1

5 (Y =" y) =ty — ", (2.1.8)
Proof.
%(v’“v’ﬁj — yiylyk) = s —5 o v - Py ;r Y iyl — 5tk
]
2.1.3 Lemma. For pairwise distinct indices 41,...,1, we have
(7. A®)? = ()PP ()2 ()2, (2.1.9)
Proof. This follows by induction from Proposition 2.1.1. O

2.1.4 Lemma. For distinct indices i1,...,1, we have

tryft ... q% = 0. (2.1.10)
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Proof. If p is even, (2.1.9) implies

try’t ..y = (=1)P L tryi2 L Aty
= —tr'yi2 ...’yip'yil = —tr'yi1 ...’yi".
If p is odd, (2.1.5) implies
DY ... 4% = —t | 4®T
and hence
try" .y = tr Dy L APT T = gyttt (2.1.11)
]

Let T denote the usual hermitian adjoint of a 2™ x 2™ matrix T'. Since
I' =T =T* and & = k® we also get by induction

2.1.5 Proposition. We have

P =9 = g2yt (2.1.12)
and
A0 A0 FUAL 2201 S22 22542 (2.1.13)
As a consequence, it follows that
NN =1

and
72j—|—s 72j—|—s — (—1)51

for all j and ¢ € {0,1}.

2.1.6 Remark. The relations (2.1.12) correspond to the standard involution
of real Clifford algebras Cl(p,q) of signature (p,q), as defined in [39, (47)]
or Definition 1.2.4 (Chapter 1). In fact in the Minkowski case, we have
signature (1,2m — 1) and k =1 so that

P =9 Y=yt (j20), (2.1.14)
In the Euclidean case of signature (2m,0), we have k =i and hence

— A7t (5 >0). (2.1.15)
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For any column vector ¢ € C2™ let 1* be the adjoint row vector and put

i Y K=1
Phi= {w*vo 1 (2.1.16)

Then 4’ defines a (non-degenerate) inner product on C2” (conjugate-
linear in the first variable), and for T € C?"*?" we define Tt € C2"*2"
by

(Ty)'y' = ! (T"y) (2.1.17)
for all 9,4’ € C*". Thus
T* K =1
T
Tt = {7OT*70 T (2.1.18)

2.1.7 Proposition. We have
(V) =+ (2.1.19)

for0<j<n, and
I'f = k2T, (2.1.20)

Proof. By Proposition 2.1.5, (y/)! = (y9)* = 47 in case k = i, whereas for
>0

()T =72()*7" = =097 = 490y0 =
in case kK = 1. Moreover, (2.1.20) implies
rf=T*"=T
for k = ¢ and
It = 700%40 = 40740 — 0,00 — _T
for k = 1. O

Up to now our considerations were concerned with the case of a flat
metric 7 of Euclidean or Minkowski type. Now we pass to curved space-
time M, realized as an n-dimensional manifold. Let TM and T#M denote
the (real) tangent and cotangent bundle of M, resp., and let

NT#M) = f:@ Ni(T* M) (2.1.21)
=0

denote the bundle of exterior forms over M.
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Given a K-vektor bundle V over M (with K = R, C), the space of smooth
sections of V over M will be denoted by C* (V). It is endowed with the struc-
ture of a C*®(M,K)-module. In particular, C*°(T# M) and C®(A?T# M) is
the space of differential 1-forms and 2-forms, resp. In terms of local coordi-
nates

(x“)0§u<n (2.1.22)
of M, every w € C®(T#M) and o € C®°(A\?T# M) can be expressed as

w = wy dz*, (2.1.23)

o = 30, dzt Adz”, (2.1.24)

where w, € C*(M,R), 0,, = —0,, € C*°(M,R) and the Einstein summa-
tion convention is understood.

Now consider a fibre metric g on T'M, of Euclidean or Minkowski type,
and let (w | w') denote the induced inner product on T (M), forz e M. A
similar notation will be used for elements in A T3 (M). For sections w,w’ the
inner product is taken fibrewise so that (w | w' ) becomes a scalar function
on M. For C-valued forms, we extend the inner product to be conjugate
linear in the first variable. Using local coordinates we define

a oo
9w = 9(0y, 0y), (2.1.26)
g" == (dz" | dz"). (2.1.27)
Then
(w | W) = g™ wuw, (2.1.28)

for all 1-forms w,w’ € C*®°(T#M ® C). The fibre metric on T# M induced
by g gives rise to a (smooth) bundle of complex Clifford algebras denoted
by CU(T#M). For fixed z € M, CU(T¥ M) is the 2"-dimensional algebra
generated by Tf M subject to the anti-commutation relations

wXxw +w xw=2(w|u) (2.1.29)

for all w,w’ € T#¥M. Here x denotes the Clifford algebra product. In
particular, we have

dzt x dz” + dz” x dz* = 2¢g"". (2.1.30)

In order to construct the spinor bundle and Dirac operator on M one
has to assume the existence of a spin structure associated with the metric
g. Globally this imposes a topological restriction on M, but locally the
complex spinor bundle

S~ MxC™ (2.1.31)
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and the associated representation
C®(CU(T#M)) X End(S) = C®(M,C2" *2™) (2.1.32)
can be constructed as follows: Using local coordinates z# we assume that

g" = el'ney (2.1.33)

. . -1
for some smooth Gl(n,R)-valued matrix function e = (ef') on M. Let e
denote the inverse matrix function satisfying

-1

. _1 . .
ezeé-i:é;-, ellel, =6k,
Putting 4
e' = e dzt € C®(T#M) (2.1.34)
we have o -
(¢ |e)=n" (2.1.35)
for all 0 < i,j < n. This implies the relation
e xel+el xe =27 (2.1.36)

in C*®(CY(T# M)). The matrix inverse e defines an n-orthonormal basis

ei=eld, € C®(TM) (2.1.37)
of vector fields. Using the (flat) y-matrices constructed in Proposition 2.1.1,

we define "
y(dat) := et 4* € C°(M,C" <) (2.1.38)

regarded as endomorphisms of the spinor bundle. Then Proposition 2.1.1
implies
y(dz")y(dx") + v(dz" )y (dz") = 2" I. (2.1.39)

Now the representation (2.1.32) is fibrewise defined using the universal prop-
erty of C£(T#M). Then we have

v(e') = e}, y(dz") =+ (2.1.40)
and o
Y(w) = wuy(dzh) =wy el (2.1.41)

for w = w, dz* € C®°(T# M®C). For functions f € C*(M,C) C C®(CUT#M)),
~v(f) is just multiplication by f and we simply write y(f) = f. For an en-
domorphism

T € End(S) ~ C®(M,C¥" *2"™)
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of the spinor bundle S, endowed with the fibre metric '+’ indroduced in
(2.1.16) (using the constant y’-matrix in the Minkowski case), we define the
adjoint

Tt € End(S)

fibrewise via (2.1.17). We also let
trgT =2 " trg T (2.1.42)
denote the normalized trace, and put
(T|T)g =g T'T". (2.1.43)

Usually (2.1.42) and (2.1.43) are taken fibrewise and therefore depend on
x € M. Integration over M is then denoted separately. By Proposition
2.1.7, we have

y(dz*)T = ~y(dzH) (2.1.44)
and hence
A(w)! = (@) (2.1.45)
for all w € C®(T#M ® C), where @ := w,, dz*. For f € C*°(M,C) we have
ft=7 (2.1.46)
and
(Tt = —&TF (2.1.47)

since, by Proposition 2.1.7,
()t =t = —k2fT = —£°T'f.

Also, (2.1.4) implies
Cy(dzt) + y(dz*)I' =0 (2.1.48)

for all i, and hence for all w € C®(T#M ® C)
I'y(w) + y(w) = 0. (2.1.49)
2.1.8 Lemma. For w,w' € C®(T#M ® C), we have
(v(w) | Y(w))g = (w | w'). (2.1.50)

Proof. The relation (2.1.29) implies for real 1-forms

2trgy(w)y(w') = trg(Y(w)y(w') +v(w')y(w))
=2trg(w | w')1=2(w | ).

In view of (2.1.45), the assertion follows. O
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2.1.9 Lemma. For w,w' € C®(T#M), we have

trg y(w1)y(w2)y(ws)y(ws) =
(w1 | we) (ws | wa) = (w1 | ws) (w2 | wa) + (w1 | wa) (w2 | ws).

Proof. The identity

2(w1 |w2)w3 X w4—2(w1 |w3)w2 X wyq + 2wy X wg(wl ‘w4)
= (w1 X wo + wo X w1) X w3 X wy
—wy X (w1 X w3 + w3 X wi) X wy
+ wy X w3 X (w1 X wg + wg X wi)

= W] Xwy X w3 X wq+wo X w3z X wg X wi

within C*®(CV(T# M)) implies

—_

2trgy(w1)y(we)y(ws)y(ws)
= trg (y(w1)y(w2)y(ws)y(ws) + ¥(w2)y(ws)y(ws)y(w1))
= 2(wy | w)trg y(ws)y(ws) — 2(w1 | ws)trgy(ws)y(ws)
+2(w2 | ws)trgy(w)y(wa).
Now the assertion follows with Lemma 2.1.8. O
2.1.10 Corollary. We have
trg vy oyt = M — 4 ity (2.1.51)

and

trg y(dz")y(da”)y(da®)y(da?) = g g*F — g"*g"? +g"P g, (2.1.52)

The exterior algebra bundle A(7T# M) has an n-orthonormal basis given
by . .
et AL Ne® (2.1.53)

forall 0 <i; < ... < i, <n. Mapping (2.1.53) to
ALy = y(e x ... x ') (2.1.54)

we may identify CL(T#M) ~ N\(T#M) ® C as C-vector spaces. The same
holds for the C*°(M, C)-modules of sections. Accordingly, we write (o) €
End(S) for p-forms o, with p = 1 and p = 2 the degrees actually used in the
sequel. Generalizing Lemma 2.1.8 we obtain

2.1.11 Proposition. For o,0' € AN(T#M) ® C we have

(v(0) | 7(e") g = (o] "), (2.1.55)

where, as mentioned above, (a | a') is defined to be conjugate linear in the
first variable.



2.1. DIRAC OPERATOR AND REAL STRUCTURE 153

Proof. Tt is enough to show that the C-linear basis (2.1.54) of CE(T# M) is
n-orthonormal under the inner product (2.1.43). By Proposition 2.1.7 we
have for 0 <41 <...<ip<nand 0< j; <...<jg<n

) g =t (VAT
= trgy? ...y e (2.1.56)

(v

In case {i1,...,ip} # {j1,...,Jq} we may reduce (2.1.56) to Ltrgy* ...y*

where 0 < k1 < ... < kjp < nmnand!l > 1. By Lemma 2.1.4 this trace
vanishes. Now suppose p = g and 41 = j1,...,% = jp. Then (2.1.56) equals
nh . %% which shows n-orthogonality. O

For the construction of the Dirac operator, we consider real matrices
F = (;F7) satisfying the skew-symmetry condition

iFinjj = —F'ni = iF; = —;F;. (2.1.57)
2.1.12 Proposition. The inner product of .F" and .G" is given by
(F|G)=-tr.F.G. (2.1.58)
Proof. By definition,
(F | G) =iF;"G" = iF njjn™ i
= —iF'nyn"G) = —;F";,G' = —tr F'.GG".
O

Using the n-orthonormal basis (e!) of the cotangent bundle T# M, let
1 . o
Fo= ZiF] nj; e’ xe’ (2.1.59)

denote the corresponding element in the Clifford algebra C/(T# M). Using
the spin representation (2.1.32), we obtain an endomorphism
_ 1 . o
V(E) = 7if mjj 'y (2.1.60)
2.1.13 Proposition. The normalized trace satisfies

tre y(F)y(.G) = %tr.F'.G' = —%(.F' |.G"). (2.1.61)

~ ~

Proof.
16trgy(.F)y(.G) = trg iFiniiy'y kG = trg vy v+ iF 5 kGl
= (0" — 0t + g ®) i P Gl
= =" i FIn55 i GIngg + 0" i Fngs Gl = 2,F7 G
W—/
—i F'n
O
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2.1.14 Proposition.

Y(F) = —y(F). (2.1.62)
Proof.
. 1 —; tits 1 . . 1 . . .
V) = 3iF Y = iFngy'y' = =5 Fnan’y' = =y (F).

O

2.1.15 Corollary.

. . 1, . .

(7(.15) | 7(.§))S = §(.F |.G"). (2.1.63)

Proof. Combining Proposition 2.1.14 and Proposition 2.1.13, we obtain

(1CE) | 1(.6)) g = trg 1 (F) 4 (.C)

=~ (E(G) = 5 (F | G).
U
2.1.16 Proposition.
trgy(.F") = 0. (2.1.64)
Proof. Since i # j, Lemma 2.1.4 implies
dtrgy(F) = iF/njjtrgy'y’ = 0.
U

2.1.2 Levi-Civita connection and Dirac operator

We finally come to the construction of the Dirac operator. Consider the
Levi-Civita connection V on T'M associated with g. Locally, we have

Vuau = I‘ﬁ,,a)\, (2.1.65)

where V), := Vj, and
Thw = 59™(0 Oy — O, 2.1.66
pw — 29 ( ,ugwe+ vOuk ng,uu) ( 1. )

are the Christoffel symbols. Now consider the n-orthonormal vector fields
%li defined in (2.1.37) and define 1-forms

iw! = wl dz* € C™(T# M) (2.1.67)
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by putting
1

e . (2.1.68)

-1
Vye;= Wy

It is easy to show that the matrix .w,, = (,wﬂ) satisfies the skew-symmetry
condition (2.1.57). Therefore we may define

Wy, = iiwz nijet x el € CUT*M) (2.1.69)

and obtain the endomorphism
'y((g“) = %iwﬂ njj'yi'yj € End(S). (2.1.70)
2.1.17 Definition. The Dirac operator D associated with g (and the under-

lying spin structure) is the first order differential operator acting on C*(S)
given locally by

D = (dz") (9 — giwinin'y’) = v(de") (9u = y(w))-  (2.1.71)
2.1.18 Proposition. We have
[ @a(0wis + i 0v) =0
for all compactly supported spinor fields 1,9 € C°(S), i.e.
D'=-D

is formally skew-hermitian.

Proof. In terms of the Christoffel symbols we have

in?}‘zB( N+ e)‘I‘)‘

In fact, the Leibniz rule for V implies
wl e oy = il ‘elj =V, i =V,(e¥d,)
= 0,(e?) 0, + e¥(V,0,) = d,u(e )8>\+e”I‘)‘ .
Using (2.1.6), (2.1.38) and Lemma 2.1.2, we obtain
1iwl mij (V(dz") Yy + A1y y(dat)) = Law] mii (V(dz* )Yy — Ay v (dat))
= Ll njj?zl“ (Y*r'y = 'y iyF) = ] njj%li‘ (n*'y7 — ')
= —Liwhmie byl — Liwl e mn
_—%]wuelu j—%wje 'y ﬁ 7

= —(0u(e) + €¥Th )y = —(8u(v(dz*)) + TV, (da")).
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Summing over y, Cramer’s rule yields

1 1 _
I‘M = glm(augun + aug;m - anguu) = Eglmaug/,m = 5 tr(aug)g !
1

=—9,(D Detg]|.
2Detga,,( et 0/ |Detg|

1
9= v/ [Detyg|

Using (2.1.19) this implies for fixed 1,9’ € C°(S)

(D)1’ + T (D)
= (y(dz") (8up) — Liwh miy(dat)yyinIgp) Ty
+ 9t (v(dz™) (Ou') — Fiwd, v (dat)y' Ty
= (Ou) 'y (da)y + Ty (dat) (0,1")
— 39t iw], i (V(dz*)y'y + Aty (dat)) 3!
= (0" )y (dat )y’ + Ty (dat) (9,9')
+ 9T (9u(y(dz*)) + T, y(da")) 9’
= 0, (p'y(da™)y') + T, ply(da”)y’
= 0 (VDetg ia(day)
1
~ V/Dety

where a = o, dz# € C®(T#M ® C) is defined by

Q= gu,,zpffy(d:z:")lp'

for all . Since a has compact support, Stokes’ Theorem implies

/ d'a=0
M

and the assertion follows. O

8,,( Detg g"* au) =d'a,

2.1.19 Proposition.
I'D=-DI. (2.1.72)

Proof. Since T' is independent of z, we have I'0, = 0,I" for all u. Since
I'y'yd = 4i4IT by (2.1.5), (2.1.48) implies
I'D= F'y(dx“)(au — iiwf; 'yi’yj)
= —’y(dav“)F(Bu - iiwﬂ ’yZ’y])
—’y(dav”)(au - %iwfj vzfy])F = —DT.
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2.1.20 Proposition. For f € C*°(M,C), we have

[D, f] = ~(df). (2.1.73)

Proof. Since [0, f] = 8,f and f commutes with v* and y(dz*), it follows
that

[D, f] = [v(dz")0p, f] = v(dz") [0y, f] = v(dz") Ouf = v(Ouf dz) = ~v(df).

O

2.1.3 Real structure on spacetime

Apart from the grading operator I' defined in (2.1.7), the spinor space C2"
carries a conjugate linear isometry J which is of importance in Riemannian
geometry (real K-theory) and mathematical physics (charge conjugation).
Depending on the parity of m = n/2, we define J = J,,, as follows

Jop =02 42— (2.1.74)
Jopy1 =71y Ly

Here — denotes the usual conjugation on C2™. In short, J,, contains the m
v-factors which have the same parity as m.

2.1.21 Example. In 4-dimensional Minkowski space (m = 2), note that

J= ,),0,),2 — (2.1.75)
is given explicitly by
Jip = Ay =i =i (2.1.76)
0 0 -1 £2 —ﬂ3
10 Vs Yo

J is closely related to, but not identical with, the well-known charge conju-

gation operator
(PC)(°, &) = 7°7*4(a°, —7) (2.1.77)

which involves a reflection in the space coordinates.
2.1.22 Proposition. We have
By = (1L By = (1) (2.1.78)

and
I = (=1)"T'J,. (2.1.79)
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Proof. The relation (2.1.79) follows from (2.1.5) since Jp, is given by a prod-
uct of m vy-factors and I' = I'. For (2.1.78) we apply Proposition 2.1.5 and
Lemma 2.1.3 to get

4k—2 4k—2 —

Jae =07 T2 02 Ly
02 k202 ke

— (_K2)2k—17072 . 74k—27072 . 74k—2

— _HQ(_1)2k(2k—1)/2(70)2(72)2 o (7419—2)2
— _ﬁ2(_1)(2k—1)k(_ﬁ2)2k—11 — (_1)(21c—1)kI — (—l)kI

and

4k+1 4k+1 —

Japi1 =72 TR Ly
=yl lad k]

_ (K)2)2k+1’)’1’}’3 . 74]4:—1—1,7173 . 74k+1

_ 52(_1)(2k+1)2k/2(,71)2(,},3)2 o (,74]6-1-1)2
_ 52(_1)(2k+1)k(_ﬁ2)2k+11 — _(_1)(2k+1)kI

= —(-1)F1 = (-1)**'T1.

O
2.1.23 Lemma. For all 0 < j < n, we have
Iyl = 4. (2.1.80)
Proof. In view of (2.1.12), we have to show Jy* = —4%J and JH/*! =
k2431 for j > 0. For the various cases, this is shown as follows:
A2 20 002 k=20
= (—1)ZE1n 00002y Ah=2 . 10,0,2 k-2
Alod IR0 10 k0
= (—1)2KHLA0y L3 Akt o 0,108 Ak
AON2 22 20,2 k=2, 2j+1
= K2(—1) 2R 21002 A2 2 210,02 k=2
Nlnd LRI 20108 ke 254
— (1) Rty L8 | AL 2020 108 skl
SO 222 2002 k=2, 2)+2
— K1) 22002 A2 2 242,0,2 4k=2
ylnd LRI 20108 kL 242
= K1) 223 ARl 2 242108 kL
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2.1.24 Corollary. The Dirac operator D satisfies

JD =—-DJ, (2.1.81)

where . ' N
D := (dz*)* (8, — Fiw), mj;7*Y)- (2.1.82)

Proof. Since J is independent of x € M and iwﬂ is real, Lemma 2.1.23
implies
—JD = —Jy(da") (8, — 1wl mji7"Y)
= (dz")"J (O — 7w}, mis7'Y’)

O

2.1.25 Remark. On a space-time of signature (p,q), with p — q even, a
“real structure” (mod 8) is a conjugate linear isometry J on the spinor
bundle satisfying

JD =—-DJ (2.1.83)

and
JP=u, JT=./TJ (2.1.84)

where v,)' € {+1} are given by the following table (c¢f. Chapter 1.3 and [39,
Definition 3])

pP—q = 0 2 4 6 (mod8)
. =1 =1 -1 T (2.1.85)
J = 1 -1 1 -1 .

The preceeding results show that in the Euclidean case (k = i) J defines
a real structure on space-time of signature (2m,0) since '/ = (—1)™ and
_ (—1)m/2 m even
T E)m2  odd.
Moreover, (2.1.83) holds since 49 = ~J for all j and hence D = D. On
the other hand in the physically relevant Minkowski case (x = 1) we have
signature (1,2m — 1) and J does not fit the table (2.1.85). Also, D # D in
this case so that (2.1.83) is false. In the discussion of the Standard Model

(Section 2.3), a real structure will be defined in both cases using fermion
doubling.
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2.1.26 Remark. Corollary 2.1.2/ suggests to define another representation
51 C®(CUT# M)) — End(S) (2.1.86)
by using the matrices %'Z instead of v*. Then D is the Dirac operator asso-

ciated with 7. By Proposition 2.1.5, we have ¥ = v only in the Euclidean
case. Using Lemma 2.1.23, we see that for 1-forms w € C®(T# M)

Hw) = way(dat)* (2.1.87)
satisfies
F(w) = —Jy(w)J L. (2.1.88)
On the other hand, for functions f € C*°(M,C) we have
f=JFrJ L (2.1.89)

The basic identities (2.1.73), (2.1.49), (2.1.45) and (2.1.55) hold analo-
gously for 4.

2.1.4 Trace formulas and inner products

As mentioned in the introduction, the local trace formulas for the spinor
bundle have a much deeper analytic significance in the case of compact Rie-
mannian manifolds. For any compact Riemannian manifold M of dimension
n, a pseudo-differential operator

P:C®(V)—=C®(V)

of order —n, acting on a complex vector bundle V over M, has a well-defined
"Dixmier trace”, denoted by Tr,(P). The well-known trace formula of A.
Connes (Chapter 1.4) expresses Tr, (P) as an integral involving the principal
symbol

0_n(P) € C®(T* M,End (V))

of P. This concept applies in particular to the (complex) spinor bundle S
over M and the pseudo-differential operator | D|™", where |D]| is the absolute
value of the Dirac operator acting on S. More generally, any section T' of
the endomorphism bundle of S gives rise to a pseudo-differential operator
of order 0, and by Connes’ trace formula, we obtain

Tr, (T|D|™) = cn/d":c-t_rSTw

where trg denotes the normalized trace on spinors, d"z is the Riemannian
measure and ¢, is a universal constant depending only on the dimension n.
Using the spinor representation (2.1.32) we obtain equivalently

Try,(v(9) |D| " /d”x brg 7 (8,) (2.1.90)
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for any section ¥ € C*°(CI(T# M)). Via the identification (2.1.54) it follows
that

L o, (v(0) iy () D) = /M &z - (Vo) (") (2.1.91)

= / d"z (o|o’)s (2.1.92)
M

for all 0,0’ € C®(A\(T#*M) ® C). This operator-theoretic interpretation of
the metric properties of differential forms is one of the starting points of the
noncommutative geometry approach towards the Standard Model.

We end this section by listing the normalizations for traces and inner
products used in the sequel. We will consider complex vector bundles V'
which (locally) are tensor products involving the spinor bundle S over M
and also a finite dimensional ”generation space” G, endowed with an inner
product. Given an endomorphism T of V' we define the ”partially normal-
ized” trace ]

try T = = try T, (2.1.93)

where the normalization constant c is given as follows:

dim S ifV~SeCN
c:=< dimG ifV~CV®G (2.1.94)
dimS-dimG fV=SeCN®G.
In terms of this trace, the inner product of endomorphisms 77,7, of V is

defined as .
(T1 | ), = try TiTp = = try T{ . (2.1.95)
C

We also put

1
T} := (T | T),, = tr, TT = Sty TiT. (2.1.96)
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2.2 The Electro-weak Model (K. Elsner, H. Neu-
mann, H. Upmeier)

2.2.1 Noncommutative Matter Fields

In a first step towards the formulation of the Standard Model of elementary
particle physics using noncommutative geometry, we confine ourselves to the
description of leptons, which show only electro-weak interaction. Leptons
exerimentally appear as pairs in three generations: (e,ve), (u,vu), (T,vr).
We will consider e, u, 7 and v, vy, v; as components of a single object e,v
with three different ”generations”. Correspondingly, we let Gg and G,
be finite-dimensional complex vector spaces called right and left generation
spaces. We assume dim Gg = dim Gz, (= 3 experimentally). The distinction
between right and left (chirality) is motivated as follows:

As is experimentally confirmed the electro-weak interaction can be con-
sidered as a gauge interaction with respect to the group U(1) x SU(2). The
electromagnetic interaction only affects the charged leptons e,pu,7. The
weak interaction only affects the left handed components ey, ur,, 7, and the
corresponding neutrinos, which are supposed to be massless and to exist only
as left-handed components. (An extension of the electro-weak model includ-
ing massive neutrinos is possible). This "doubling” of the L-components is
expressed in our formalism as follows:

We indicate ”doubling” of a vector space V or an endomorphism 7" €
L(V) by double underlining __, i.e.

v
_ _ 2
V—(V)—V®C (2.2.1)
and
=" re1 2.2.2
='_<OT)_ ® 1o. (2.2.2)

Likewise for vector bundles etc. Now consider the complex vector space

Gy = (gj ) (2.2.3)

(£ = "leptonic”) and define

(2.2.4)

S®G
Sg:zS@Gg:( R)

S®Gr,
as a complex vector bundle over M. Here S is the spinor bundle of M. Then

C®(Sp) = C®(S ® Gy) = C™(S) ® Gy .
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2.2.1 Definition. The nc matter fields for the electro-weak model are the
(compactly supported) smooth sections

P € Co°(Se) (2.2.5)

of the Gy-valued spinor bundle Sy. Thus the nc matter fields are (linear
combinations of ) tensors

by = (1\%%2&) , (2.2.6)

where 1 € C°(S), ¥ € CX(S) are space-time spinors and er € Gr, {1, €

G, are arbitrary vectors. The physically relevant fermions satisfy
Typ=v, T¥=-VU (2.2.7)

but for now we do not impose this restriction. Thus we overcount the
fermionic degrees of freedom two-fold.

2.2.2 Remark. In physics notation, the nc matter fields can be expressed

as
(T
Ye=| Ye, (2.2.8)
v,
where e, € C°(S ® Gg) and V., ,¥,, € C°(S ® Gr) correspond to the
fermion (spin 1) fields (leptons) associated with the electro-weak model. This

follows from the decomposition

Ggr Gr\ er
G = (GL ®C2> = (g§> ;:LL (2.2.9)
The constraint (2.2.7) takes the form
Tter =Ver, T /vy = Ve /vy - (2.2.10)

Let D denote the Dirac operator on C*°(S) induced by the metric g. Put

£:= (é) (2.2.11)

and define a first-order differential operator Dy acting on (sections of) Sy by

DQ®1p kTe*® M}

Dy = (2.2.12)

€F®Me Q@lL

where M, : Gg — G, is an invertible linear map called ”mass-matrix”.
This is the Dirac operator for the electro-weak model. The unit vector
e corresponds to choosing the electron (ez) part in the double copy Gr
of (2.2.3). Later it will be related to the so-called "Higgs vacuum” (cf.
(2.2.62)).
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2.2.3 Proposition. Consider the projection

Or O
p=( (2.2.13)
0 1z
and put
1 0
10 0
0 1z
P := = 2.2.14
(0 p) Or 0 ( )
0
0 1,

as a projection acting on Gr @ Gr,. Then we have (as differential operators
on Sg)

lR 0 0 /ﬁ:2M:
Dg_P(Q®<O 1L)+£®<Me . ))P. (2.2.15)

Proof. Since

1z 0 0 wK2M* D®1g K2P®M:
D®( >+P®( e>=
0 ].L Me 0 F®Me D®1L

it follows that

1g 0 0 KM}
p(pa (s ) oro (4, 1)) r-

e 0\ /Delg T e M; . e 00

0 1L I‘(X)]We D®1L 0 lL
0 Or 0 0 D®1g kT ® M} . Or 0
01, reM, D®ly 01,

DRIg k’TOM:0 0

D®1g kT@ M 0
P®Me D®1L 0 0
0 0 0 0

0 0 D®1p
0 0 0D®1y

D®lp r2(T,0)® M:

oy o (DOy_ |
0)®Me \ogp)®'L

D®1r Kk’Te* ® M}
= D,

eT@M, D®lg
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For the next Proposition only, we use a slightly different tensor decom-
position (indicated by curly brackets) and write

D®1p KT ®@ M*
0= (2.2.16)
reM D®lp
by putting
M
M= ( 0e> : (2.2.17)

2.2.4 Proposition.
D} = —Dy.

Proof. Using the notation (2.2.16), it follows from Proposition 2.1.18 that

. [D®lg wT oM ' (Dtelp T*oM*
£ lTeM D®l KT*QM DI®ly

—-D®1g —k’T Q@ M* 5
TeM -Dol, [ ©

2.2.2 Noncommutative Gauge Fields

Having described the Dirac operator associated with the electro-weak model,
we now turn to the underlying (noncommutative ) algebra. The basic idea of
noncommutative geometry [38] is to replace the function algebra C*° (M, C)
over a manifold M by a noncommutative algebra A, and to study an appro-
priate differential calculus (integration of differential forms) over A. In our
context, M represents space-time and the noncommutative algebra reflects
the interactions between the fermions of the model, i.e., the bosonic (gauge)
degrees of freedom. In the electro-weak model, only the leptonic fermions
are considered.

2.2.5 Proposition. Let A denote the (commutative) complez algebra con-

G
sisting of all endomorphisms of S ® (GR> of the form
L

frR®1lg 0
(2.2.18)

0 fr®1g

where f; € C*°(M,C) fori € {R,L}. Then Ay := P A?*2?P is the algebra of
all endomorphisms f¢ of S¢ having the form

f®1R 0

fe= (2.2.19)

0 F®lg
where f € C*(M,C) and F € C®(M,C?*?).
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Proof. Note that p € A and hence P € A%*2. Writing a 2 x 2-matrix of

endomorphisms in A according to (2.2.18), we obtain

1 2
e 0 fh®lg 0  fi®lg O e 0
0 0
0 1, 0 frel, 0 fiel ||, -
Or 0 Or 0 |~
0 f2elyg 0 fielgp 0 0o "
01 01
~ 0 fiely, 0 fiel L
fi®lg 0 0 0 X
fR®]-R 0 0 1®1 0
0 fl®l 0ol Tr®1n
= 0 fi®l, fiel,| = fLop? .
0 0 0 0 0 (3 4>®1L
0 fiel, fielr It 1t
0 fel,0flel

1 f2
I1 fL), the assertion follows. O

Putting f = f5 and F = ( 3 o4

fi i

Let QF denote the space of ”universal” k-forms over A%*2, with differ-
ential d : QF — QF+!. Using the representation

e QF /:(L2 (M, S® (gj))) (2.2.20)

we put .Ag ) = P (%) P | considered as a subspace of L£(L?(M, Sy)).

Note that AEO) =
2.2.6 Proposition. .Agl) consists of all endomorphisms

Y(w) @ 1p k2T @ M}

eI'e M, v(2)®1L
acting on Sy, where w € C®(T#*M ® C), Q € C®(T*M ® C**?), p €
C®(M,C?*1) and ¢ € C®(M,C*?).

Ap. We now pass to k =1 and k = 2.

(2.2.21)

Wy =

Proof. We have
D®1r kTe*@ M [f®1r 0 Df®1r k’Te*F @ M}
eP®@M, D®Ip 0 F®l, efT®M, DF®Iyp

and
f®1lp 0
0 F®I1;

D®l1g H2FE*®M: fD®1p ﬁQFfE*(X)M;‘

FeT@M, FD®1,

eT®M, D®1,
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Since
Df - fD=~(df), DF—FD=~(dF) and Tf=fT,
for fy of the form (2.2.19) it follows that

Ydf)®1g  KT(e*F — fe*) @ M?
[De, fo] = [ .

(ef —Fe)l @ M, Y(dF)® 1

Now consider (finite sums of) tensors f) ® f; in A;. Then

(f°®1r 0 Y)Y @1r  KT(e*F' - fle*) @ M;
feIDe, f{] =
| 0 FO@1p] [(eff - Fl'e)T @ M, Y(dFY) @ 1p
[ (Y @1 KTfUSF! — fle*) @ M
| FO(ef! — F'e)T ® M, y(F°dFY) @ 11,
y(w) @ 1g KTy @ M}
L oI’ ® M, ’Y(Q) ® 1y
by putting
w=fdf', Q=F%F', ¢=F’(cf' —F'e), ¢=[(F' - f'e").
(2.2.22)
O

2.2.7 Remark. Using (2.1.73) we also have the operator relations

DR1g kT @M [fr®1r 0 frR®1g 0 1[D®1g &’T

P®Me D®1L 0 fL®1L
Dfr®1r x’T'f;, @ M}

0 fo®1r]
Dfr®1r ’T'f, @ M}

P®Me D®1L

' M, D®1y | frel ® M,

(2.2.23)

'@ M, D®I1j
v(dfr) ® 1g K°TfrLr ® M}

® M;

v(dfr) ®1r

lf% ®1lg 0 ] r(df}g) ®1g K Tfip ® M:] lv(f?zdf}z) ® 1 KTfOfn® M:]

0 fRely] [fel®M, ~(dfi)®1L

(2.2.24)
. . Gr
acting on sections of S ® G ) Here we put
L

fur=frL—fr=—fre (2.2.25)

Rl oM, ~(fdf)® 1L

bl
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2.2.8 Proposition. AEQ) consists of all endomorphisms

Y(9) @ 1g + K2A @ M} M, K2Ty(n) ® M}
C (2.2.26)
(T ® M v(©) ® 11, + K2A @ M M}

acting on Sy, where

9 € C°(CP2~(T#* M) ® C), 0 € C®(Cr**v(T#* M) ® C**2),
£ € C®(T* M @ C**1), neC®(T*M @ C>?),
A €C®(M,C), A € C®(M,C?**?%).

Here CI?2~%V is the space of all Clifford algebra elements of degree 2 or 0.

Proof. Let x denote Clifford multiplication. Using the notation of (2.2.21),
we obtain

. [7(w®) @ 1g K2TY0 @ M*] [y(w') ® 1z K2TY! @ M*
WewWy =
P TOM. y(Q)®11 | [¢'TOM. +(Q)®1

fy(woxwl) ®1p+ :‘i2¢0(,01 ® Mé‘Me "32F7(¢0Q1 — wmpl) ® M:

Y(Q%! — W T ® M, Y(QxQY) @ 11, + k2! @ M M
1(8) ® 15 + K2\ ® MM, K2Ty(n) ® M
(T ® M, ¥(©) ® 11 + kA ® M, M*

This implies the assertion by putting

9 = wxw?, 0 = '«
£ = Q%" — oul, n =90 -y’ (2.2.27)
X =%, A = Ot

O

2.2.9 Proposition. For w; € AEl), given by (2.2.21), P(madm, *wy)P con-
sists of all endomorphisms

Y +dw) @1+ et :
* * —k“T'y(d twe —¢ Q ® Me

K2 ("¢ + tpe) ® My M, " )
Vdp+Qe—e)l® Mo oipoe | cu) @ MM

where f € C*(M,C) and F € C®(M,C**?) are arbitrary.
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Proof. According to (2.2.24), we have

0o Y(wr) @ 1r K’ Tpr @ M}
i (fPdf ") =

el ® M, ~(wr) ®1g

. . Gr 0 gp1 01
as endomorphisms acting on § ® G ) where w; = fidf; and ¢; = fi'f};
L

for {i,j} = {R,L}. Since dw; = dfY A df}, we have f; := df’xdf} — dw; €
C>(M,C). Moreover ¢; + p; = f? jli + f]Q ,13 =(f) - fjo) jlz' = z'Oj jlz' and

wij +dei = fdf} — [{df} + df) £+ £0f
 p0gel _ 0 el | 760 p1 _ 20 gel L e0 g1
= fidfi — fidfj +df; [ = fizdfi +dfi fji.

Using (2.2.23) we obtain 7o ((df°)(df')) = m1(df®)m (df?)

[Y(df%) ® 1r K2Tf2, ® M:] lv(df}g) ®@1g KT fip® M:]

L fUTOM, y(df))®1p || faleM. ~(dff)®1L
[YV(dfxdfy) ® 1r + K2 fopfhr ® MiM,  KTy(fepdft — dfofig) ® M} ]

Y dfLf R — fRodfp)T ® M Y(dfExdff) @ 1p + &> fRrflr ® MM}

- +dwr) ® 1p+ .
Kg(((];}; i (pRI){)® MgMe —K?Ty(wrr, + dor) ® M;
Y(fr + dwr) ® 11+

I'® M,
’Y(wLR + d(PL) &® M, KQ((PL + (PR) Q MeM:

(2.2.28)

Now consider a 2 x 2-matrix of 1-forms

Y(wr) ® 1g K’ Tep1 @ M} 0 K2Tpo @ M}

o1l @M, y(wr)®1, 0 y(w])® 1L Y(w) @ 1r k2T @ M

A = =
0 0 0 0

o' M, v(Q)®1p

T ® M, y(wp) @1 0 y(w])®@1L

, ) P1 wr, Wy
in Pmy(Q2?) P, where w = wg, ¥ = (Y1,%2), ¢ = Q=1 .l
¥2 Wr, Wi,



170 CHAPTER 2. LAGRANGIAN OF THE STANDARD MODEL

Applying (2.2.28) to each entry, we obtain its differential dA as

v(fr +dw;) ® 1+ 2 * f;é@lR"i‘ 2 "o *
K+ ) Mg, R+ i) @ Mz SR T ) © M

Y(fL + dwr) ® 1+ " Y(ff +dwf) @ 1L
Y(wrr + dp1)L @ M, K2(p1 + 1) @ MM V(W)U ® Me -I—lﬂlé% ® MM

L ®1p+
e o e, KTy () © M} frely Dy © M
e

T 4dwt)®1
Ve tderem, LI WOEL wnre M, A +dd) e

where fr, fr, [ [ € C°(M,C) are arbitrary. Deleting the third row and
column yields

PdAP =

+ dwgr) ® 1g+ *
e

d‘Pl"‘wLR fL‘l‘dU)L f£+dwllll (,01—{-’(&1 ¢2 ’
e M, 1 2 M, M*
7<d¢2+wg My v, g +dayy) O gy 0)) O T

Now the assertion follows from the identities
dp1 wr, wllll 1 1 dy1 +wp, — wr
Qe — = — =
doroe—co= (o0 )+ (o o) (0) = (o) o= (Vi 7™
. x wrL Wi
dip + we* — " Q = (dp1,dyp2) + wr (1,0) — (1,0)

= (di1 + wgp — wr , dips — W),

. Az Y1 P2\ (1t b2
. +€¢_(9020)+(0 0)_( P2 0>'

Setting wy = 0 yields the so-called ”junk-ideal”:
2.2.10 Corollary. We have
P|myd(Kerm)| P =

fR1g 0
1 f €C®(M,C), F eC®(M,C*)}.

0 F®I1L



2.2. THE ELECTRO-WEAK MODEL 171

A fibre metric on Sy = S ® Gy is given by the endomorphism
yr 0O I®yr 0
I, =1 = 2.2.29
¢ ® ( 0 yzL) ( 0 I®uyr ( )

where yr,yr are positive definite linear maps on Gr and Gy, respectively.
Clearly, [fe, 1] = 0 for all f; € A;. The condition [Dy, Iy] = 0 is equivalent
to

Meyr =y M, yrM; = Myr. (2.2.30)

2.2.11 Proposition. Ford,,9) € .A?), given by (2.2.27), the scalar product
has the form

(DelTe)s, = s[(O]Y)s + (©]0")g] (2.2.31)
+ trg, (MeM?)?yr - [(AX)s + (A[A") g]

S
+ K2 [(A[9)s + (91N)s — (€€)s + (A]O)) g + (B]A")g — (nln') ]
where
s 1= g, YL = 16, YR,
= trg, MM} uL = = trg, M M¢ yr; (2.2.32)

trg, (MM )?yr —tTGR(MM)
Proof. Since M, is invertible, (2.2.30) implies
trg, yr = trg, MeyrM; " = trg, yr,
trg, McMZyr = trg, MeyrM; = trg, yrM; M, = trg, M; My,

trg, MeM:MeM:yL = trg, MeM::MeyRM: = trg, MeM:yLMeM:
= trg, JMeyRJMe*Jwejw(;k = t1g, yRM:MeM;Me = trg, M;MeM;MeyR-
Using the notation (2.2.27) 0}?192[5 equals

(9) ® 15+ fry@) @ 1+

&*Ty(n) @ M 2Ty (n') @ M}

K2\ ® M} M, K*N @ M} M, I®yr O
¥(O) @1+ ' (@) ® 1L+ 0 I®yr
7(€)P®Me R2A®M8M: 7(§ )P®Me K,QA'®M6M:
(@) ® 1p+ Y(¥') ® yr+

\ t * * 9 ' "
K2\ ® MM, Ty (€") ® M; k2N ® M} Myg &“Ty(n') ® MZyr

N1 O ®yr+
BLA || @ e Myn 0 24,

2 Y
( ) FT ® Me 2 K,QAI ® MeM;yL

)
K2A* @ M, M
(xﬂ')®y3+w ® (M; M)yt

2y (N0 + 0N — £'x¢") ® M{ Moyn

*

*

In view of (2.1.55), the assertion follows by taking the trace. O

Y(O©*x0") ® yr, + A*A' @ (M M)y +
| K2y(O*N + A*O' — n*xn) @ M. M}y,
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2.2.12 Remark. For compact Riemannian manifolds M (k = i), Proposi-
tion 2.2.11 gives an explicit expression for the Dizmier trace

WO LD ™) = [ o (B0 (2.2.33)
M

by applying (2.1.91) to Gy-valued spinors.

Now consider the inner product (2.2.31) and let L denote the orthogonal
complement.

2.2.13 Proposition. P[7r2d(Ker Wl)]LP consists of all endomorphisms

7(0) @ 1g + KA ® (MM, — L) K*Ty(n) @ M;
op =
()T ® M, Y(E) ® 1, + £2A ® (MM - T)
(2.2.34)
with arbitrary
o eC®(N\*(T*M)®C), % € (N 2(T* M) @ C2),

£ €C®(THM @ C), n € C®(T*M ® C*?).
Proof. Writing 9, € (dKerm)® and ¥, € dKerm according to (2.2.26),

Corollary 2.2.10 implies ¥’ = f, @' = F, X' =0, A’ =0, ¢ =0 and / = 0.
Therefore Proposition 2.2.11 yields

0= (¢ | 9le) g,
[0 1)s+ (O P)g] +r[(\] g+ (4] Pg]
=s[(0+ X[ )+ 0+ A | F)gl.
Since f € C*°(M,C) is arbitrary, we have
. C 0 2 #
oi=0+_AeC (A\2(T*M) & ©),
ie. ¥ =0 — I\ Since F € C>°(M,C?*?) is arbitrary, we have
— C [e's) 2 (i 2X2
=0+ AeC (N\2(T# M) ® ),

lLe. =% — g . It follows that

V@I +A® MM, = 0@ 1 +A® (MM, - -) ,

@®1L+A®M6M;:z®1L+A®(MeM:—§).
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2.2.14 Proposition. The orthogonal projection from Af) onto P(madKer i) P
s given by

v(9) ® 1g + K*A @ M} M, K2Ty(n) @ M* +
(T ® M, () ® 11, + k*A @ M M
YW ® 1p + KA @ (MM — T) K20 () ® M
Y(ET ® M, 7(©OY) @1, + KA ® (M, M — L)

Proof. For ¥ given by (2.2.26) we have 9; € P[mod Ker m]-P by Proposi-
tion 2.2.13 and

7(19—19L+/<;2§/\)®1R 0
Yo—07 = € P[medKer m|P
0 7(®—®J‘+/§2§A)®1L
by Corollary 2.2.10. This implies the assertion. O

Now consider the differential

d: A = my[P(dKerm )P (2.2.35)
71 (PAP) > mo(P(dA)P)* (2.2.36)
and product
A:AD @ A 5 mo[P(dKerm) Pl (2.2.37)
7!'1(PA1P) ®7T1(PA2P) — 7!'2(P(A1A2)P)J— (2238)

computed in mo(P(d Ker 71) P)* .
2.2.15 Corollary. We have

y(w) ® 1g kT @ M}
d =
eT'® M, ~(Q)®1f

i ) ® 1r + * * *
K (e*p +(¢e)) ® (Jﬁf;‘Me ) —&°Ty(dyp + we* — e*Q) @ M}
S
Y(dQ2) @ 1g +

Y(dp + Qe — ew)I' @ M, H2(¢6*+6¢)®(M8M:—§)
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and
YW @ 1g KTy @ My]  [v(w!) ® 1g K2y @ M;
A -
PTeM. v(Q)elL P'TOM, () ®1;
YW’ Awh) @1k + k900! @ (M7 M. = %) RITy (00! — wOyl) @ M;
Y( Q%' — W) ® M, V(O A QY ® 1p + k209! ® (MM — T)

We are now ready to introduce the ”dynamical variable” for the electro-
weak model, phrased in terms of the noncommutative geometry Ay.
For any real 1-form p = p € C*°(T# M), the element

v(p)®1lg 0 X
b= e AW (2.2.39)

satisfies
777 (2.2.40)

Conversely, the relation (2.2.40) characterizes elements in Aﬁl) of the
form (2.2.39). Given any endomorphism

ab
1)
(C d) € A,

ab
str (C d) = t—rS®GRa_t—rS®GLd' (2241)

we define the supertrace

2.2.16 Definition. The skew-adjoint elements
we = —w) € AV (2.2.42)
satisfying
strpwely =0 (2.2.43)

for all p € C®(T#M) will be called nc gauge fields for the electro-weak
model.

2.2.17 Proposition. The nc gauge fields for the electro-weak model are
given by

®1 To*Q M*
w:(V(w) EELE D Ne ) (2.2.44)

eT M. v(Q+ 1 w)®1s
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with arbitrary

w € C®(TH*M ®u(1)),
Qp € C®(T#M ® s5u(2)),
@ € C®(M,C?*1)y .

Proof. Since

y(w) ® 1g kT @ M}

f yw)lt @1z Ther @ M? l V@) ®1p —k2Ty* @ M?

@M, y(Q) &1 PRI @ M, v(Q)T @1, Y TeM. Q)1
it follows that w) = —w if and only if @ = —w, ¢ = ¢*, and Q* = —Q.

Thus the skew-adjoint elements wy, = —wz € Ag) are given by

Y(w) ® 1r K2Tp* @ M}
Wy =

(2.2.45)

M, ~v(Q)®1g

where w € C®°(T# M @u(1)), Q€ C®(T*MQu(2)) and p € C®(M,C**").
Now let p € C®(T# M) be arbitrary. Then the endomorphism

o I — Yp)®1g 0 Y(w) ®1g KT p* @ M} (I®yR 0 >
prett = 0 1P)®1L) \ pT®M, ~(Q)®1; 0 I®ys

Ypxw)@yr K2y(p)T* @ M} yp
() 9T ® Meyr  y(px Q) ®yrL

has supertrace

str pwele = trggg, V(P X w) @ Yr —trgee, Y(p x Q) @yL
= trgy(p X w) trg,yr —trgv(p x Q) trg, yr,
= [(plw)s = (V) g]s = (plw = tr Q)5 - 5.

Thus the condition (2.2.43) implies (p|lw — tr2)s = 0 for all p. It follows
that w = trQ as 1-forms. Hence

1
Q=0+ 5w, (2.2.46)

where Qg € C®(T# M ® u(2)) satisfies tr Qy = 0. O

2.2.18 Remark. The nc gauge fields as defined above parametrize exactly
all the bosonic fields of the electro-weak model, which therefore occur natu-
rally as components of a single object. This is one of the major conceptual
advantages of the noncommutative geometry approach to the electro-weak
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model. The bosonic (spin 1) gauge fields mediating the electro-weak interac-
tion are given mathematically by Lie algebra valued 1-forms

3
iy W@ e co(T# M @u(2) (2.2.47)
a=0

where WO, ..., W®) ¢ C®(T# M) are real spin 1 fields (generating the
electro-magnetic field (photon) and the massive vector boson fields W, Z by
taking certain linear combinations), and 7O, ... 7®) s a suitable basis of
i-u(2) satisfying tr7(®) 7(0) = : §(a)(®)

2.2.3 Noncommutative Gauge Action Functional

In order to find a gauge-invariant dynamics allowing massive leptons and
gauge fields, one also introduces complex scalar (spin 0) fields ®°, @1 €
C>®(M,C) forming a doublet

(i)i) e C%°(M,C*h (2.2.48)

called the Higgs field, which ezperiences a quartic self-interaction in a ¢*-
potential with a ground state breaking SU(2)-symmetry. Putting

w = —igt WO (2.2.49)

ig2 w® w4 iw® N
flo = 2 (W(l) —iw@ w® = ig9 ZW( ) (@)

a=1
and
ve= 7 (o)
£E= —— ,
T Var et

it follows that (2.2.44) encodes all the physical fields WO ... W®) &0 &+
of the electro-weak model. The so-called "coupling constants” gi1,g0 > 0
introduced here will later be expressed in terms of the basic parameter s of

the model (cf. (2.2.58)).

In order to compute the Yang-Mills functional recall that, for a projection
P e A?%% 3 1-form A € P(QY4)**2P defines a covariant derivative

V=Pd+ A (2.2.50)
on the associated projective module P.A%, whose curvature is given by

V(VP) = P(dA + A*)P + P(dP)? (2.2.51)
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V(VP) = (Pd+ A)((Pd + A)P) = (Pd+ A)(P(dP) + AP)
P(d ( (dP))) + P(d(AP)) + AP(dP) + AAP
P(dP)(dP) 4+ P((dA)P — A(dP)) + AP(dP) + AAP
P(dP)? + P(dA + A?)P.

10
In our case, with p given by (3.5.48) and P := (0 p)’ we obtain the con-
nection P d + wy with curvature
2
(Pd n wg) P = P(dw + w?)P + P(d P)

However, we have to compute the curvature in (d Ker 71)", i.e. modulo the
”junk ideal” d Ker w1 characterized in Corollary 2.2.10. Accordingly, for any
wy € .Aél) given by (2.2.44), we define its curvature as the element

F(w;) = (P(dwe + wf) P+ P(aP)*) - (2.2.52)

of (dKerm)t, where 9, ﬂj‘ denotes the orthogonal projection onto
(dKermy)™t.

2.2.19 Theorem. The curvature of wy is given by

F(wg) =
(((p—l-&? ;F_;_(E)) ®I; (MM, — 1) —k2Dy(VH (o +€))* @ M}
Y(F(Q) + sF(w)) ® 11 +
WV raTeMe (oo ter — Do (MM 1)
where
F(w) = dw, F(Qo) =dQo + Qo N Qg (2253)

is the curvature (field strength) of w and Qy, resp., and
1
VHE =dp+ Qod — §¢w (2.2.54)

denotes the covariant derivative acting on C°(M,C**1).

Proof. Specializing Corollary 2.2.15, we obtain, for 2 = Q¢ + %g,

(’y(w) R 1 KTy* ® M;) B
M, y(Q)ely )

Y(dw) @ 1p +
K2(e*p + p*e) @ (M} M, —

v(dp + Qe — ew)l' @ M,

) —K Dy (dp* + we* — €*Q) @ M}
S

v(dQ) @ 11, +
K2 (pe* +e9*) ® (M My — 1)
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and

(’y(w) ®1p K Tye* ® M:) ('y(w) ®1r K Te* ® Mé")
eT®@ M, ~(Q)®1f eTeM, ~(Q)®1L

”290*(»0 & (M:Me - %) K)QP’)’(QO*Q — (.U(p*) ® M:
Y Qp — )T ® M. Y(QAQ) ® 11, + k2pp* @ (M My — 1) )

By Remark 2.2.7, we have

D@l kT QM0 0 0 0 1[D®1g x2T ® M
dp = —

reM, D1y |0 Q1 0IQ1]II'®M, D®1y

T 0 KTeM

-T®M, 0

which implies

0 KT @ M} 0 KT @ M} I® MM, 0
(dp)2 = = _K’z ’
-r'e M, 0 -T'® M, 0 0 I® MM
0 0 I® MM, 0 0 0
|00 ]
07I®1y 0 I® MM} 0 K% @ M M}
Therefore
10 10 10\ /0 0\?2 10\ /0 0 0 0
P(dP)? = d 2 = — -
(dP) (0 p) ( (0 p>) (0 p) (0 dp) (0 p) (0 (dp)2> (0 p(dp)2>
000 0 0 0 0 0
{000 0 _ 00 _
000 —x2I ® M, M;? 0 —r (0 1>®M€Me 0 —w7ge” @ Ml

and hence
-~ 0 0
(P(dP)")" = 0 —K’ce* @ (M M} — o
It follows that

F(we) =

’Y(dw)®1R+ _ 2 * ok * * ok *
K2(p* o + €% + ¢'e) ® (M* M, — ) KTy (de* — o*Q + we* + we* — e*Q) @ M}

YA+ QAQ) @1y +
’y(d(p+Qs—8w+Q(p—(pw)I‘®Me /‘&2(80Q0*+Q05* +8(P*+88*)®(M5M:_§)
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Now the assertion follows via the identities

VHE(p+e)=d(p+e) +Qp+e)— (p+e)w=dp+Qp+ Qe — pw — ew,

(VE(p +€))* = (do)* + " + "V —Tp* —we* = dp* — ¢*Q — "V + we* + we*,

ot et tept —ece*=(pte)(pte)—eet —eet=(pt+e)(p+e) -1,

Proteftptpte=(p+e)(pt+e)—ce=p+e|® -1

2.2.20 Definition. The nc gauge Lagrangian for the electro-weak model is
the functional

wy > (F(we) | F(wg)Ig)Sl (2.2.55)

defined on the nc gauge fields wy € AS). Note that the inner product is taken
fibrewise over M, so that (2.2.55) really defines a Lagrangian density. For
the integrated version

/ d"z - (F(we) | F(we)le) s, (2.2.56)

one has to assume that wy has compact support. For compact Riemannian
manifolds M (k = 1), it follows from (2.1.91) that (2.2.56) is related to the
Dizmier trace

’Ifrw(F(wg)TF(wg)IADd’") = Cn/ d"z - (F(w)|F(we)lp)s, -
M
2.2.21 Theorem. The nc gauge Lagrangian of wy is given by

(F(we) | Fwolr), =32—S||l[7(w)||2 +sllF(Q0)[” = 267r(IV7 (¢ + ) |”

T
+ 2trg, (MM — —)?yr (o +el|* =1)* + const,

where the constants s,r are defined in (2.2.32).



180 CHAPTER 2. LAGRANGIAN OF THE STANDARD MODEL

Proof. Using Proposition 2.2.11 and Theorem 2.2.19, it follows that
(F(we) | Fwo)le) g,
s[IF(w) — & —((<P +e)*(p +e) = D§ +[IF () +

+ 1’7 [2Re(F(w) - &7 —((<P+€) (p+e) =D | (p+e)(p+e)—1I)g

N —

F) - #*=((p+e)p +e)" - D

+2Re(F(R) + 3F(w) ~ &~ (9 +e)(p +¢)" = D | (p+ &) +6)° - D)
—IV" (o + )3 — 197 (p +)°I13]

[Tn

T
+ trg, (Me Mg — ;)2yL [lle+e)(w+e)—Il5+1(p+e)p+e) ~1L

3]
— SIF@)IE (1 + 20 3) P0G — 26097 (p + )3
4 I+ 2 (o +2) =TI+ g+ ) +2)° ~ II%) - (575 — 2 + b, (MM 0.
Since
lp* — Ll = trg(¢¢*d¢™ — 269" + I)
(-2 2= (g — 1) +1

and
* r 2 * 2r 2
t—rGL (MeMe - g) yL - t_I'(G,L (MeMe ) yL - __trGL M M yL + trGL yL

2r?  r2g

s 52

the assertion follows. O

2.2.22 Remark. Converting to physics notation (cf. (2.2.49) ), the nc gauge
Lagrangian gives the electro-weak Yang-Mills-Higgs functional in the usual
form

1 :
g—QIIF(zng( MNI?+ —IIF zgzZW @)
1

o0 m2 o0 9
2 H 2 H 2
—= -2 2.2.
K|V (<D+> II“ + By (I (qﬁ) I )"+ const (2.2.57)

if the coupling constants g1, gs satisfy

1 1
) = 38, S =S (2258)
g1 92
and for the Higgs mass my we get
my = “trg (M,M? — Z)%y,. (2.2.59)

4= ¢ s
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This follows by combining Theorem 2.2.21 and (2.2.49), using tr 70 =

1
5-
2.2.4 Noncommutative Matter Action Functional

For the remainder of this section we are concerned with the fermionic action
for the electro-weak model, involving the ”perturbed” Dirac operator

(D+7yw) el KT (p +e)* © My
Dot o= ( (+ATOM, (D+11(@)+1(0) o 1L) (2.2.60)

associated with the nc gauge field wy. Note that
(De+ we)' = —(Dg + wy)
since D,v(w),v(Qp) are skew-hermitian and I't = —x2T.

2.2.23 Definition. The nc matter Lagrangian is the (imaginary) functional

e /d"x -4} (De + we) e (2.2.61)
M

defined on the nc matter fields 1y € C2°(Sy).
2.2.24 Proposition. The nc maitter Lagrangian density is given by
¥} (De + we) e = &1 (D +y(w))d eger
+UH(D + 3 y(w) +¥(Q0)) ¥ €L £, + 21 Im U (o + )T £, Meeg
for g written in the form (2.2.6).
Proof. Using (2.2.6) and (2.2.60) one obtains
P}(De + we) o = PH(D + (W) 9 - eher + THD + S y(w) +7()) T - £341
+r2PIT(p+e)* - el M2l + Ul (p+ )T o - £ Meep

The last two summands combine to yield the assertion, since

Ui(p+e)Typ- £y Meeg =
YT (o +e)* U - el Miy, =
—k2P D (p +e)* U - e MILy, .
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2.2.25 Remark. Using physics notation for the nc gauge field wy (cf. (2.2.49))
and the nc matter field v, (cf. (2.2.8)) we obtain the nc matter Lagrangian
in the usual form

Pl (D + (W) Yer

+(,, WL)(M +7(%)) (56L>

vy

+2i Im (W, Uh,) (0 + €) TMethe,, =

Wy Dipe,, + UL, DT, + T}, DT,
—ig1 (Yl (WO) they, + 3 UL, (W) T, + 0], y(WO) W)

g2 30 (T Th, )4 (W) @ 7@ (e
tige 3 (0, 0h) v (W) 8700 ()

a=1 VL
+Z Im (0], 8T Mtpe, + 1, @ T Moty -

So far the constraint (2.2.8) has not been imposed. Restricting the Dirac
functional to fields satisfying (2.2.8) yields a vanishing action in the Eu-
clidean case, but for Minkowski signature we obtain the correct action, in
particular the "mass term” in (2.2.62) reduces to

Ol BT Mope, + Uf, 3T Mpe, = Uf M, + U) ®YT M1,

since ', = 1e,,. In particular, for the ”Higgs vacuum”

()= () ez

we obtain the term U, M,
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2.3 The full Standard Model (K. Elsner, H. Neu-
mann, H. Upmeier)

We will now give a description of the classical field theory underlying the
complete Standard model. We allow for curved space-time in the presence
of gravity, considered as a non-dynamical background field (in Section 4 the
gravitational field will be considered as a dynamical variable as well).

2.3.1 Noncommutative Matter Fields

The basic fermions are now the leptons introduced in Section 2 and the
quarks which experience both electro-weak and strong interaction. Quarks
have both left- and right-handed components and again form pairs in three
generations, here considered in the order

(d,u) (down/up), (s,c) (strange/charmed) and (b,%) (bottom/top).

This ordering will be convenient for embedding the electro-weak model into
the Standard Model. As in Section 3, we denote the different generations
by the same letter, i.e., (s,c) and (b, t) are also denoted by (d, u) of different
7generation”. This is expressed by a complex generation space G of dimen-
sion 3. Since the strong interaction affects both the left- and right-handed
components of the quarks on an equal footing, we drop the distinction be-
tween G and Gy,.

The basic new feature is the strong interaction proved experimentally to
be a gauge interaction for the group SU(3). Accordingly all six quarks occur
in three colors (red, yellow, blue). As in Section 2, where double underlining
__ indicated the electro-weak interaction with gauge group SU(2), we now

use boldface underlining __ for triple copies, i.e. we put

v
V=V (2.3.1)
V
for any vector space V', and
TO0O
T:=(0T0 (2.3.2)
0oo0T

for any T € L(V). This reflects the 3 color degrees of freedom associated
with SU(3) (not to be confused with the 3 generations).
Starting with a complex generation space G (of dimension 3 experimen-
tally), put
G
G:=|G|=GaC? (2.3.3)
G
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according to the 3 colors. Consider the spinor bundle S over spacetime
M and define a complex ”quark-lepton” vector bundle Sy = S ® G via
tensoring with the complex vector space

Gy = G ~ CB. (2.3.4)

Thus

Se=| S®C (2.3.5)

where, as already mentioned, __ means doubling and __ means triple copies.
Note that the electroweak version (2.2.4) is a subbundle of (2.3.5) by deleting
all copies of G (and putting Gg = G = Gz ). We have

Coo(ng) = COO(S®qu) =C>(S) ® Gy .

2.3.1 Definition. The nc matter fields for the Standard Model are the
(compactly supported) smooth sections

wqf 00 S, qt
(%)ecc<%) (2.3.6)

S
of the doubled Gg-valued spinor bundle ( S(ﬂ) , corresponding to a fermion
qf

doubling with respect to a particle/antiparticle character. (The 1qu corre-
spond to "anti-matter” fields). Thus the nc matter fields are (linear combi-
nations of ) tensors of the form

P ® (‘jg)
Yoo = | Yu ®ur (2.3.7)
U ® (gg)

where Pg, 1P, € CX(S) and ¥ € C(8) are space-time spinors, and dg, uR,qrL
G and lg,l;, € G are arbitrary vectors. More precisely, there are two copies
¥, of such fermionic fields corresponding to the particle and anti-particle
sector. The physically relevant fermionic fields satisfy

1—"‘bd/u = "éd/ua Ly =-v

€
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but for now we do not impose this restriction. Thus the fermionic degrees
of freedom are overcounted four-fold.

2.3.2 Remark. In physics notation, the nc matter fields can be expressed
as

Yo = | Ya, (2.3.9)

vy

where Y, Ve, , ¥y, € CC(S®G) are the lepton fields introduced in (2.2.8),
and Py, Ve, , ¥y, € CC(S®G) correspond to the quarks. This follows from
the decomposition

dr

€R

UR

d . (2.3.10)

€L

~
28 )
N~

Gge =

ur,

co(9

There is also a similar column 1/~qu for the antiparticles. The constraints
(2.3.8) take the form

Qle alala al@

vy

P'(de/uR = /l/}dR/uR? J'(de/uR = %R/HR

P = —Yarjupr I Yapjup, = _‘?EL/EL (2.3.11)
PWe vy = —Yerpurs Sy, = Ve m, -
The charge operator Q on Sy is defined by
-1 dr
-3 ER
2 UR
Q- % 1 dy . (2.3.12)
-3 €r,
2 |ur
0/ vg
Its eigenvalues are the electric charges of the indicated particle types (down/up-
quarks and electron/neutrino-leptons). The doubled vector bundle gZi has

charge operator

(2). 219
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S,
Define a conjugate linear endomorphism of ( qz) by

Sqe
0 Jye
. 2.3.14
(_HQJqZ 0 ) ( )
Here we use the charge conjugation operator J on S defined in (2.1.74) and
put
_ 10\~ -
= 0 0
19 (5))
Jo = 0 J®1™ 0 . (2.3.15)
10N\~
0 0 =
| 7% (51)
See\ . .
The vector bundle g is graded according to
gl
e O
2.3.16
( 0 —/<;2qu> ’ ( )
where _ _
r 10 0 0
® 01
Lge = 0 'l 0 (2.3.17)
0 0 r 10
—%01 |

and T is the grading operator on S defined in (2.1.7).

For the proof of the next five Propositions it is convenient to use a slightly
different matrix decomposition (indicated by curly brackets) by expressing
(2.3.14) and (2.3.16) in the form

( 0 J®l, 0
0o J 0 J®1,
( 2 qg) =9 9 _ L (2.3.18)
—K2Jg 0 -2 @1y 0 0
| 0 —k2J Q@17
and
(T®1r 0 0
( ) > = 3 9 ,  (2.3.19)
0 —k2Ty 0 -kT®1lg 0
L 0 K,2P®1L
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where
Lo\ 100\ dg
1gp = 01 =1010] eg (2.3.20)
0 1 001/ ug
Lo\ d
=10 (x|t L 2.3.21
L=1® 01) = 10| ug (2.3.21)
0 1+
VL

with a similiar notation for the antiparticle sector.

2.3.3 Proposition. For space-time dimension n = 2m, we have

0 Jye 2
= 1, 1d
(_"52 Jql 0 ) m

where Lo, = (—1)¥162 and 1op 1 = (—1)Fk2.

Proof. Since

0 J®l, 0 J2@lg 0 0
0 J®l} ) 0 J2®1,
=K
-k ® 15 0 0 0 J2@1lgp O
0 -k J®1; 0 J?el
the assertion follows from Proposition 2.1.22. O
2.3.4 Proposition.
(5 ) (2 5) o (L, ) (50
0 —k2Ty) \~K2Jpe 0 ) —k2Jy 0 0 —k2y/) "
Proof. Using (2.3.18) and (2.3.19), we compute the left product as
'®lg 0 0 0 Je1l, 0
0 -Iel, 0 Jelj
0 ~’T®1g 0 —k2J® 1 0 0
0 KT 1L 0 —k2J® 1]
0 riely 0
B 0 -ri®l1,
e 0
Qlp 0

0 -TJ®l]
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and the right product as

0 J® 1;2 0 I'®1g 0 0
0 JRQ 1; 0 -I'®1;
_ 2
—k2J® 15 0 0 0 -k’ I'® 1R
0 -k*J® 17 0
0 —Kk2JT ® ~1g 0
_ 0 K2JT ® ~1f
) —K*IT® " 1g 0 .
0 k2JT ® "1,
Since I'J = (—1)™JT according to (2.1.79), the assertion follows. O

S,
2.3.5 Definition. The Dirac operator, acting on sections of (Sqe) , is de-
ql

fined as a 2 X 2 matriz

Dy O )
2.3.22
< 0 JgeDqeJye ( )
where
[ D lO 0 2Pe* %‘; 0]
“lo1 FLEENT M
Dye = 0 Dl  wTer®(Mi,0) (2.3.23)
o (Me 0N pg (M), (L0
90 M) £ %\ 2%01) |
and
[~ /10 M0 \]
D® |7 0 —kTe* @ [ —=
01 0 M!
JytDgedye = 0 Del —wTe* ® (M, ,0)

M; 0 I, . /10
—el'®|— ___ | —e'® | = D®
| 0 M, ~ 0 = 01
Here D is the Dirac operator on S induced by the space-time metric g and
D is defined by (2.1.82). Moreover we put

() () as

KT ®1f
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and Mg, M, M,, : G — G are positive definite linear maps called mass-
matrices. Generalizing (2.3.24) we define an operation ¢ — ¢ on 2 x 1

(Z;) - (?f) . (2.3.25)

Note that the electroweak Dirac operator (2.2.12) arises as a truncation
of (2.3.23). Another way to write the Dirac operator (2.3.22) is given by

column vectors by putting

D®1g kT @ M*

0
Dy 0 'eM D®1,
( 0 quququ) a 0 Dolp kT M (’
-T®eM D®lg
(2.3.26)
where
My 0 0
0 M, 0
M = 2.3.27
0 o (2:3.27)
0 0 0
2.3.6 Proposition.
(Dqg 0 )’f B (Dqg 0 )
0 JuDydyu) 0 JyDgJg) "
Proof. We treat the two cases separately:
For k = i we have D' = —D and I't = T". Therefore
D®lg -T'® M* 0
(qu 0 )_ reM D®1, B (Dq@ 0 )T
0 JuDgeJge N 0 D® 1g FreM!( 0 JuDygrJge
-T®M D®1;

For k = 1 we have Dt = —D, Dt = —D and I't = —T. This also yields

D1lpT'® M*
(qu 0 ) 'eM D®l1yp
0 JyDgeJye N

0
_ (Dg O f
D® 1 —-TeM ~\o JaeDgeJge

0 — -
-'eM DIl
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2.3.7 Proposition.

(0" ) (6 o) * (" empen) (0 —aa,) =0
0 —HZFqg 0 JgDgedge 0 JgDgedge 0 —H2Fqg e

Proof. Since I'D + DT" = 0 by (2.1.72), it follows that

I'®lg 0 0 D®1r k'@ M* 0

0 -I'®lg reM D®1L
0 -k’ I'®1g 0 0 D®1p —kT' @ M?

0 KTl -T®M D®lL
(D®1g kT Q M* 0 '®lr 0 0
reM D1 0 -I'®lr
9 0 D®1r —KkT @M 0 kT ® 1r 0

\ -ToM D®lL 0 K ®1L

(TD+DT)®1gr (k2 —KDI® M*

0
(-I+HeM —(I'D+DI")®1L

- . _RCD+ DN ®ln  (I-Dem [0
{ (k2 +rHIQM kK2 ITD+DI)®1;
]
2.3.8 Proposition.
( 0 qu> (Dqg 0 ) n (Dqg 0 ) ( 0 Jyq ) 0
—K2Jge 0 0 JgeDgeJge 0 JyDgeJge) \—K%Jg O
Proof. Since JT' = (—1)™I'J,JD = —D.J by (2.1.79) and (2.1.81), it follows
that the left hand side equals
Joly 0 D®lg KT ® M* 0
0 0 J®17 I'®M D®I1p n
-k2I® 1y 0 0 . D®1lr —wT® M
0 K’ J® 17 TeM Delg
(D®1p TR M* 0 J®ly 0
reM D®lg 0 0 J®Ilj
0 D®lg —kT® M! -k*J® 1y 0
\ -reM D®lg 0 -k IT®1;
0 (JD+DJ) @1y KHTJ®M*~ —JT ® ~M?)
rJQM~ —JT® M (JD+DJ)®1;
-k¥(JD+DJ)@ly, TJM!~ —JT® M* o
KA(TJQM —Jr®@-M) —k2(JD+DJ)®1;

=0.
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2.3.2 Noncommutative Gauge Fields

Having described the Dirac operator associated with the Standard Model,
we now turn to the underlying (noncommutative ) algebra. In this section

a0
we often consider 2 x 2 block matrices of the form (0 &>, where a,a are

endomorphisms of Sgs. In general, a is independent of a.

2.3.9 Definition. Let Ay denote the real algebra of all endomorphisms

qu 0
- 2.3.28
() (2529

S .
of (S(ﬂ); where fqz and fqg are endomorphisms of ng =9S® qu having
q?

the form
re (2% o 0
2 (o)
fae = 0 felr 0 ; (2.3.29)
0 0 F 10
_ °(71)
(= A0 - 00 1
v (00)* 72 (71) ’
far = 0 7L 90X 0 (2.3.30)
— 20 — 00
o ()@
with arbitrary
fec>(M,C),
F € C™(M,H),

A®XEC®(M,C) @ C¥>3 = (M,C3*3).
Here H is the real division algebra of quaternions.

2.3.10 Proposition. We have
( 0 qu> fae 0 ( 0 qu)—l B ( 0 qu> fae O ( 0 qu>
—k2Jpe O 0 fuo) \=K*Jg O - \—k%Jy O 0 fu) \—K*Jg O

— _JqlquJqZ 0
0 _Jqéfqéjqé ’
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where
A0 00\ .
po () +re 20)
~JyefotTee = 0 H®X 0
. . A0 00
59 (50)+12 (1)
and
/10 .
7% (o1)
_JqfquJqZ = 0 fel 0
0 0 Fo(’
*(s1)
Proof. Using (2.3.15), (2.3.29) and (2.3.30) we obtain
- - X0\ -
moe (Y 0
Jfle 90y
+ire (o))
Jq(fqﬁjqﬁ = 0 J?AJ® DY 0
_ T /A0
L ( )
0 0 = ~ 00 ~
00
e (20)
and
- - 1N -
JfJ® (0 1) 0 0
qufqgqu = 0 JfJ® 1l 0
- 1oy
L o s (g5) |
Since JfJ = —f and “A~ = ), the assertion follows. O

By Proposition 2.3.3, Proposition 2.3.4 and Proposition 2.3.8, the con-
jugation (2.3.14) satisfies the correct sign convention for a ”real structure
mod 8” with respect to the grading operator (2.3.16) and the Dirac operator
(2.3.22) (cf. Remark 2.1.25). In fact, in the Euclidean setting this is already
true of the original space-time involution J. In the Minkowski setting this
is achieved after the fermion doubling. Note that also in this case the conju-
gation (2.3.14) preserves the right/left parity although it does not commute
with the grading operator.
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Let QF denote the space of ”universal” k-forms over Age, with differential
d: QF — QFFt!. Consider the representation

me s QF = L(L2(M, (gzj) )

induced by (2.3.22), and put Aé’z) :

now pass to k=1 and k = 2.

2.3.11 Proposition. .A((I? consists

wge 0
0 @y

. Sqi
acting on , where
Sqe

10 M 0\]
Y(w) ® <0 1) 0 KTy ® ( 0 M:)
Wge = 0 y@eL #TYe(M.,0) |,
My 0 My 10
e (3 ) e (5) v (5)
r 0 00
(@) ® (0 0) +5@) ® (0 1) 0 0
G}q[ = 0 ’V(w)\)@)x 0
20
i 0 0 F@xr) ® (0 0) +5

of all endomorphisms

)

*

are endomorphisms of Sy = S ® Gy parametrized by

@ € C(M,C**1),
w € C®(T#M @ C),
wyx® X €EC™®

% € C®(M,CH?),
Q€ C®(T* M ® H),
(T# M @ C33).

(2.3.31)

7,(Q2F). Note that .A((I%) = Ag. We

(2.3.32)
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¢ 0
Proof. For (fg f ) € Age, written as in Definition 2.3.9, we have
ql
l 0 2 * ﬂ 0 |
Df®<0 1) 0 nFeF@(O M;)
Dt foe = 0 Dfel  KTe'Fo(Mu,0) |,
re (= %) gre (= pFe(=°
e (5 ) e (5) orepy) |
10 prpn o (Mi 0]
fD@(o 1) 0 ”Ff‘s@(o M;)
fqeDge = 0 D&l K Tfe* ® (My,0) |,
Fero (B2 0 perg (Z Fpe (=°
_5®(0 Me> 5®(0> =®(01> _
and
(JoeDgedqe) foe =
T A0\ | H7e (20 0 2Pt T MiX 0 o[ Q0
fo (%) 4070 (20) rego (M) _oreza (8 0)
0 Df,®X —KTe [, ® (ﬂX,O)
- 20 _ 1 o (M . /X0\ — (00
__Erf*®( 0 o>_€rf®<0 ) _frf*®< 0 ) 2L (50) + 272 (o 1)
[ -~ /0 o e (AME 0]
f)\D®(0 0)+ . Kk“fy\Ie ®( 5 0)
{00 . (00
fD® (0 1) —k“fle* ® (0 Mt)
qu(JqEDqKJql) = 0 fAD®X —K f)\FE* ® (Xﬂ, 0) .
- M, 0 —— /X0
“y(Fer® (=2 D () o)+
0 0) _~Fyere (A = 00
I —4(f)el' ® (6 E) £/Q® (0 1)
This implies
D 0 fae 0 Dy, fqe 0
[< ql ) ’ q N ] _ [ q fq ] ~ (2333)
0 JgeDgeJge 0 fo 0 [JeeDgedye, foel




with

[Dqéa qu] =

[Jq@Dq/ﬁqua fq«’i] =

Taking (finite sums of) tensors (

with

e (g

0

Fef' —FleI'® (

[(D“
0 quDquqg

10
1
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10 Mg 0 \]
Y(df) ® (5 1) 0 K'T(e"F — fe') ® (Td M*>
0 Y(df)® 1 RI(eF — fer) ® (M, 0)
Mg 0 — M, 10
(ef — FeT' ® (Td Me) (ef—Fe® (T) ~(dF) ® (5 1)
_ 20 _ 00
e () o) +idne (57) 0 0
0 F(dfy) ® A 0
_ 20 _ 00
0 0 M@((})\ 0>+:y(df)®<61
0 0 1 0
o ~0> ® ( at ~1) it follows that
0 £, 0 7l
0 ) (fqle 0 )] B (fgz[Danfqle] 0 )
"\ o qlf 0 fgg[JqéDqZJan fqle]

F4Dat: fal =

+Fldf oL

0
and
f?e[quququ,f(}z] =
@arye (y o) +a@he () 0
0 ¥(Fodf,) @ 7w
0 0

i 0

2P0 o il _ gl
RIPE R - fee (S

j

nQI‘?O(s*FI —?15*) ® (M ,0)

0 571 =
'y(FdF)®(01

)
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Now the assertion follows by putting
w=f0df', Q=FdF', w\®\=fldf} &,

= Fo(e-:f1 — Fle) == Fo(sf1 — Fle),

w :f0(6*F1 _ 18*) iqf:?O(g*Fl —716*).

~

2.3.12 Proposition.

L (00 G D)= (L ) (a) L 0)
_“2Jq£ 0 0 g _KVQJqZ 0 _"52Jqﬁ 0 0 g _"52qu 0

B (qu@quqg 0 )
0 JgewqeJqe)’

where
Y(wr) ® (0 0) +v(w)® (6 1) 0 0
JoeWgedqe = 0 Y(war) ® A 0 )
0 0 A0 00
I 'yw,\)®(00>+¥®<01)
- 10 . - _ﬁ 0\
@e (0 1) ety M
2177 t
JgewqeJqr = 0 Jwel —FTYe (M, 0)
M; 0\ i, _ /10
_—(pF® ( 5 _e> —fl“@ ( 0 ) F(Q) ® (0 1)




2.3. THE FULL STANDARD MODEL 197

Proof. A straightforward computation shows

_ - O\ -
Jy@r)J @ ( )
00 0
Jy(w)J NCE
+J7([@)J ® 01
Jqﬂ:)qZJqK = 0 JH(@\) T @ "X 0 ’
- 0N
JY(@r)J ® (0 0)
0 0 _ _
Jy(w)J ® 20
I +3@) 01) |
-J e (2%) 0 QJFJ_EO_-
17e G4 S WY
JaewaeJqr = 0 JA@Je -1~ RIS (Mi,0)”
Jpl'J C(Ha 0 Jpl'J (R Jy(Q)J (A0
P ® (0 M, L 7@ (G,
Since “A~ = A, the assertion follows. O

Define an endomorphism A ~ A of C*° (M, C?*?) by

(Z Z) ~ <_Eg _;) = (_01 (1)) (g 2) ((1) _01) : (2.3.34)
Then we have

AB = (AB)_ (2.3.35)

A = (Ag) (2.3.36)

~
~ o

for all A,B € C®(M,C?*?) and ¢ € C®(M,C?*!) (with ¢ defined in
(2.3.25)).

2.3.13 Proposition. .A((;) consists of all endomorphisms

9ot 0
“ (2.3.37)
0
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S,
acting on ( qz), where
Sqe
_ ] 10 -
1)@ (0 1)+ . MM, , M; 0
MiMy 0 KEAE® RO ap
K Ae@ | =——— e
M M.
Do = H2£*A€®(M;Md,0) V() ® L+ K’e*Xe ® My M, & Tn® (M ,0) ,
10 . MaMg 0
My o ’ 7(®)®(5 1)+;&A® - dMM*>
§F®(o M) §F®(0) oy g (ML 0
i + K A ® <_0 0> ]
M X0 (00 T
e (F0) 5o (L9) :
Dge = 0 @) ® X 0
s X0\ _— /00
i 0 0 7(19A)®(0 0>+£® (0 1)
are endomorphisms of Sgr parametrized by
§ € C®(CI>™(T*M)®C), © € C®(CI*>*(T*M)® H),
A €C®(M,H), 9)®\eC®(CP(T#*M)® C>3),
£€C®(THM @ C?1), neC®(T*M®C*?%), AeC®(M,C**?).
. .- . wgg 0 w(}z 0
Proof. Applying Proposition 2.3.11 to (finite sums of) products 0 1
0 qu 0 qu
in AEI? we obtain w(q)ew(}z =
[ Y(wxw') ® (' 0) + -
01 Mj M, M;
M;My 0 K00 ® (dT> KTy —w’Ph) @ (Td 1\3)
n2¢0<p1® —d_ ¢ ~ e
( 0 M:Me)
. wxw')®1 : _ .
evoequm) el P Qhy) |
0 _ MsM; 0
QOX91)® - +h‘,2 01'[)1® —
My 0 M\ (0 1) ¢ 0 M M*)
0,1_ .0 1 =4 0.1 _ , 0-1 = eMe
(2% ww)F®(0M6)7(Qf fw)l“®(0> M o
TR ®( 0 0)
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(2.3.38)
w0 00
F(@oxwy) ® (’g’ 0) +7@°x7") ® (5 1) 0 0
0 ¥(@p xw, ) ® pw 0
0 0 H(@o xwy) ® (T g) + F(@° <@t
Now the assertion follows by putting
9 =uwxw!, ©=0%0Y 9,e\= ngwi ® pv,
£ = 00! — WOyl = ¢ = Q0! — O,
n =9’ — Wt = n = Q! — !, (2.3.39)
0 0,1 90p!
A= Zo (o' 0") = ¢0§01 o] = A=A
v ~ Vot Y ~
A=yl = A = %t
O

.y Wqe
2.3.14 Proposition. For any ( 0

0

Wae

) mn .Al(ll), written as in Proposition
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Wee

2.8.11, modm; ! ( 0 5
ql

) consists of all endomorphisms of the form

r 10
’y(f+dw)®(0 1)+ ) MM, , =0
MiMy 0 K ("o +9e) ® 5 K’ Ty(e*Q — we* —dyp) ® T M
K2 (e*p +1pe) ® ( y ) ~ e
0 M!M.
K"+ o) ® (MiMa , 0) Kz(gfiif;)glMgMu KTy (e"Q — e — dy) @ (Mi ,0)
10
Y(F +dQ) ® (6 1) +
M, 0 M, MaM; — MM, 0
y(dp + Qe — ew)I' ® (Td M) 7(d<f+95 —ew)l ® (T) Ge <—0 MM +
2 . . MgM] — M,M;
T+ +eptpe)o | T
7]
(o X0\ - 00 7
7(fA+de)®(0 0)+’y(f+dw)®(6 1) 0 0
0 F(Ffy +dwy) ® X 0
. A0\ - 00
i 0 0 y(fA+dm)®(0 0>+7(f+dw)®(6 1)_
with arbitrary
FeCX (M, [eCMO, herec (L), 6= (1 2 ) eemonm,
2 91

. (wge O ) foe O fo O
Proof. Expressing _ ) by (a finite sum of) products o 14 - |
0 wee 0 M, 0 f )
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it follows from (2.3.33) and (2.3.2) that 1 (dfg,)m1(df},) =

1
YdfOxdf') ® (5 2) +
k2(e*FO — fOc*)(eft — Fle)

M; Md 0
0 MM,

R PO — [0*) (e — Fle)

)

o (M2
0

Wdfxdf ) ® 1 +

K2T((e*FO — fO¢*)dF!—

dfo(e*F' — fle*))
ﬂ 0
0 M

K2 ((e* FO — TOE*)dFl—

df°(e*F1 = F'e"))

201

* 70 _«
R =L S = HE) oo e T - e
®(M5Md,0) ~ ®]\/F*MN ~ y
— u- U ® (ﬂ 3 O)
Y(dFOxdF1) ® (% (1)) +
(dFO(ef! — Fle)— (dFO(ef" — F'e)— wHEf _z\f:(;x?(s*Fl Rk
R o~ d 0
(ef° — F)df1)T (ef° = FOe)df')r ® (dT MeM;>
—|—h‘,2(£70 _ FOE*)(E*FI _ Tli*)

*(%)

o)
0 M.

MM} 0
® 0 0

M. =0 -~ w0
URTAEI G
0 0
o 0
+3(dF xdf) ® (5 1)
0

0 (df,xdf,) ® iw
=0 1 v 0
sdfoxaf) e () o)

0 +M®<% 1)_

m(df,?e)m (dfqle) =

Comparing with (2.3.37), this implies
9 =df'<df', w= fOdf' = dw = df° A df?,
© = dF°«dF!, Q=FF'= dQ=dF°AdF',
@A = (df)xdf)) @ pv, wx® A = (fodfy) ® pv
= d(wy ® \) = (dfy, A df,) ® pv.

It follows that
f:=19—dw e C*®(M,QC),

F:=0 —dQ e C®(M,H),
A®N:= (9) —dwy) ® X € C®(M,C3*3).

Moreover ¢ = FO(ef! — F'¢) implies
do + Qe — ew = dF(ef! — F'e) + FO(edf! — dF'e) + FOdF'e — e fOdf!

= dFef! — Fle) + (FOe — ef0)df! = ¢
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and ¢ = fO(e*F! — fle*) implies
£*0 —we* — dyp = *FOdF! — fOdfle* — dfP(e*F! — fle*) — fO(e*dF* — df'e™)
— (" F° — fO*)dF" — dfO(e*F' — fle*) = 1.
Finally,
exe —e*p = —fOft 4+ fOc* Fle =y,
E*)\a — E*go = 7OE*F15 = e,

e de —e*p = fO*Fle = ye,

e*de —efp= —7071 +705*F15 = e,
A= (ef — FO)(e*F! — fle*) = eyp + pe* + FO(Flec* — e* F1),

A= (670 — F%)(e*F! - fle*) = e+ pe* + FO(Flee* — ce*FY),

[4a

A+ A=ctp+ "+ ep + pe*.

2

Since ee* + €¢* = 1, the assertion follows by putting G = %-(A — A) and

~

using the identity

MdM; 0 Muqu 0
AR |=—— +ARQ | —— 2.3.40
( 0 MeMg> ~ ( 0 0 (2.3.40)
1 M*My + MyM* 1 MyM* — MyM*
=-(A+AN)® =2 — s+ d — .
PR 0 MMr) T2 R 0 MM
cH cHL
O

Setting wgp = 0 = Wge we obtain the so-called ”junk ideal”:

2.3.15 Corollary. med(Ker ) consists of all endomorphisms

- lo 0 0 -
Felo1
0 fol 0
0 0 F®(l0>+G® MaMg — M M, 0
i 01 0 MM ] |
®
[ A0y - /00 1
f*®(00)+f®<0 1) ’ ’
0 fa®X 0

: 0 Lo(g0)+70 (1)
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with f,F, f\ ® X\ and G as above.

S,
A fibre metric on ( qe) is defined by
Syt
I, 0O
“ 7, (2.3.41)
0 I
where
T (z/3 0 7 .
I®|=— 0 0 £0
(0 y) 19(5,) o0
Iy = 0 I®z/3 0 N 0 I®i 0
/30 0 0 I® (£ 0)
i 0 0 I® ( 0 y)_ = 07

and I denotes the identity on spinors. Here z,y,Z, ¢y are positive definite
linear maps on G.

2.3.16 Proposition. For elements in A((Ii) expressed as in Proposition 2.3.13
the real scalar product is given by

Re((Vge | 0gelat) s, + (Fae | Igele) g,,] = (2.3.42)
= sRe(? ‘ 19')5 +tRe(© | @')S + 4trg @ - Re(V, @ p | 19,,®1/)S

+rRe[(9 | eNe) g+ (2 | 9) 5+ (0| M) g+ (A | ©) g —w2(( &)+ (n | 1) g)]
+ trg (Mg Mg)” + (M My,)*)x + (Mg Me)*y) Re[(e*Xe | £"Ne) g + (A | A)g]
+ 2trg (M} MyM}; M) Re[(s*/\i | e*A'g) g+ (A zN\') é]

where we introduce the (positive) constants

= g (M3 My + My M)z + M2 M,y),
s = trg(2z + y + 37), (2.3.43)
t =trg(z +y).

Proof. Using the notation of Proposition 2.3.13 it follows that 19&19;@[,]@ con-
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sists of the following diagonal blocks

00 ) 0 (5 5, oo (i

_ 3 10 %\ % M Mg 0 ! :L‘_/30 2 _*xy\/ M;Mdg 0
_(7(19)®(01> E/\6®( - M;Me))(7(0)®(0 y>+fc5)\e®(—0 M;‘Mey)

M M,
+ K2 e Ne ® (de M*OM >)I ® (—

.9/ z/3 0 s\ _ gl | g%\ ;Md§ 0
_ry(z9><19)®(0 )+/<; y(e* N e + Je /\E)®(_0 M;Mey>)

M MdM Md_ 0
_f_g*A*gg*)\,g ® (%3

0 MMM Mey)’

(v@) @ L+ £’ e*Ae @ My M) (v(9) @ L+ £7e*Ne @ MgM,)I @ z/3
= (7(0) ® L+ w2e* X" ® My M) (v(P) ® :c/3 +r2e*Ne ® M*Mug)

—I—e)\ As®M*MM*Mx

(19><19’)®$/3+/~; V(e *,\*519'+195*)\’ €) ® My My 3

—3

MyM* M, M
(v(©) ® (% (1)) K2A ® ( do < MeM*) +/§2A® ( - g))Jr

! 10 2N MgMg 0 241 My My 0 z/3 0
(@) ® (39) + N @ (T MeM*) R ® (—0 0>)g® ( L y)
_ * 10 2 * MdM* 2 A% MM 0
=((©) @ (0 1) Ae ( 0 MeM*> +r°A ( 0 0>)
' z/3 0 201 MaMgs 0 2 A1 MyMi5 0
(7(®)®(0 y)+/<aA®(—0 MBM;y)MQ@( - 0))

= ’)’(@*XG’) ® ($/3 0) + k5 W(G*AI +A*®I) (MdMJ% 0 )

0 MM}y
My M E . MM MM 2
+I$2’)’(®*AI+A*®I)®( 3 0) +A AI ( dVigVidVig 3 0 )
0 0 MeMZMe My

+A*1’}I® (MdM J(Z/IuM 3 0) +A*AI (MuMujfdes g) +A*AI® (M“M 1(\)/[“M*3 g>’

(K2e*Ae ® (MiMa,0))T (K2 *)\'6 ® (MgMa ,0))] ® (z(/f 0)
~ - y
My My My Mg % 0)

= (e"A\"e ® (@))(s*)\'e ® (MiMa% 0)) = e N ee*Ne ® ( - .

(k%" Xe ® (%))T( K2 N e ® <ﬁ>)I®w/3
5

=" NeeNe ® M*MdM*MuE,
~ o —d U

= (" Ne® (MiMs,0))(c* A’e ® ( 3
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Mg 0

e 8 e 4 o )
= thiere (3 hoteres (B 0) = —wrexere (<2 D),

0 M

= (MMy(€") ® (42.0)(1(ENT @ (F23)) = ~w*1(§"x€) ® My,
(2o @ (5 0 )Ty © (52 0. ))re (4 °)
= (Y )r'e (% ) TA) ® (ﬂg‘f ng)) —Ky (") @ (Mdj(\)l ! Mj@y)

Similarly, @;Z@gequ consists of the following diagonal blocks

(@)@ (5 o) +1@ @ F)NIEE) @ (5 ) +3@ e (F)Ie (%))
=Gy et ) +imeGF)Na@ e (s ) +i@ e (1)
= 30, @ (17 1) +30xT) @ (3 7).

= 5(9,x0]) ® (“ vE 0) + 500 @ (

oIo
=]
N—

Here we have used I't = —x2T" and

Tiy(e") = y(€)KT, (€T = -Ty(¢), PW(E*) = K"/(EIT, (€T = ~Ty(¢).
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Taking the trace of these diagonal blocks we obtain
(Pae | IgeTar) Spe T (e | ﬁ;ejqﬁ)sq,; =
(9 | 9) strg(@ +y) + 7 ((e"Ae | 9) g + (9 | €*Ne) o) trg (Mg Mgz + M Mey)
+(e"xe | e*Ne) ghrg ((MyMa)*z + (M; Me)?y) + (9 | 9') gtrga
52((£*/\£ ‘ W)S + (5 | E*/\'E)S)t_r@M;Mua:
+(e"he | £*Ne) gtrg (M My)’z + (€ | ©) St_r@,(a:+y)
K*((© | N)g+ (A ©) g)trg (MaMgz + Mc M. y)
(O ]4)g+ (A ]6))s tre MMz
+(A | A) St_r;((MdMg)%jr (MM7)?y) + (A | A') StrG(MdM;M M)
(A | ) gl (Mo M MyMja) + (A | X) gleg (MM + (3, | 95) gtagu'ma
F(0| ) giagh + (9, | ) glegu'i +2(9,, | T) giagu'Da + 2(9 | 7) gtred
+(eXe | e"Ne) gtrg (Mg My My Myz) + (" Xe | N ¢€) gtrg (My My M Myz)
k(€] &) gtrg(Mj Mgz + M} Mey) — ° 5 | 5 otrg (M Myx)
—&*(n | )it_rG(Mdex + M MZy) — & (Q | Q)ét_rG(Muqum)-

Now the assertion follows in view of the identities
Re ) ‘ 19' :Re(5|W)S
Re(e* e ‘ 19')5 Re ( */\6 | J') g Re(¥ ‘ e*)\'e)s = Re(? | E*)‘IE)S
(

Re(e*/\s ‘ 6*)\'6 = Re E*/\E ‘ 6*/\'£)S, Re(e*)\e | 6*/\I€)S = Re(e*)\g | 6*/\I£)S

Re®|A’§ Re(©|A)g, Re(A|6)g=Re(A|O)g,
ReA‘A S = Re(é|é’)§, ReA|él)§:Re(é‘A,)§,
Re(¢ | &) g = Re(é | El)s’ Re(7 | )§ = Re(g | Ql)g

2.3.17 Remark. For compact Riemannian manifolds M (k = i), Proposi-
tion 2.3.16 gives an explicit expression for the Dizmier trace

ReTr,, [ﬂgé'l%gfqg‘DqA_n + ﬁzeﬁgéjqﬂJqADqErn J;Z]
=Cn /M d'z - Re[(ﬂ‘/‘qe\%efqz)sqe + (&qﬁmngqf)sqz]

by applying (2.1.91) to Ggr-valued spinors.
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2.3.18 Proposition. my(dKerm )+ consists of all endomorphisms

(U"Z 0 ) (2.3.44)

0 Gy

such that

Ogt =

(@)@ (0 1) + . MM, , M; 0
MjMg—* 0 ere® | = Dy @ |7
" Xe® e
0 MM, -
e e @ (MyMa ,0) @) ®L+ e Ae @ MyM, — % =Ty (n) @ (M, 0)
Mo (=
fo (M 0 co (M TNt
7€) ®(0 Me> 7(6) ®<0 ) e MiM; + M M —* 0
L 0 MeM: _% d
[~ (= MO\ | o oy o (20 1
F@N) @ (0 0) +7(@ — Ze*de) ® (0 1) 0 0
&qﬁ = 0 ’7(5)\)®X 0 ’
e N N p— 00
i 0 0 F([@A) @ (0 0) +7(@ — %e*de) ® (0 1)_

with arbitrary

o eC®(N’T*M®C), or®XeC®(N\*T#*M & C**?),
SeC®(N\T*M@H), XeC®(MH), ¢eC™T*MeC™),
neC®(T*M @ C>?), AeC®(M,C*?),
Bq 0 9,

0
Proof. Writing | . - € my(dKerm )t and -

according to Proposition 2.3.13, it follows from Corollary 2.3.15 that

€ 7r2(dKer 71'1)

V=f O=F 9I,0v=Ffcv,
N=0, &€=0, =0, AN=-A=GecC®MH).
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Therefore Proposition 2.3.16 yields

0= Re[(%qe | helue)s, + (Dut | Foelue),
=sRe(d | f)g+tRe(0 | F)g +4trgiRe(du@p | fr®V) g
+rRe[(e0e | )+ (0] G)g+ (] F)g]
g (M M)? + (MEM,)? — 2M MMMy o + (M2 M,)%) Re(A | G) g
= sRe(9 + 26*)\6 | f)g +tRe(6 + %A | F)g + 4t Re(du @ | f®v)g
+ trg (M Ma)? + (M M)z + (M M) (A | G) .

Since f € C*°(M,C) is arbitrary, we have
T
=94 —*de € C®°(\ 2T M ® ©),
o + SEAe (/\ ® C)
ie. ¥ =0 — Le*de. Since F € C*°(M, H) is arbitrary, we have
$i= 0+ A eC®(\T*M @ H),
4
ie. ©® =X — %A. Since f, @ v € C*(M,C**?) is arbitrary, we have
Yy Qu=0,pue€ COO(AQT#M(X)C?’X?’).

Since G € C®°(M,H") is arbitrary, we have

A=A€C®(M,H).

2.3.19 Proposition. The orthogonal projection from .A((Ii) onto mo(dKer )+

is given by
1
g0 0 _ Oy 0 (2.3.45)
0 di 0 7L >
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where
_ 10 -
1 -
1095 1)* . MM, M 0
. MjMg—* 0 gree | = Ty @\ 5~
£ )\E@ T — e
0 MM, -
V@) @1+
Q?J_e = e Xe® (M':Md y 0) - P’Y(n) ® (ﬂ: 0) ,
4 ~ e*Xe @ My M, — ~
10
1 -
My 0 My 98 (5y) +
YT ® ( 0 Me> 1€l e ( 5 ) an (MaMj+ MM — 0
I ? 0 M.M;— )]
[ =L X0\, _ -1 00 -
31 _ -
Ve = 0 F(@x) ® X 0
. N I — 00
I 0 0 F(9N) ® (0 0>+'y(19 — e )\E)@(O 1)_
Uge 0 . . .- 19quz 0
Proof. For ~ |, given as in Proposition 2.3.13, we have < | €

ma(dKer m )+ by Proposition 2.3.18 and

Pge 0 9% Vg0 — 9 0
( EAl >_ ( gt - = 1 € - € mo(dKer )
0 9y 0 Jg 0 Vge — Vg
by Corollary 2.3.15, since
i 1 ok l 0 T
9 —9 +§e)\8)®(0 1) 0 0
N 0 @—-7 + felxe)®l 0
’l9qg - ’19(13 -
1 'rA+£ l 0
(9_8 +?T)®(0 0)+
0 0 A+A (MM — MM, 0
| <o (M ),
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and
@ -0 e (> 0) +
00 0 0
@-7" 19 (G )
Voo — Vg = 0 @r—T) @ X 0
9y — Ef\_ ® ()‘ 0) +
0 0 =="\00
J—T+ + Ze*de ® (Q 0)
L = 0 1 -
This implies the assertion since
A+AeC®MH), A-AecC®MH).
O
Now consider the differential
d: Al - my(dKerm)* (2.3.46)
7T1(A) — 7T2(dA)J'
and product
A .A((I? ® .Ag? — mo(dKer )t (2.3.47)

m1 (A1) ® m1(Ag) > ma(A1Ag) "

computed in 75 (d Ker 71)*. Applying Proposition 2.3.14, (2
sition 2.3.19, we obtain

2.3.20 Corollary.

.3.2) and Propo-

d(wqe 0 ) _ (dwqg 0 )
0 @We 0 dwg)’
where

dwy =

o (204

M;My -
0

K2(e*p + ) @ ( 0

nz(i*cp—}—we) ® (MJMd ,0)

(dp + 92 )F®%O
y(dy € —ew 0 M.

M:M

M;Mu>

) n2(s*w+wg)®( S

v(dw) ® 1L+

kY e*p+ve) @ MyM, — L

~

~ ~

My
Y(dp + Qe — ew)I'® <T>

K2Ty(e*Q — we* — dip) ® ﬁ 0
0 My

€

n21"7(£*QfE£* —d) ® (ﬂ ,0)

~

10
Yd)® (5 )+
MgM;+ My M — &

N2 * *
(e + et + e +pe*)® -

0
MeMF -

)
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and
dwg =
o X0\ . . 90
i@ e () o) +i@-riervee (37) 0 0
0 A(dwy) © A 0
X X 0 = 27 * g 0
0 0 s () o) - wip+vene (3
Similarly,
0 1 0 1
Way 0 Wy 0 _ wququ 0
~0 ~1 | = ~0 A ~1 |
0 Wey 0 Way 0 wqe/\qu
where
0 1 _
qu/\wqg =
_ 10 B
0 1 -
’Y(w/\w)®01+ o MM, ) N M: o
MiMy — T 0 kPPt ® RETy(POQ — Pyt ) @ ===
K/2,¢0w1 ® S ~ 0 0 Me
0 MM~ "
" AT ®1+ . "
r290p! @ (MyMa , 0) ,.;2%@ ® M)*MZ _r KTy(00! — wiyh) @ (M, 0)
~ u s ~ ~
; oo (3)
(20! — WP )T ® Mg O (Q0p! — WO )F @ (—= . . r
Q%' — ¢ 5 M Q00! — ¢ 5 y MM} + My M — & 0
¢ (%Y + %) ®
L ? ~ o~ 0 MM — T
and
~0 A ~1
wqel\wqe =
_ S B}
H@ ATL) (W >+
00 0 0
o — 00
0 F(@9 Awy) @ oy 0

0 . — v 0
'y(wgl\w,ﬁ)@)(o 0>+

(0 p g0
Y@ AT — K590 ® (0 1)

We are now ready to introduce the “dynamical variable” for the Standard
Model, phrased in terms of the noncommutative geometry Ag,.
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. wge 0 (1)
2.3.21 Proposition. For 0 o) € Aye we have
ql

0 0 J 0 0 Ju\ !
0 wge —K°Jge 0 0 wge) \—k°Jge O

if and only if
wge 0
=) 2.3.4
(5 o) =2 (23.49)
where p=p € C®°(T#M) and we define

e (29)

1P ®L
0o (3,)

A~}
I

¥(p) ® (% 2)

) ®1
069

ol

Proof. Using Proposition 2.3.12, it is clear that a 1-form given as in Propo-
sition 2.3.11 satisfies (2.3.48) if and only if the following conditions hold

A0 00 B 10 ool
w) ® +w® 01 =we® 01)° WyRA=wR],

00
0 N
W®(gg)te®01) =% 01) #=0 ¥=0

As a consequence, we obtain

wWARA=wRl=wURl Q=w.

Therefore w = w =: p and we get

10 1oy e (L0 10
w® =p® , wel=p0l Q@(5 |=r®(5,)

01 01
30 00 10 10 _
o (1) 50 (1) =50 (A7) e (A7), s103-ce1-roL
30 00\ _ /00 10 10
ah@QHJ+Q®Ch):Q®(BJ:E®(BJ:£®(BJ'
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wge 0
2.3.22 Definition. The skew-adjoint elements ((;1@ o ) € A(S? which
ql

satisfy the identity

(0 | waelae) s, = (| Bgelye) S (2.3.50)
forall p € AW q¢ ore called nc gauge fields for the Standard Model.
In the following we make the crucial assumption
4tz = trg(y + 39). (2.3.51)

2.3.23 Proposition. The nc gauge fields for the Standard Model are given
by

_7(w)®(% (1]> 0 K’T* ®<]V‘(;d A?[)_

Wee = 0 —-y(w)®1 ”2Ff* ® My ,0) |,

et entt) o)

00
L ’ "
o)
Oge = 0 (@) @ +Y(w) ® 3 0
a 0
7 (@a) ® (g o) T
0 0 3 0
| we(t )
with arbitrary
oo (# oo (T#
w€ CX(T*M @u(l)), QeC®(T*M @su(2)), (2.3.52)

we ® a € CP(T#M @su(3)), ¢ € C®(M,C2x1).
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Proof. Since

i 10 Mg 0 \]
T - 0 Tt —
v(w)®(01) P¢®(OM;)
= 0 Y@ el el @ (Mg, 0)

CHAPTER 2. LAGRANGIAN OF THE STANDARD MODEL

~

[ lo 0 21'\ M—C}k 0 -T
Y(w) ® 01 KTy ® 0 M
0 V@) el wTye (M,0)
My 0 M, 10
wo(Tw) e () @e()

o) e () e (i)

R )
= 0 Yw)®1 _”2Pf* ® (M, 0)
Fore () e (§) e 5h)
and
e () i@ () o : k
0 F(@x) ® A 0
o o sme (30) e (39
—ﬁ(wx)f ® (XO g) +i@)' ® (% f) 0 0
= 0 @)t @ X" 0
_ 0 0 Wf@,(f g)+’y(u7)T®
5w ® (Aot 2) +i(w)® (% 2) 0 0
— 0 F(wx) ® A 0
| : o s (¥ 0) vaw (27
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. Wqe 0 f Wqe 0 . .
it follows that - =— - if and only if

0 wg 0 wge

L O=—w, Q'=-0, G@A=-w,® .

1(1? have the form

Thus the skew-adjoint elements in A

(

wge 0
0 @ge

)

where
I 10 o« o (ML 0]
'y(w)®<0 1) 0 KTy ®<0 M;)
wae = 0 Wyl KTy ® M, 0) |,
My 0 M, 10
_SDF@(O Me> fr®(0> 7<Q)®(0 1)
Mo 20 _ 00
i@e () ) -iwe () o
Wee = 0 F(@r) @ X
20
0 0 @
i A@xr) ® (0 0

with arbitrary

p € C™(M,C"),
Q € C®(T* M @ su(2)),

o

215

w € C®(TH*M Qu(l)),
wy ® X € C°(T# M @ u(3)).
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Now let p € C®°(T# M) be arbitrary. Then Pwee Iy =

- ’Ygef) -
10 0 0 10 0
(0 1) W) ® (0 1)
0 el 0 0 —y(w)
v(p) M, o
0 0 l®0 <pI‘® (T Me> fr@
L (o 1)_
Y(pxw) ® (z 0) 0
0y
= 0 —(pxw) ® 5
_pw@( > ) e (5)
and ﬁa)qgfqg—
- 1T X0
() w@e (y,)
10 0 0 00
&) -2 (5 1)
0 el 0 0 F(@r) ® X
7(p)
0 0 ;®o 0 0
_ (52).
r & 0
ENEY N
00 0
- 00
—(pxw) ® (0 g)
= 0 F(pxwy) ® X
0 0

Taking the trace, we obtain

(ﬁ | wqﬂfqé) Set = t—qulpAwqﬁIqZ

My o
KZ2FQ0*® —d
0 M

ol KTe ® (M, 0)

() @e(5))

. M;% 0
K Tpp* ® (—83 My

K Tpp* ® (Mu§ ,0)

BE
0 i
(¢ 3)
0 0
ws ()|
“1w® (% (1)) i

0

LNEY G
—F(pxw) ® (g 2)

= trgy(pxw) trgy + trgy(pxQ) trg(z + y)

= (P|w)s

trgy

)

j
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since (g ‘ Q)S =0, and

(6 | @ae Tae) 5, = trs, pivge Ioe
= 4trg(pxwy) tre Mrgi — 3treF(pxw) trgd
=4(p | @) g trg Mrgd —3(p | w) g trgF

Assuming the equality (2.3.50), this implies

4(p | @) g trg A 167 = (p | w) gt (y + 39)-

Now the basic assumption (2.3.51) implies
(p]@n)g trigh= (o] w)s

for all p = p € C®(T#M). This yields @y trgx =w,wytrgA =w = —w and
therefore
w)\®)\=wa®a—w®%.

O

2.3.24 Remark. The nc gauge fields as defined above parametrize exactly
all the bosonic fields of the Standard Model, which therefore occur naturally
as components of a single object. This is one of the major conceptual ad-
vantages of the noncommutative geometry approach to the Standard Model.
The bosonic (spin 1) gauge fields mediating the strong interaction are given
mathematically by Lie algebra valued 1-forms

8
iGN € (T M @ su(3)) (2.3.53)

a=1

where G, ..., G® € C®°(T#M) are real spin 1 fields (gluons) and XV, ... A®)
are the so-called Gell-Mann matrices forming a basis of i - su(3) satisfying

tr @ )\®) = %(5(“)(”). In addition, one has the bosonic fields (2.2.47) and
(2.2.48) which experience only electro-weak interactions. Putting

_ M1 5(0)
w 2W

_ i WO WO WD\ K@
= 2 (W(l) —iw®@ w® = 192 Z:lW T
8
wa®a =gy GO, (2.3.54)
a=1

and
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it follows that (2.3.52) encodes all the physical fields W, ... w® O .
of the Standard Model. The so-called ”coupling constants” g1, 92,93 > 0 in-

troduced here will later be expressed in terms of the basic parameters s,t and
Z of the model (cf. (2.3.61)).

2.3.3 Noncommutative Gauge Action Functional

In order to compute the Yang-Mills functional recall that the curvature of
A is algebraically given by dA + A2. However, since we are working in
ma(dKer )t (i.e., modulo the ”junk ideal” dKer 7), we have to compute
the differential and square in mo(dKerm)*. Accordingly, we define the
wge 0

) as
Wyt

wge 0 wge 0 wge 0 B
= K
d( 0 a}qﬁ) + ( 0 (qu> A ( 0 (:)qe € 7T2(d 61‘7'('1)

(2.3.55)

curvature of (
wgr 0

P )
0 wge

wge 0 (1)
2.3.25 Theorem. Let 0 @ € Aqé be a nc gauge field. Then
qf

0

wge 0 F(wge) )
F( 1 )= N 2.3.56
(5 a) = (5" pn 2359
where
[ e (5 )
+
(e +el> - 1)@ 0 -k Ty(V(p+e)) ® (
Mi—% 0
(0
—(Fw)®1 , . . )
F(wge) = 0 + —K* Ty (VA (p+e))" ® (M, 0)

& (lle+ell® 1) ® My - %

3

(T rare (4 0 ) (@ o+ rs ()

| (

0

WF@ (5 )
N

n2
e +el’ -1V
M+ M, —T

7 G(8), QO’ @+

i 0

)

0 M

0
M2 —

)
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and
[ a0\ L0
Y(dw,) ® (0 0) + ¥(dw) ® (H _1>
+ -
ab 0
(@a ADy) ® (‘Bb 0) 0 0
+
27 2 g 0
Rl +el? =D ()
a)®a
+
F(og) = 0 w)® 3 0
+ -
(@ N W) Q@
ao ;3 0
) o (o) + i) @ (g _1>
+ -
0 0 o\ (ab 0)
H(wa AWp) ® (0 0
+
\ 00
_ Hlptel-ne(3))
Here
Flw)=dw, F(Q)=dQ+QAQ,
Flw,®a) =dw, ® a+ wg Awy Q ab (2.3.57)
are the respective curvature 2-forms (field strength), and
VH =dp + Qp — dw (2.3.58)

denotes the covariant derivative acting on C*°(M,C?*1).

Proof. Specializing Corollary 2.3.20, we obtain

d wee 0 _ dwy
0 e 0 dwg

with dwq@ =
Y(dw) ® (%

K2(p1+71) ® (

o

=
@ \lﬂ
N————

0

Y(dp + Qe — ew)I' ® (

—v(dw) ® L+
&2 (p1 + 1) ® ML

r

L e (2
0o M) TEETHL Y 0

)

K2Ty(e*Q — we* — dp*) ® M—; 0
0 M

K2Ty(e*Q —we*

o (3%)+

Mi+Mi—5 0 )

%(‘Pl +91)® (

€

—dy*) ® (M, 0)

0o ) ]
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and dwg =

3(dwa) ® (i g) +5(dw) ® (% (0]) . .

—(dw + K*Z(p1 + 7)) ®

/N
(=3 [
[l =)
N——

0 Y(dwa) @ @+ F(dw) @ 3 0

s o (0 0) #3690

Similarly

wge 0 wge 0 wWae N wyp 0
~ A - = ~ ~
0 wye 0 Wy 0 Wae N wgp

where  wg A wyge =

r M;- 0 M; 0 1
2 2 S O 21—\ *Q_ * —
nllwll®( 5 Mf—ﬂ) & Iy(p we') ® 0 M
0 &l @ My — & KTy (" @+ we') @ (M, 0)
(Q/\Q)@( >+
e (S y,) o@geeare () e
Zlle
L P == 0 Mf—
and @y AWy =
ro._ ab 0 T
F(We A wp) ®
00
0 0
R
RSy 01
0 F(@Wa ATp) ® T 0

3o+ 2+ 7)) 8 (5 )
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Therefore the assertion follows via the identities
VH(p +¢e) =dp + Qe+ Qp — cw — pw,
Eptoe=p+p1r=cp+oe otee=0=cp+ge,

ep* + et + et + et =1 +74,

oo =llel’ =o', ©o=0=0", o¢" +op" =|ol’,
wAw=0,
W, AW, @V = (wa®a+w®§)/\(wb®5+w®é)
= (waAwb)®EE+W®§+QaAwtwAw%®g: (@, A wp) @ ab.
=0 -0

O

2.3.26 Definition. The nc gauge Lagrangian for the Standard Model is the
functional
wge 0 _ =
0 o, (F(wge) | Fwge)lge) g ,t+ (F(@ge) | F(@ge)Ige) s, (2359
gt q q
Wy
0

uct is taken fibrewise over M, so that (2.3.59) really defines a Lagrangian
density. For the integrated version

0
defined on the nc gauge fields < ¢ o ) € .A((;q). Note that the inner prod-
ql

/ 0" - [(F(w) | Flwa)l) s, + (F@g) | F@li)g,]  (2:3.560)
M

one has to assume that wgy and wgp have compact support. For compact
Riemannian manifolds M (k = i), it follows from (2.1.91) that (2.3.60) is
related to the Dizmier trace

Tro, [F(wge) ' F(wee) Iel Dol ™ + F(@qe) ' F (@g0) g Jqel Dgel ™ Ti]

= /M 05 - [(F(wqd) [P (wqe) Igt) s,y + (F@q0) | F (@q0) Ty)s,,] -

wge 0
2.3.27 Theorem. The nc gauge Lagrangian of ( Oqe . > is given by
Wae

(F(Wqé) ‘ 1'7’(("}q€)Iq£)5q‘Z =+ (F((:qu) ‘ F(a)qf)jqé)sql =
(s + 3trGE) |F (w)|? + tIIF(Q)]® + 4trgZ| F(wa ® a)||* — 2677 ||VH (o
2 r r T
+(lp +ell? = 1)7 - {trg [(MF — 5)* + (Mg — 0)* + 5(Mg + Mg — 5)°

Hrg [(M2 - 1)% + L(M2 — 1))y + 3 teg§} + const

B

+e)|I?
|z

where the constants r,s,t are defined in (2.3.43).
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Proof. Using Proposition 2.3.16 and Theorem 2.3.25 it follows that
(F (wqe) ‘ F(wqf)qu)sqe + (F (@) ‘ F(‘:’qf)jqf)sqz -
sIF(w) = k5 ((p + )" (p +e) = DI
+HHIF(Q) - o +e) (o +e) — g
+ 4163 F(wa ® 0) + F(w) @ 3llg
+26°r{Re(F(w) = w*5(p + ) (p+e) = D) | (p+e)(p+e) — I)g
+ Re(F(Q) — nZQLt(w +e)(p+e)—1 ‘ %(‘P +e)(p+e)— I)§
= r2r{IV(p +e)lI§ + IV (¢ + )"l }
+trg (M + Mo + Mly) )
Al +e)(p+e)—I)g+1le +e)* (¢ +e) — 115}
+ 2trg (Mg MgMg M)z (0 + )" (0 +2) — IlIg
= [F(w)lls(s + 427 - 3~ 5) + HIF(Q)llg + 4xe| Fwa ® 0 g
(e +e) (o +e) —I§
8Ty + 2y — 2L — 228 - 1+ trg (Mg + M)z + My)(1 + % - 2)
+ 2trg (Mg MgMj Myz) 3 - 2} = 2670 ||V (¢ + €) 3.
Now the assertion follows from the calculation
tre (M7 — §) + (Mg — D) + 3(MF + M — )«
+trg [(M2 = 1)% + J(M? = 5)?]y + St
— Strg [(Mg + M)z + Mgy] — trg My MgMj Mz

—(Z + D)tr, [(Md+M2:1:+M2]
+£t_ y+ (2:2 +2t2)trG$+( r—)trGy

= —(Z + 5)r + Strg (37 + 25 + 1) + Lytig(z +y)
=2 syt

O

2.3.28 Remark. Conwverting to physics notation (2.3.54), the nc gauge La-
grangian gives the Standard Model Yang-Mills-Higgs functional in the usual
form

1 . a a CL
72 17 (g1 w77 + —IIF ZQ2ZW( @) + —IIF zgsZG A@))?
1

a=1 a=1

—n2||vH<(§i) 2+ (||( )||2—2r) + const
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if the coupling constants g1, g2, gs satisfy

1 4 1
o= s+ otred, = =t = dtrod (2.3.61)
g 3 93 93

and for the Higgs mass mpy we get

my =t [(Mg = 5)% + (M = 5)* + (M + My - )’]z (2.3.62)

2.3.4 Noncommutative Matter Action Functional

For the remainder of this section we are concerned with the fermionic action
for the Standard Model, involving the ”perturbed” Dirac operator

(D-‘”’Z 0 ):: (qu 0 ) (2.3.63)
0 JyeDygqed e 0 JpeDgeJgt
wge 0 0  Jgw\ (wge O 0 Jy -t
(5 a) = (Gen 0) (5 a) G o)

wye 0
at . ) Note that
0 Wy

(quﬁ 0 )T _ (ngﬁ 0 )
0 JgeDgqeJqe 0 JgeDgqeJge

since D,vy(w), 7(2), v(ws ® a) and the analogous operators in the anti-
particle sector are skew-hermitian.

associated with the nc gauge field (

2.3.29 Proposition. We have

Dgge = Dot + wge + Jgewgedge =

M; 0
2 * —
@o (2 0) +rwe (20 : HP(“S)@(OM:)
T E 00) TG 2
D®1+ 2 * *
= K T(p+e) @ (M, ,0
0 ’}’(UJa)@(l_'Y(UJ)@é (f g) (2, 0)

D+ e (=’
rars (Gy)  erore () 1(wn) : (?g; ®<S§ ;>(i :




224 CHAPTER 2. LAGRANGIAN OF THE STANDARD MODEL

) (1o ]
®lo1) ™" M. 0
_ 2 0 —kT(p+e)® | =—
s@ae (C)) —dwe (L° 0 M
T E N0 0) TTEND 2
0 . Doelt 4 —K’T(p+e)' ® (M, 0)

 @ee(Gh)
),

cye () vio £ )
Wq

0
Proof. Writing ( Oe 5 ) according to Proposition 2.3.23 we have
ql

(qu 0 )_( 0 qu) (wqe 0 ) ( 0 KQqu) B (wqe-l-qu(Dquqg 0 )
0 g —/<;2qu 0 0 wee —Jge 0 B 0 wWaee + JgewqeJge '

Since

M 0
—(¢+€)F®<T ) ~(P+ere

Joewge g =

Jeoim
o
\—/
o
]
]

1w (g o) =7 ® (0 °

0 Y(wa) ®a—y(w)® 3 0

S Jeolr
=
—_
\/
L

it follows that

wge + JgeweeJge =

r a0 20 Mj 0 ]
a -— 0 21—1 *
Y(we) ® (0 0) +v(w) ® (0 2) T ® <_0 M;)
0 Y(we) ®a —y(w) @ 3 K Ty" @ (My ,0)

SOF@(% 0) fr®(%) ’Y(Q)®<%(1)>+ 0)

> *) e (§ o) -

O eolm
|
—_
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and
‘:’qﬁ + JqﬁwqﬁJqE = qu(wqﬁ + Jqﬁajquqé)qu =
3@ 6 (§ o) i) (% 2) 0 KT e (MT‘g Ajt) —
0 F(@a) ® T+ F(w) ®é —nszt ® (M, 0)
» - i@ () +
N 3 I el
| "I N e () e (3 )

2.3.30 Definition. The nc matter Lagrangian for the Standard Model is
the (imaginary) functional

¢q€ o5t (ngz 0 ) ¢q£
('quZ) }_)Al'(lwqbwqf) 0 Jqf-ngEJqE 'l,qu (2364)

= / (¢Z€ Dggetpge + ﬂe Jae Dgqe Jqt 1Zqﬁ)

M

defined on the nc matter fields <1€q£>.
ql

2.3.31 Proposition. The nc matter Lagrangian (density) is given by

¢;¢quﬂ/’q€ = w(EDiﬁd - (dRrdr + €Rer)+

P ¥(wa) Ya - dpadr + P y(w) Ya (3 dpdr +2eher)

—I—lﬁLDiﬁu “URUR + \IfL'y(wa) Py * URAUR — ¢L Y(w) 1y - % URUR

+UH(D +9(2) U - (g gz + €5, 41) + ¥ y(wa) - gjaqr

~Uly(w) O (39101 — £01)

+2i Im WH(p + €) Ty - (g} Mydr + € Meer) + 2 Im ¥ (p + €) T, - g Myur

for 1ge written in the form (2.3.7), plus a similar expression for the anti-
particle sector.
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Proof. Using (2.3.7) and (2.3.63) one obtains

b Dogetboe = V5DV - (dipdr + eher)+

PV (wa) a - diadp + ) y(w) a (3 diydr + 2efer)

+4pl Dapy, - uRUR + wiv(wa) Py - URAUR — w:&fy(w) Py % uRUuR
+UHD + () U - (g7 g +£5 1) + Ui y(wa) ¥ - gjagr
~Uty(w) U (3479r — 41 0L)

+UH (o + &) Ty - (4} Madr + £; Meer) + W' (o + €) Topy - g} Myur
HRPPST(p +€)* U - (dpMy"ar + epMlL) + RPLT(p + €)* ¥ - up My q -

The last four summands combine to yield the assertion, since

\I/Jr((p + 6) P\Ifd . (qi%d}z + é*LMeeR)
=i (o +)* U - (dipMy*qr + e M2 er)
= k25 T(p +e)* U - (d5Mg*ar + €M Lr)

and

Ui+ &) T, - gf Myur = T (0 + €)* U - uf My gy,
= —k2PLT(p+€)* U -y My*qr, -

wge 0
2.3.32 Remark. Using physics notation for the nc gauge fields ( at )

0 wye
(cf. (2.3.54)) and the nc matter fields (ng) (cf. (2.3.9)) we obtain the nc
ql
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matter Lagrangian in the usual form
W} Dipag, + Yl Dipey, + Pl D
_— v fogt Te,
(g, Tur )2 +7(2) { g 7 )+ (Ter, T ) (2 +7(2) |
f b0 f -
‘l'% ¢dR'Y(w)¢dR + 2tegy(w) er — % ¢UR'Y(W)¢uR
Ty 15
-3 (2, T @) () + (2 Tt ()

ur v

) Y(wa) ® athay, + Pl V(W) ® athuy

dr,

Y,

+(h 0, )y(wl) ®a (qf ) +2i I [ (W), , W1, ) (9 + &) TMy ou,

+(0L,, U0, (¢ + &) TMetpe, + (T], WL, ) (0 + €) T M, %R] =

uL

p Dtbay + Yla Diey, + Yl Dibuy, + ¥ Dy, + O}, D, + T, DY, + ¥}, DY,
(2 9L WO g, + 20l y(WO) ey — 3 plpy(WO) gpyy,
—1 0l AW O) Wy, — 3 A (W) Ty, + B AW )T, + 3], 4(WO)T,,)

3 U v
e [(‘I’ELa‘PLL)v(W(“)) ® 7 (mdL) + (0, O, (W) @ 7@ (\IJLH

a=1 ur 147
+igy é (91, 1(G@) @ X g, + 9l V(G®) @ XD g+
@LL:_(G@) &AWy, + W], 7(GW) @ X 0y, ]
+2m (¥}, @°T Mytpay, + h, @+ T Myrpa, + UL, 8T M, 9,
+0), OV T M tpe,, — Ul BT Mytpu, + Ul 3T My 9,

plus an analogous expression for the anti-particle sector. Up to now the
constraints (2.3.11) have not been imposed. Restricting the Lagrangian to
fields satisfying (2.3.11) yields a vanishing action in the Euclidean case, but
for Minkowski signature one obtains the correct action (in particular for the
mass terms) as discussed at the end of Section 2.
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2.4 The Standard Model coupled with Gravity (H.
Neumann, H. Upmeier)

In this section we combine the Yang-Mills type interactions (electromagnetic,
weak and strong force) discussed in Section 2.3 with gravity, by treating the
space-time metric g together with the 1-forms described in Proposition 2.3.23
as an independent dynamical variable. In this section we keep the notation
introduced in Section 3 but for simplicity we put Iy =1 = fqg. According
to the ”Spectral Action Principle” (Chapter 1.6, [31]), the Lagrangian of the
Standard Model coupled with gravity is expressed in terms of the spectral
properties of the ”"perturbed” Dirac operator

(ngf ’ ):: (qu N ) (2.4.1)
0 JeeDggedye 0 JyeDgeJ g
wge O 0 Jy\ [we O 0 Ju\ !
(0 o o) (0 a) G )

wge 0
already discussed in Section 2.3. In this section we regard ( (;118 5 ), more
q¢

g (@ O 0 Ju\ [wee O 0 Ju\ ,
precisely 0 @y — —:“62qu 0 0 @ —HQqu 0 , as an n-

ternal fluctuation of the metric considered as a dynamical variable as well.
The spectral action is concerned with the spectral properties of the square

2 2 2
0 JyuDgudye 0 —JeD2 1 Tg 0 JuD2,J.

It is clearly enough to study Dyqe viewed as a differential operator on Sg.

2.4.1 Generalized Dirac operators

In order to realize Dyg¢ as a generalized Dirac operator in the sense of dif-
ferential geometry over space-time M [90], we consider the (trivial) complex
vector bundle

E=Mx Gy
and realize Sy as the vector bundle tensor product
Sgp=80Gy =Sy FE (2.4.2)
so that
C®(Sy) = C®(S) @ Gy = C®(S) ®4 C®(E), (2.4.3)

where A := C*(M,C). In local coordinates (2.1.22), the pu-th covariant
derivative of the spin connection V*° on the spinor bundle S is given by

VE =0, — ’Y(‘:f“) =0y — iiwi Njj Ayl (2.4.4)
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where in is defined in (2.1.68). Similarly, a Yang-Mills connection V¥ on
FE has covariant derivatives

Vi =0, +w), (2.4.5)

where
w” = da' @l € C®(T# M @ u(Gy)) (2.4.6)

is the matrix-valued connection 1-form. Note that (2.4.4) and (2.4.5) define
first order differential operators on C*°(S) and C*°(E), resp. Now consider
the tensor product connection V on § ®pr E. Using the decomposition
(2.4.3) we obtain covariant derivatives

Vu=Vi®a1+184V} (2.4.7)
or, more explicitly,
Vi ®a€) = (Vi) ®a &+ 9 ®a (V,€)
= (Ot = 1w, )¥) ®a € + 9 ©a (Bl + wy€)
= 0u(h ®4 ) + 9 ®a (W, 6) — (Y(wu)¥) ®a €

for all ¢ € C*°(S) and & € C*(E). The ” E-valued” Dirac operator associ-
ated with the Clifford connection V is the first order differential operator

Dy = (y(dz") ®4 1)V,
= (Y(dz") ®4 1)(V; @41+ 1®4 V) (2.4.8)
= (Y(da") V) ®a 1+ y(dz") @4 V]
=D®sl+vy(dz")®a VE

acting on the Clifford module C*°(S ®,; E). Here D is the Dirac operator
induced by g. More explicitly,

Dy (9 ®@4 &) = (DY) @4 & +y(dz)p @4 (VL E) (2.4.9)
= (D) @4 &+ y(dzt)th @ (Fu + w) €)

for all 1 € C®(S), & € C°(E).

2.4.1 Theorem. D,y is a generalized Dirac operator on Sy, i.e. there
ezist a tensor connection

V=V'Q414+104 V¥ (2.4.10)
with Dirac operator Dy and a vector bundle endomorphism & such that

Dyyy=Dy+T'®as¢.
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The corresponding connection 1-form is

I a0 20
wa®<0 0>+w®(3 2) 0 0

w” = 0 we®a—w® 3 0

0 0 0 (*° @0
Plo1) Te®\o0) "9®\7 1

(2.4.11)
and the endomorphism &£, encoding the Higgs field ¢ and the mass matrices,
is given by

_ Moo\
0 m2(¢+5)*®<—d )

Jeoi—
]
~——
L

]

0 M

E= 0 0 K(p+e) @My, 0) |, (2.4.12)

(rare (T ) eroe (52 0

Proof. In Proposition 2.3.29, the differential operator Dgqp on C*°(S @ E)
is written in terms of the trivial bundle F, so that (2.4.9) must be specialized
to ”constant” sections £ = ¢ € Gy. In this case

Dy (¢ ®c) = (Dy) @ ¢ +y(dzt)p @4 wj/c
= (D) (¢ &c)+ (y(da") @ wy) (¥ ® ¢)
= (D®1+7y(ds") @ wl) (¢ ® ).

Decomposing ¢ according to (2.3.4), the assertion follows from Proposition
2.3.29. O

2.4.2 Theorem. In terms of the tensor connection (2.4.10) we have
D}y =V'V+V
where V is an endomorphism of S Q@ E given by
—V=9"T®4[Vy,E]l+ 37"y ®a R}, +1®4 (E* — £1). (2.4.13)
Here RP is the curvature of VF and R = 1Rf] is the scalar curvature of g.

Proof. Since DI'+I'D = ( by (2.1.72) and y#I' = —T'y* by (2.1.5), it follows
that

Dy(T®4&)+ (F'®4&)Dy
=(D@A1+7" @AV T ®AE) + (T @aE)D@al+7"®4V))
= (DT +TD)®4 € +9"T ®4 VEE + Ty# @4 EVE = 4T ®4 [V, ).
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Therefore the Lichnérowicz formula (Chapter 1.6)

DY = -V*V + 377" ®4 R, — {R1

for E-valued Dirac operators implies

+ (T'®4&)Dy +T? @4 &2
El+1®,4E%=-V'V -

= D% + Dy(T®4E)
IR14+ 4T ®4 [V},

D= (Dy+T®48&)?

= -V*V+1iy"y" @4 R, — V.
O

2.4.3 Proposition. We have

i Mg 0 0 0
o +ell” ® ry M2
0 llp +ell” © Mg 0
£2 — 2 -
(Mo
(pte)p+e) ®| = 2
0 0 a2
+He+e)p+te)y® 2o
L ~oY e 0 0/]
and
. (M o
_— 0 0
llo+ell” ® ( 0 M
0 llp +el” ® My
£ = el .
(p+e)p+e) ® (—
0 0 0 M2
My 0
i e+ ( 5
Proof. This follows from (2.4.12) in view of the identities
$o=0=¢", ¢'¢= lol* = ¢*9,
96" 9" = ||9l¢d"™, b p¢* = |4l ¢I" PPT =0 = ¢4 4"
Since tr ¢ ¢* = ¢* ¢ =tr ¢ ¢, Proposition 2.4.3 implies
try 2 =26%r|lp +€|?, (2.4.14)
where

= trg [3(Mg + MJ) + M{]
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as in Section 3 (putting I, = id). Similarly,
trp ' = 2trg (3(Mg + My) + M) - [lo + ¢, (2.4.15)
As in (2.3.58), we consider the covariant derivative
VI =0ud+ Qo — duw, (2.4.16)
acting on "Higgs” fields ¢ € C°(M,C?*1).

2.4.4 Proposition. The covariant derivative of € is given by

E
[V;ug] =
_ ) M0\
0 0 R (Vip+) (T M;)
0 0 w (Vi (p+e) ® (My,0)
Md 0 Mu
H — H — 0
_W(<,0+s)®(0 Me) V”(‘HE)N@(O) ]
Proof. Since wf€ =
alM}
K2wa(p +£)* ® ( — %)y
0 0
0 0 2 *
sM; 0
KPwlp +e)* ® | ==
0 2My
I$2Wa((p + E)* ® (aM_; ) 0)
0 0 ~

—nzw(f + i)* ® (%ﬂ , 0)

CLMd 0 M,
“’“(“’“LE)@(O_M) Q(Wrg)@(()— 0
1 1
My 0 3 My
—w(p+e)® | 3== —w(p+e)® | 3=
w(w)(o M, (f~)(o)
and Ew? =
M* 9 Larx
Kp+e) e (== |-k (pte) us (=L
0 M = 0
0 0 .
2 + ) wa ® Mja ¢
+ € —_
e = 0 0
* 1arx
n2(cp+€)*ﬂ® (_") _'432(90"‘5)*%@ (30u
0 0 M:a
+62(p + £)*wa ® e
Mga 0 Mya
(p+€)wa ® . + (f-l—s)wa@ ry .
2 4
2My; 0 4 M,
+ew | S —(pt+ew® | 3=—
o vawo (1 0) g g (12)
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we obtain
_ K (w(p+e) —(p+e)'Q) ]
®
0 0 g o
0 M
—&’W(p+e)" +(p+2)"Q)
[wEa 5] = 0 0 ~ o 5
(M, 0)
Qe +e) = (p+ew) (Q(f +e)+ (f +)w)
®
My 0 ﬁu 0
( 0 Me> (T) |
Therefore

(Vi €] = 0,€ + [wy, €] =
&% (Oup* +wu(p '%5)* —(p+e) Q)]
0 0 M; 9
(T M;)
KO p” —wulp+2)" = (p+£) Q)
®
(M, 0)

(Bup + Qu(p +¢) — (p +e)wy) (auf+ Qu(f‘*’ £)+ (f‘f'i)wu)
®

) () °

O

In the following we use the normalization conventions for traces and
inner products listed at the end of Section 2.1.

2.4.5 Corollary. We have
K 2Vg ENIVyLE] =
[(VE(p+2)) (VE(p+e)) (Vilp+8) (Ville+e))
&

b ® 0
Mi 0 M M,
0 M 0

(Vi +2) (Vip+e) (Val(e+e) (Vi(p+e))
® ® 0
(MuMa ,0) M,

(Vi +e)(Vi(e+e) & (—

0 0 0M2 0
+(Ve+ e))N(Vf(ga + 6)): ® (Tu 0
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and hence
trp[VE, E]VE, £] = 262 r Re(VE (¢ + €)|VE (¢ + €)) . (2.4.17)
2.4.6 Lemma. 15
trgepV = ZR—Z%ZTH(,O-I—&HQ (2.4.18)
Proof. In view of the identities
troer VT ® [Vf,é’] = trgy#T t_rE[Vf,S] =0,
i
trser "7’ ® Ry, = trg vy trp Ry, = —trg vy trg Ry, =0,
it follows that
—trggpV = trp(E? - ?1)-
Now the assertion follows with (2.4.14). O
2.4.7 Lemma.
trgepV” = 2t16(3(Mg + M4) + M)l +e||*

2 2 2
- kTR R
wrRlp+el? + 1o

1
= 2671V (e + o)1 + S R
Proof. In view of the identities

R R
trses (VT @[V, E]) (I® (€7 — Zl)) = trgy"T try[Vy, E(E° — Zl) =0,

=0

v R v R
trsen(Y'7” @ Ry) (1® (€7 = 71)) = trg vy trp Ry (€7 — 1)
= —trgy"y* trERE (&2 — %1) =0,

troen (VT ® [VF,E€]) (v*7® ® REp) = trgy"Ty*y? trp[VE EIRE; =0
=0

it follows from (2.4.13) that the mixed terms in V2 have trace 0. Therefore
R 1
t_TS®EV2ZES®E(I®(52—ZU2+(’Y“P®[V ) + (’Y v ® R,)%).
Moreover (2.1.52) implies
troen(v"7” ® Rf,)? = trey*yPy*y trpRE, RE,
*
= —(9g" —g™¢" + g"”g’@“)trERfuRaEg
= (9*¢" — g*"g"") (R, | Rig
= g*g" (Ryy, | REs)  + gﬂ“ga”(R | Rfo) 1
= 29 gP" ( RE | REs) , = 2(RE, | R®™) , = 2||RE|%
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and (2.4.17) yields
- t_rS®E(7uF ® [VE’ g])2 = _t_rS7aF7uP t_rE[Vg’ E] [Vfa f,‘]
= w’rg®* 2Re(V (0 +e) | Vi (¢ +¢))
= 2H2T(VH“((P +¢) ‘ Vf((p + E)) = 2:%r||VH (¢ + €)%

With (2.4.14) and (2.4.15), the assertion follows. O
2.4.8 Lemma.
y 15, .
g"*g" trsep Raghy, = —4 LR * = | R”||%- (2:4.19)

Proof. We have
RV=R°®1+1®R"

since for any pair X,Y of vector fields
RYy =VxVy — VyVx — Vixy]
= (V5 ®1+1VE)V)i®1+1@VE)
— (V¥ ®@1+10VY)(VE@1+18VE) - Vi, ®1-10 Vi
=ViVy®1+VyeVE+VieVE+1eVEVE
—VEVE®1-VyeVE -V Vi - 1@ ViVE - Vi1 ®1-18 Vi,
=R%y®1+1®R%y.
Since RE,, = W(EW) (cf. (2.1.60)) this implies
Ry, =R, ®1+1®R}, =7(R.)®1+18® Ry,

Therefore

RYRy, = (V(Rap) ®1+10 Rfﬁ)(y(.szu) ®1+1®R.)

=Y(Rap)V(Ryw) @ 1+7(Rap) ® Ry, + (R ) ® Rig +1©® R R,
and hence, by Proposition 2.1.13,
trsom Ryg Ry,

= 1btrg 7(-§'aﬂ)7(-§'uu) t+trg RaEﬁREu +trg ’Y(-}j.aﬂ) trg R/,EUJ +trg 'Y(-Ij'uu) t_rERgﬂ

— —
= _g('Raﬂ ‘ 'RW) —trp RypRy,, = _g('Raﬂ ‘ 'Ruv) - (Raﬂ | RW)E'
It follows that
15 ) .
_guaguﬂ t_rS®E RZﬁR/Yu = g”aguﬂ(g('Raﬂ ‘ 'R;u/) + (RaEﬂ | R/.EW)E)

5

w | o , 15,
g (B | Ry)+ (R™ | Ry)p = SR+ | R%|E

O
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2.4.2 Spectral action and heat kernel invariance

We will now formulate the spectral action for the second order differential

operator
2
P:=—-Dyg, (2.4.20)
realized as a generalized Laplace operator according to Theorem 2.4.2 (the
minus sign stems from the fact that Dy is skew-hermitian).
For (compact) Riemannian manifolds M, the spectral properties of P

are encoded in the well-known heat kernel expansion [90]

{7 W, z) ~ (4nt)™* > "t a;(P, z) (2.4.21)
720

of the (positive) operator P, regarded in the asymptotic sense as ¢t — oo.
Here n = dim M and z € M. This series allows to express the trace

Ty e—tP ~ (47.rt)—"/2 Z tj /dn.T‘t_rS@Eaj(Pa‘T)
20

of the trace-class operator e7*f’. Using the expansion (2.4.21) one can show
[31] and Chapter 1.6 (Proposition 3.2) that for large m

P -n j—n
Tr x (W) ~ (4m)™2 Y “m* " x; Tr a; (P) (2.4.22)
j=0

holds for any positive ”cut-off” function x on [0,00) which has an analytic
extension to the right half-plane decaying sufficiently fast at co. Fixing such
a function y, we put

X0 := /dux(u)u, X1 = /dux(u) (2.4.23)
0 0

and xj42 == (—1)7 x9(0) for j > 0. Note that the coefficients xo, X1, x2 are
positive. Putting n = 4 we obtain for m — oo

T P r m —2
X (_7,',12) ~ ( ) + O(m ) bl
where

£ = (4m)72{m* xo Tr ag(P) + m? x1 Tr a1(P) + x2 Tr ap(P)} (2.4.24)

is considered as the "renormalized” action at mass scale m.
For manifolds of Minkowski signature (+ — ——) the analogue of the heat
kernel expansion (2.4.21) is the so-called Schwinger-de Witt expansion

{7}z, ) ~ i(4mit) ™/ (it} a;(P, z) (2.4.25)
Jj20
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used extensively in quantum field theory on curved space-time [61][18][88].
While a mathematically rigorous study of this series and its spectral in-
formation is much more subtle (cf. [88] for discussion and references) it
is nevertheless possible to derive an action analogous to (2.4.24) by using
ideas from renormalization theory [18][61]. These ideas work best in the
"adiabatic limit” obtained by considering P +m? at large mass-scale m. By
(2.4.25) we have

(e MmO (3, 5) ~ i(drit) /2 > Gty e "™ a;(P,x) . (2.4.26)
J>0

Now consider (formally) the propagator

00
(P+m?)~t = /idt e~ iH(P+m?)
0
and its logarithm
00
In (P +m?) ! = / i dt (it) 1 e~ HP+m?)
0

Inserting (2.4.26) we obtain the ”effective Lagrangian density”

1 1

Logs(a) = 5 (In(P +m?)} (w,7) = — & {in(P +m*) " }(z,2)
~ %(471’)_"/22%(13,:6) / i dt (it)I—1-m/2 gmitm® (9.4 97)
>0 0
— SR Y ay(Pa)T( - )ym"
Jj=0

asymptotically as m — oo [18, (6.41)]. The last equality follows by taking
Laplace transforms. So far we have kept the ”space-time” dimension n as a
variable, but now we let n 1 4. Since I'(j — §) is regular at n = 4 for j > 2

we obtain

Lepr(z) = % (47r)_"/2 {ag(P,z) T(=5)m" +a1(P,z) (1 - %) m" 2 + ay(P,z) T'(2 — 2) m”_4}

+0(m=2) .
Put

cn::4—n_7

where v is Euler’s constant. Then
1 4

g D(1=5) =5 +o(t—n),

Tre-n)=1to4—mn).

Cn
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Therefore (2.4.27) implies
Legs(@) ~ e L7 (@) + O(m™?)
as n — 4, where

4m™ 2mn 2
72) ag(P,z) — n—9

£ (z) = % (47)~"/? { a1(P,z) + m"™* ag(P,x)}

n(n —
is regular at n = 4, with value

m

£ (z) = 3217r2 {7 ao(P,z) — m? a1 (P, z) + as(P, a:)} . (2.4.28)

This expression will be taken as the Lagrangian density in the non-euclidean
case. Comparing (2.4.24) and (2.4.28) we see that for space-time of signature
k € {1,i} we may write the Lagrangian density as

L (z) = xom* ao(P,z) — k2 x1m? a1 (P, z) + xam? aa(P,z)  (2.4.29)
where xo, x1, X2 are positive constants.

2.4.9 Theorem. For P = —nge we have

trsgm ag(P) =15,

5
trsgpal(P) = 2% 7)o +e|” — ZR ;

trops a2(P) = trg (3(Mg + My) + M) |l +¢|* (2.4.30)
1
- EKZQT Rl +¢el? + 627 |[VH (0 +€)|?
1, w3
+ 6 1R | — I Chw C*

+ surface terms + topological terms.
Here C,,, is the Weyl curvature tensor of g and
ri= trg (3(Mg + My) + M) .

Note that surface terms and topological terms do not contribute to the vari-
ation of the integrated Lagrangian.

Proof. Since P = V*V 4V is a generalized Laplacian according to Theorem
2.4.2, we may apply [90, p. 336, Theorem 4.1.6] to obtain explicit geometric
expressions for the low order terms a;(P, z) (in the non-euclidean case, with
signature + — ——, cf. [18, p. 160]). Since ao(P) = 1 we have

tregp ao(P) =trpl =15.
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Since a1 (P) = % 1 -V, Lemma 2.4.6 implies

R
trogr ai1(P) = 5 troepl —trggpV

1 1
= F5R_ <Z5R—2f<52r ||<p—|—s||2> :2,%27"||<p—|—6||2—gR.

In the formula

1 1
a2(P) = 55 V,V* R~ £ V, V"V

b (R | R™)1— —— Ri Ricw 14+ 1

180 vl 180 ~om HHC 2
1 Vo1 g Vv

- GRV+ S+ S RLR

we may neglect the first two terms which are total differentials (surface
terms) and hence do not contribute to the integrated Lagrangian. For the
remaining terms we obtain, using Lemma 2.4.6, Lemma 2.4.7 and Lemma
2.4.8

1

== m (('R'IJV | .R-/u/) - R’L.CNV R’L.Cl“/) t—rS®E 1

trogr a2 (P )

R? 1 1 | S
t ooy sepl — ¢ Ritggn V+ 5 treepV” + 5 trggn By, BYY =

15 oy e ey, 1D R 15
20 ((Ruw|.R*) — Ricy, Ric" )+ﬁ R? — E(ZR_2K2T”('0+€”2)
1 15

+ 5 {2t_rG (B(Mg + M) + M) o +el* + 3¢ B = w77 Rl +e’

1
2621 [V (o4 O+ 3 1REI |

1/ 15, " 1 S . »
12 <_§ (R | .R*) - ||RE||?E> ~ 9 (5R2 — 8 Ricyy Ric" —T(.R | .R™))

1 1
= 5 57 Rlle +ell” + trg B(Mg + My) + M) Jlo +el* — w2 V7 (¢ +2)|” + £ [IR"IIE -

Now the assertion follows in view of the identity
2

s

5R® ~ 8 Ricyy Ric" —T( Ry |.R") = 18 ((Ruw| .R") — 2 Ricu, Ric"” + =

+ 11((R | .R™) — 4 Ricyy Ric" + R*) = =18 C,, CM + 11x

for the Weyl tensor C),,, and the Euler characteristic x (a topological invari-
ant which does not contribute to the variation of the Lagrangian). O

Combining Theorem 2.4.9 with (2.4.29) it follows that the ”spectral ac-
tion” £(™) at mass scale m has the density (up to surface terms and topo-
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logical terms)

£0(z) = 15m xo + m*x1 (K2 R~ 2r [lp + )
+ 2 LG (34 + M) + M) - [lp + e
3

1 1 ,
— G R Rlgtel? 4 kP [V o+ )| + 5 IRPIE - ¢ Cuw O} .

2.4.10 Lemma. The curvature RY of V¥ satisfies

1 10
1 I1BE1E = SIF@I + IF@IF + [F(wa @ a)lI” ,

where the connection 1-form w® is given by (2.4.11) and F denotes the
respective curvature 2-forms (field strength).

Proof. According to (2.4.11), we have RF =

(r(oGa)) |

0
2/3 0
V(W) (T 2)
Y (F(wa ® a))
0 0

Y (Fw)) ©4/3

yF@e (5 )
.

: UG )]

) (FW) ® (ﬁ ’ )

0 -1

Since (01 @ Mi|og ® Ma) = (o1]o2) tr M My for 2-forms oy,09 and
matrices M1, Ms it follows that

IRP|Z = | F(we ® )2 + [F@)I? (4-3+4)
HIF(wa ® a)|[2 + [F@)[2 % -3+ [F@)P -4

+|F(we ®a)|[? 2+ 2|F(w)|® (5-3+1).
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2.5 The Higgs Mechanism and Spontaneous Sym-
metry Breaking (F. Scheck)

2.5.1 Historical note

As is well known all gauge bosons of a pure Yang-Mills theory are necessarily
massless. This is so because any ad-hoc mass term such as

m%Ag)A(i)” or Z Mz’kA,(f)A(k)”
ik

is incompatible with local gauge invariance. It is said that W. Pauli had
developed nonabelian gauge theory for himself (or knew about it from the
work of H. Weyl and O. Klein) before the work of C.N. Yang and R. Mills
(1954) but dismissed it because he had realized that the gauge particles
would all be massless. As there was only one massless spin-1 particle known
at the time (the photon) nonabelian gauge theory was to be rejected on
physical grounds. The few facts that were reported about this are collected
in a recent paper by O’Raifeartaigh and Straumann [172] which also gives
a more detailed account of the earlier work by H. Weyl and O. Klein.

The discovery of spontaneous symmetry breaking in gauge theories by
Englert, Brout, Higgs, and Kibble in the mid-sixties was received as a gen-
uine breakthrough: The principle of spontaneous symmetry breaking (SSB)
had already appeared in Heisenberg’s theory of ferromagnets (Landau). Also
the theorem by J. Goldstone (1961) was known which says that in a mani-
festly Lorentz covariant theory which admits a continuous global symmetry,
SSB implies the existence of massless scalar particles, the so-called Gold-
stone bosons. The new feature, realized by these authors in the mid-sixties,
was that if this “covariant theory” is a local gauge theory with SSB then
the Goldstone bosons appear in a disguise. Some of the formerly massless
gauge bosons which, with regard to the Lorentz group, are classified in the
two dimensional, helicity representation of the isotropy group of spatial 3-
momentum, become genuine massive vector bosons classified in the triplet
representation of the rotation group. The extra degree of freedom in the
latter case is the remnant of a would-be Goldstone boson. (These matters
are worked out, in all their filigree, in the reviews [15], [171] and in the book
[170]).

However beautiful these ideas are, however subtle the interplay of Yang-
Mills theory and spontaneous symmetry breaking, this theoretical frame-
work still has (at least) two major weaknesses:

(i) The SSB mechanism is added in an ad hoc manner to the Yang-Mills
theory, post factum®. The specific choice of reduction of the original gauge
group (obtained from the structure group G) to the residual gauge group

!There have been numerous attempts to generate SSB dynamically from the theory
itself but none of these were conclusive or convincing.
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(obtained from a subgroup H of G) is fixed, on purely empirical grounds,
by the residual symmetry that the ground state of the theory is required to
have.

(ii) The theory, in its spontaneously broken phase, at first describes the
bosonic sector only, that is the kinetic energies and interactions of the spin-
1 gauge bosons and the spin-0 scalar fields. In adding what we physicists
call the matter fields to the theory, i.e. the quarks and the leptons, and in
constructing the physically relevant Dirac operator much freedom is left. To
witness, the choice of representations of G into which quarks and leptons
are classified is guided by requiring anomalies to be absent. The presence
of anomalies signals that symmetries of the classical theory, upon quanti-
zation “do not go through”, i.e. no longer are symmetries of its quantized
version. Also the Yukawa couplings of fermions to the scalar particles and
the fermionic mass terms, to a large extent, remain undetermined and must
be adjusted in accord with the empirical information.

Although this is still not fully recognized by the physics community
noncommutative Geometry has brought about important progress in these
matters. In all realistic versions of the standard model based on noncom-
mutative geometry SSB is a consequence of the noncommutative structure
and the ensuing differential calculus. The Higgs fields, in a rather natural
way, are part of the connection, hence belong to the gauge rather than the
matter sector of the model, and the electrically neutral Higgs appears from
the start in the correct physical phase. No shift from the origin ® = 0 to an
absolute minimum of the self-interaction is necessary. Quarks and leptons
occur in representations of algebras and, therefore, the freedom of choice is
reduced considerably. In the Mainz-Marseille model 3.2 for instance which
is based on graded Lie algebras, the vanishing of the supertrace in every
representation implies automatically the absence of chiral anomalies [191]2.
In all models the fermionic building blocks are the chiral fields

1 1

Up:= 5(]14—")’5)‘1/, Uy = 5(]1—’)/5)\11, (251)
which are the ones that Nature seems to prefer in weak interactions. Conven-
tional (commutative) Yang-Mills theories are indifferent to chirality. Indeed,
it is possible to construct gauge theories where charged weak interactions
involve left-handed and right-handed currents in arbitrary mixtures. Fi-
nally, in the model(s) based on Connes’ Noncommutative Geometry 3.1 the
Dirac operator is the driving agent that defines the relevant differential al-
gebra (A). The choice of the algebra A and of the Dirac operator fixes the
bosonic sector of the model as well as the fermionic couplings, thus estab-
lishing a novel link between the fermionic and bosonic sectors.

%In the models of the Connes-Lott type the fixing of the weak hypercharges, responsible
for anomly cancellation, is somewhat artificial and remains to be studied further.
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2.5.2 Spontaneous symmetry breaking and Goldstone theo-
rem

When introducing SSB into a nonabelian Yang-Mills theory the strategy is
the following: The Lagrangian is constructed such as to be globally and
locally invariant under the structure group G, a compact Lie group, and
the gauge group G obtained from G, respectively. In the case of the stan-
dard model G = SU(2), x U(1)y or, including chromodynamic interactions
G =S8U(2), xU(1l)y x SU(3).. One then identifies the residual symmetry
H C G (and the corresponding gauge group H C G, respectively) which
should be obtained on grounds of what physics tells us. In the case of the
minimal standard model, H = U(1) or H = U(1) x SU(3),, respectively.
The symmetry must be broken in such a way that the gauge invariance of
the theory is preserved — in view of its renormalizability after quantization
— but that the original mass degeneracy of the multiplets of the gauge fields
is lifted. In other words, while the Lagrangian still possesses the full sym-
metry, its physical ground state has less symmetry. It is for this reason that
SSB is often called hidden symmetry, see e.g. [171]. So both G and H are
inputs.

Let @ be a set of scalar fields falling in a given, reducible or irreducible,
representation of G. That is to say, in the case of the minimal electroweak
model, ® spans a representation of SU(2); and is assigned a weak hyper-
charge y with respect to U(1)y. Now, as the photon eventually will be a
mixture of a gauge field pertaining to the former and the gauge field pertain-
ing to the latter factor, it is clear that the electric charges of the components
¢m of @ will be fixed in terms of eigenvalues of the generators I3 and Y of
Lie G. The requirement is then that among the components of ® there
should be one which is electrically neutral. For a physicist this is an ob-
vious requirement which is related to the absolute conservation of charge.
Electric charges of single particle states can be defined only if the vacuum
is an eigenstate of charge with eigenvalue zero. A component of the Higgs
multiplet ® can have a nonvanishing vacuum expectation value only if it is
electrically neutral. Furthermore, in a theory without space-time supersym-
metry the vacuum state is assigned spin zero. This implies that the Higgs
fields must be scalars.

Let V(@) be a self-interaction (“potential”) which satisfies the following
conditions

(i) V(@) is (globally) invariant under G,

V(Uu(g)®) =V (®) forallge G, (2.5.2)

(ii) V(®) possesses an absolute minimum in ®q ,

(iii) the minimum is degenerate, i.e. it is not invariant with respect to G.
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Here and below Uy (g) denotes the unitary representation which contains the
Higgs multiplet. The degeneracy implies that there is at least one element
g € G for which Uy (g)®¢ # ®¢ or, equivalently, there is at least one gener-
ator T* of Lie G for which Uy (T*)®q # 0. It is natural, therefore, to define
the generators of the Lie algebra such that they fall in either of the two
classes, (a) {T',...,TF} which annihilate the “vacuum”, Uy (T*)®, = 0,
and (b) the remaining ones {TF+!, ... T4™ G} for which Uy(T")®y # 0.
Obviously class (a) generates a subgroup H of G, the isotropy group of ®q
for which dim H = P.

Without having to specify the form of the self-interaction V(&) any
further one shows that a model of the kind

L= % (0,8"0") — V (),

with V(®) satisfying the conditions (i) - (iii), predicts the existence of
Ngp = (dim G — dim H) massless scalar particles. This is the content
of

2.5.1 Goldstone’s theorem. A manifestly Lorentz invariant theory whose
internal symmetry is spontaneously broken from G to the isotropy group
H C G of @y, absolute minimum of V(®), contains massless scalar fields.
The number of such fields is

Ngp = dim G — dim H (2.5.3)

and is independent of the representation of G which classifies ®. The Gold-
stone fields are tangent vectors to the group orbit of ®g.

The proof in this framework is easy. By assumption V' (®) has an absolute
minimum in ®y. Therefore, the matrix of second derivatives

A%
OPmOn |g,

is positive-semidefinite and takes the role of a mass matrix M = { M, } for
the tangent vectors v¥) = Uy (T*)® of the orbit of ®y. From the minimum
condition one concludes v*) TMv®) = 0 and, from the positive semidefinite-
ness Mv(®) = 0. Now, v() does not vanish whenever T" is from class (b).
As this happens for (dim G — dim H) generators the mass matrix M must

an

have Ngp vanishing eigenvalues.

2.5.2 Remark. (i) In physical terms this means that we are given a La-
grangian containing kinetic terms for the fields ®, the self-interaction V (®)
and, possibly, other fields, which possesses the global symmetry G. The
equivalence class [®g] where the potential has its absolute minimum, defines
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the ground state(s) of the model. In these ground states the original symme-
try is hidden because the Lagrangian has the full symmetry G but the ground
state, being invariant under H C G, has less symmetry.

(7)) Intuitively speaking the Goldstone fields are excitations along the orbit
of ®y. As the minimum V(®g) of the self-interaction is degenerate these
excitations can have arbitrarily small frequency which is to say that they
belong to massless particles.

(75i) For the mathematicians in the audience I may add that this realiza-
tion of hidden symmetry (sometimes called Goldstone or Goldstone-Nambu
symmetry realization — as opposed to Wigner realization where the symme-
try results in mass-degenerate multiplets) is relevant in several branches of
physics. It appears, for instance, in the context of massless excitations in
solid state physics, but also in the effective, approzximate, chiral phase of
strong interactions at low energies.

(iv) Note that we did not need to specify the self-interaction V(®) any fur-
ther. This is true in the classical version of the theory. In the process of
quantizing the model a new requirement appears: A mecessary condition for
it to be renormalizable V (®) should contain no more than quartic terms.
Thus, if the self-interaction is polynomial its generic form must be

1 1
V(®) = —5u"®"® + A (3*®)*  with p®> >0, A > 0. (2.5.4)

Its minimum is attained at

2

Prdy =v® = < (2.5.5)
2.5.3 Spontaneous symmetry breaking in a Yang-Mills the-
ory

The realization of SSB in a Yang-Mills theory is dramatically different from
the situation just described. Before even introducing fermions the gauge
invariant Lagrangian

1

L=—1m

(Fuw, F*) + % ((D,®)*,D"'®) -V (®), (2.5.6)

upon shifting the scalar fields to the absolute minimum of V(®), predicts
that a number Ngp, eq. (2.5.3), of gauge bosons become massive. This is
so because the dynamical scalar fields are

3=3- 3.
Upon insertion into (2.5.6) this yields a term

1 N N

* — i k — i
UW)B VW) =5 3 D MaWW®r, (N =dim G),
1=P+1k=P+1

N —
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where My, = g?(U(T?)®§,U(T*)®o) is a positive matrix. It has Ngp =
dim G — dim H positive eigenvalues, its eigenstates are obtained by an or-
thogonal transformation and yield the physical spin-1 particles. Thus, by
a suitable choice of G and H C G one fixes the number (2.5.3) of gauge
bosons which should become massive. The remaining ones remain massless.

Before applying this general analysis to the minimal standard model let
us comment on what happens when fermions are added to the Lagrangian
(2.5.6). Fermions will have their own kinetic term, possibly a primordial
mass term, and Yukawa couplings to the @, viz.

L;=1i(V,4D,¥) — (T, M¥) —h (¥,®T)+ hec.. (2.5.7)

The notation is symbolic but suggestive: as above D denotes the covariant
derivative while the brackets mean a globally G-invariant coupling, M is
a primordial fermionic mass matrix but is admissible only if the fermionic
multiplets match to form a G-invariant. Again, upon shifting to the mini-
mum of V(@) the Yukawa coupling produces a fermionic mass matrix, even
when the primordial mass terms do not exist.

2.5.4 The case of the electroweak model: Bosonic sector

The minimal electroweak model is based on the structure group U(2). Let
me denote the generator of the U(1) factor by 70, and the generators of
SU(2) (in a more conventional notation) by T' = Iy, T? = I, T = I3, and
let g denote the coupling constant, so that the gauge potential reads

3
Wy(z) =ig » TWD . (2.5.8)
=0

Furthermore, let us write the fields W,S3) (z) and WL(LO) (z) as orthogonal
linear combinations of the prospective, physical photon field A,(z) and Z0-
field Z,(z),

WO Y10 ) (5) ey
Wil@) ) V@ rg?\ g 9 )\ Aule)
Note that if ¢’ = 0 the U(1) field coincides with the photon field while the

70 is the isospin partner of the W-bosons. Inserting this into (2.5.8) one
obtains

99’ g° 0
UW,)®0=...+48 ——22—U(I3) + —=——U(T°) b A, ()P0 + ...,
(W) @0 { o (I3) o ( )} u(2) o

(2.5.10)
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where, for the moment, we have only written the photon term. Now, in
analogy to a famous formula (due to Gell-Mann and Nishijima) of the old
“eightfold way” in strong interactions one wishes to write the electric charge

operator in the form

1
Qem. = I3+ 35V, (2.5.11)

and — again by analogy to strong interactions — wishes to call I3 the 3-
component of weak isospin, and Y the weak hypercharge. This implies a
redefinition of the abelian generator, viz.

!
gl
T ==YV, 2.5.12
LY (25.12)
at the same time this allows to identify the elementary charge:
!
e= 99 (2.5.13)

With this redefinition of 7° the above term involving the photon field be-
comes simply

U(W“)q)o =...+ eU(Ig + Y/Q)A“q)() + ... ,

while the corresponding term involving the Z° now reads

92 1 912
(2.5.14)

Let y denote the eigenvalue of Y in the representation ® and pick out the
component ¢(© of ® that is electrically neutral. The eigenvalue ¢3 of ¢(0)
obviously, must be related to y by y = —2t3 in order to obtain Qe_m_(gb(o)) =
0. At the same time the coupling term (2.5.14) for the ¢(9) simplifies

2 1 12

g . 9 2 12
T g VO

It remains to identify the charged W*-fields. Taking, as usual, I, =

I £ il and W,Si) = :l:(W,Sl) + zW,SQ))/\/ﬁ one sees that the corresponding
terms are

U(A)® = ... + {iU(I+)W5—> + h.c }@0 ... (2.5.15)
V2

This shows that g is the coupling constant measured in charged current

weak interactions. Comparison to the effective current-current interaction

postulated by Fermi allows to relate this constant to the Fermi constant G g,
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as measured in weak decays. The precise relation (that I do not work out
here but that can be found, e.g. in [192]) is

Gr _ ¢

V2 8m%

The comparison of the electromagnetic coupling constant (2.5.13) and
the weak interaction constant g (2.5.16) lead Weinberg to define what he
calls the weak interaction angle,

(2.5.16)

2 12 12
) e
sin? Oy = — g or tan? @y = 9—2 .

-9 2.5.17
92 92 +912 g ( )

(Note that the sign of fy, is not physical.)

We are almost through with this somewhat tedious analysis. Inserting
the results (2.5.15) and (2.5.14), with the neutral component ¢(¥) in lieu of
®g, squaring these terms, and using I, I_ + I_I, = 2(I* — I%), shows that

m%[, and m? are given by

1
m%[, = 592 [t(t—l— 1) - t%] v?,
my = (¢° +9g7)t50" .

Here, t(t + 1) is the eigenvalue of I 2 in the Higgs multiplet, ¢3 is the same
as before, and v? is the squared modulus of the minimum position (2.5.5).
Comparing these formulae leads to a famous relation

2 ) 12 2
tt+1)—1t
m, cos? Oy my, g 2t5

This formula shows clearly the arbitrariness of the choice in the Higgs sector:
the only requirement that we have is that ¢3 # 0, because otherwise the Z°
would remain massless. There is nothing which tells us what the value of
t should be. It is again experiment which allows us to measure the two
masses and the Weinberg angle independently and which tells us that — up
to radiative corrections — the Higgs must be in a doublet, t = 1/2. As you
will learn in the contributions 3.2 and 3.1 the Noncommutative Geometry
versions of the standard model cannot tolerate anything but doublets.
Finally, it is worthwhile to calculate the characteristic scale of SSB from
these formulae and the Fermi constant: With Gp = 1.16639 x 107° GeV

one finds
2 ].

! :GF\/§

Summarizing up to this point we see that by the specific choices made
G = U(2) is spontaneously broken to H = Ue.p,.(1) which is generated by

= (246 GeV)? .
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the generator (2.5.11) and which remains a gauge symmetry of the theory.
The Higgs field is chosen to be a doublet,

(+)
P = ( ‘Z(O) ) , (2.5.19)

where the superscript denotes electric charge. It has weak hypercharge
y = 1, in accord with (2.5.11). The two components being complex the Higgs
doublet originally has 4 degrees of freedom only one of which is physical.
By a gauge transformation the charged partner can be made to disappear
completely, the neutral partner can be chosen real. The remaining real field
#© = ¢ — 4 is massive, its mass being m%{ = 2X\v? and remains unde-
termined. The other 3 degrees of freedom would have become Goldstone
bosons in a model without local gauge invariance.

2.5.5 Electroweak model: Adding quarks and leptons

Couplings to gauge bosons or massive spin-1 bosons always connect like
chiralities, L to L and R to R, while couplings to scalars and, for that
matter, fermionic mass terms of the Dirac type, connect unlike chiralities,
L to R and R to L, so for instance?,

5™ () (0 o Y75) B () (@Mnmiﬁ%’”) + h.c. ) i

In the minimal version of the standard model the left-chiral fermion fields are
the ones that couple to the charged W*-bosons. The coupling of the charged
particles, i.e. e, u, 7, and all up-type and down-type quarks, to the neutral
ZY is a mixed left- and right-handed one. Neutrinos, on the other hand, seem
to couple only via left-chiral fields (L type in (2.5.1))*. Accordingly, L-fields
must be classified in doublets with respect to SU(2), while R-fields must be
singlets. Thus, a given lepton generation sits in a reducible triplet composed
of a doublet and a singlet, a given quark generation is in a reducible quartet
composed of a doublet and two singlets. As is customary in physics we write
particle symbols in the place of the fields, e.g. v, = ¢g') (z),

oW (z) = ((g£)> , o @(g) = (é%) : (2.5.20)
R

3Note, in particular, that fermionic mass matrices Mym, due to the freedom in choosing
phases of the fields, need not be hermitean.

4They also must have a right-chiral component if their masses are of Dirac type. How-
ever, these R-fields do not seem to couple to the gauge sector of the model.
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There is one more constraint: the couplings of the charged particles to
the photon must be of pure vector type, i.e. via v,, because electromagnetic
interactions conserve parity. This is important because, even though the
weak hypercharge assignment must be the same for the two members of a
doublet, it could have any value for the singlets. This is so because weak
hypercharge is a U(1) factor. The only restriction there is comes from group
theory: representations of the group U(1) — not of the algebra — must be
one-valued. This is Wigner’s argument for one-parameter subgroups of the
rotation group. In the present case this means that the ratio of the eigen-
values of the doublet and the singlet(s) must be rational. Calculating the
couplings of, say, vy, er, and egr to the neutral bosons and redefining the
U(1)y generator as in (2.5.12), one has

1
2

1

(ngf) —ydg'Wff’)) etuer, er =9 ysW \erer,

er, : 5

1 3 0
VL Gy (gWL(L ) + ydg'WL(L )) .

Here y4 and ys are the eigenvalues of weak hypercharge Y in the doublet
and in the singlet, respectively.

Obviously, the linear combination multiplying v;, must be proportional
to the Z° field, for the neutrino to decouple from the photon. Comparison
with the inverse of the orthogonal transformation (2.5.9) shows that this is
true if y; = —1. Parity conservation in the electron-photon interaction is
equivalent to requesting e, and eg to couple to the photon field A, with
the same strength. From our formulae it is easy to see that this is true if
one chooses y; = —2. An analogous reasoning for quark fields fixes the weak
hypercharge of the doublet to be 1/3, the weak hypercharges of the singlets
to be 4/3 and —2/3, respectively. In summary, for every lepton generation
and every quark generation the assignments must be

O — diag (—1. -1, — O ding (L1122
YW = diag (-1,-1,-2), Y@ = diag (3, T 3) . (2.5.21)

Note that these assignments are in agreement with the formula (2.5.11).
I stressed this construction because the U(1) factor, in principle, allows any
rational ratio of ys and y, (and likewise for quarks). The ratio is fixed,
however, by an empirical constraint.

We also note a remarkable property of (2.5.21). If ones introduces a
Zo-grading by defining the L - L sectors and the R - R sectors in the
representation spaces to be even, the L - R and the R - L sectors to be odd,
then the matrices (2.5.21) have the property

StrY = 0. (2.5.22)
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This is precisely the condition for chiral anomalies to be absent, and there
is also a tantalizing (but not fully understood) relation to charge quantiza-
tion, s. [191] and references therein. As mentioned in the introduction the
differential calculus on which the Mainz-Marseille model is built, has this
grading. The assignment of the weak hypercharges, for the Higgs and for
all fermions, is the correct one without having to fix it by hand.

To end this section let me write down the interaction Lagrangian in
its full complexity. With j&,, (z) denoting the standard electromagnetic
current, J¢(z) the weak charged current, (CC), and K*(x) the weak neutral
current, (NC), the interaction reads

Lint = —e{jﬁm.(w)Au(me[J“(m)W,S)(x)+h.c.]
ZEEIE;}ESE@;;}(”(w)Zﬁ(ﬁ)} : (2.5.23)

Essentially for historical reasons it is customary to write the currents in
terms of the full Dirac fields, instead of the chiral fields, by writing out the
projection (1 — v;5)/2. The CC current then reads

TH(z) = 3" vy (1 — 45)eD VD 1§ uE) (1 — 45)d VM)
(2.5.24)
where V(™) denotes the mixing matrix in the leptonic sector, V(CKM)
the Cabibbo-Kobayashi-Maskawa mixing matrix in the quark sector. The
neutral current, finally, is given by

K*(z) = Zy(i) (1 — ~s)v Ze ~5)e®
+ Zuhf (1 —s5)u )—Zd ~5)d®

— 4sin® Oy 54, (z). (2.5.25)

This is the interaction which has been tested over the last 25 years (includ-
ing the radiative corrections that follow from it) and which appears to be in
embarassingly perfect agreement with experiment.

2.5.6 Remarks about fermionic mass generation

A pecularity of the minimal standard model is the fact that it does not
admit primordial mass terms. This is so because mass terms involve L- and
R-fields. As the former are doublets with respect to SU(2) while the latter
are singlets there is no way to form an invariant.

The Higgs field, on the other hand, is a weak isospin doublet. Therefore,
when combined with SSB as described above, Yukawa couplings of fermions
and Higgs,

b {Zo)R+R(@90)}
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will produce mass terms. In this expression I have used a short-hand nota-
tion £ for an L-doublet, R for a R-singlet, and ®(©) for the charge conjugate
of ®. Although at first this looks fine, there are two problems with such
mass terms. The first is that the coupling constant A in front of this term
falls from heaven and must be adjusted for every generation. We note in
passing that this, in turn, implies that the Yukawa coupling of the physi-
cal Higgs #© to a given quark or lepton is proportional to that particle’s
mass; this is one of the reasons why hunting the Higgs is so tedious and,
hélas!, costly. The other problem is that the fermionic mass eigenstates
do not coincide with the states participating in the weak CC interactions.
This phenomenon, although parametrizable by means of the mixing matri-
ces V(miz) ang vI(CK M), is completely outside the reach of the standard
model.

Unfortunately embedding the standard model in Noncommutative Ge-
ometry does not help in that matter. In Connes’ version(s) the fermionic
mass matrices as well as the unitary mixing matrices are used as an input.
In the Mainz-Marseille model generation mixing seems rather natural 3.2,
but even though the model provides a certain pattern for the mass matrices,
there is little predictive power.



Chapter 3

New Directions in
Noncommutative Geometry
and Mathematical Physics

This chapter is devoted to more recent physical applications of current in-
terest, presented by some of the leading researchers in the field. These
individual contributions are an integral part of the overall program and are
organized in a way compatible with the more expository first two chapters.
Topics discussed include

e an investigation of the physical implications of the noncommutative
geometry approach towards the Standard Model,

e alternative approaches, e.g. involving supergroups and superalgebras,

e general problems in quantum field theory involving noncommutative
geometry,

e noncommutative spaces (nc torus etc.),
e Hopf algebras and renormalization,

e string duality from a noncommutative geometry point of view.

All of these are very active and rapidly developing research areas and
involve a high degree of specialization. Nevertheless we have tried to stay
close to the main topic of the conference by emphasizing throughout the
connections to the established Standard Model and other realistic models of
quantum field theory.

253
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3.1 The Impact of Noncommutative Geometry in
Particle Physics (B. Iochum)

Abstract

In this review, wich could be entitled ”Is noncommutative geometry the
millenium bug of physics”, we consider only the main impacts of noncom-
mutative geometry in particle physics. Attention is paid to particle physics,
to the standard model and renormalization of different models. So, most of
the mathematical definitions are omitted since they can be found in other
contributions to this meeting. We look at ideas beyond technicalities.

3.1.1 Why noncommutative geometry?

Discreteness versus continuity

Noncommutative geometry was invented by Alain Connes [38] for im-
proving the impact of classsical geometry when there are no points. This is
crucial in physics, since it addresses the old problem on the difference be-
tween a discrete and a continuous situation. Actually, it is tempting to say
that, for a physicist, a point is just a mathematical representation which is
convenient when one wants to describe the trajectory of a solid for instance.
All mass of the object is supposed to be concentred in one point z in R?, the
mass center, and one solves the equation of motion giving rise to a trajectory
z(t) and one concludes by adding the relative rotation of the solid around
its center of mass at each time. So, for the physicist, this process appears
just as an idealization of the physical situation. Nevertheless for a collection
of solids, this construction is nothing but the replacement of a set of bodies
by a collection of points. In other words, one has replaced a ”continuous”
3-dimensional object just by a point. But it is wellknown that a discrete set
and a continuous one are not in bijection, for instance the cardinalities of
N and R are different. Consequently, in both mathematics and physics this
situation is not satisfactory.

Let us give few other examples of the impassable wall between the dis-
crete and continuous world:

- A surface cannot be considered only as a collection of points. More
information is needed, like the distance between infinitesimally close points.

- The same problem occurs during the replacement of classical mechanics
by quantum mechanics. Roughly speaking, a classical point is stretched in all
R3 as a wave function, so a discrete object as been replaced by a continuous
one.

- Similarly, the classical atoms, which are nothing but discrete objects
like electrons, protons or neutrons are replaced by fields in quantum field
theory. In particular many physical definitions turn around this confusion.
Consider for instance, the magnetic moment of an electron. In most text-
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book, it is introduced via an analogy with a current given by an electron
turning on a circle. But again we face the same problem: either an electron
is just a pointlike classical particle, or it is an "extended one” on the circle.
This is very confusing since we have to explain how the electric charge is
spread on the circle and so on.

It is very easy to continue this list proving that very elementary phys-
ical objects are not necessarily well defined, or better, are defined modulo
an undefined background. One of the great advantages of noncommutative
geometry is precisely to put on the same ground the discrete and the contin-
uous cases. By this, we mean that the technical tools for solving a problem
are based on the same objects. For us, this is probably the most important
explanation of the successes of noncommutative geometry.

The impacts

Today, the two major impacts of this new geometry are in solid state
physics and in particle physics:

- The explanation of the integer quantum Hall effect was given by Bellis-
sard [11] using only the replacement of the classical Brilloin zone, which is
a 2-torus by its natural analogue, namely the noncommutative 2-torus. Of
course, this is dressed with a lot of hard technicalities, but the main idea is
precisely the exchange of a periodic situation essentially reflected by N or Z,
the multiple of a given period, and its generalization, the nonperiodic one,
reflected by R.

- The standard model constructed by Connes and Lott [46, 47] and re-
fined by Connes [39] is based on the product of two different parts: the
spacetime which is continuous and the internal degrees of freedom which
reveal the discrete part. Both ingredients are based on the notion of Dirac
operators and spectral triples.

It is important to know that other interesting approaches exist. Let us
mention [71, 156].

3.1.2 Spectral triples

A posteriori, the notion of spectral triple appears very natural, since, for
instance, it mimics the notion of differentiable manifolds in the algebraic
language . But this means that we face a problem of choice.

The choice

At this point, it is interesting to retrace history.

1) In the Connes-Lott model [46], there are :

- two finite algebras A= C@® H, B = C @& M3(C),

- two representations p = p;, @ pr of A and Bon H =H & Hpg,

- a mass matrix M : Hr — Hpg and an operator D = ( ]\?f* J\04 )
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from H to H.

- some coupling constants associated to the reducibility of p.
This yields an (A, B)-module (#, D, x) where x is the chirality.
The interest of this construction is twofold:

- The Higgs potential is an output. The mass matrix M links the left
and the right worlds and the ”distance” between these worlds is related to
the eigenvalues of D1,

- The replacement of spacetime by noncommutative spacetime is moti-
vated by the introduction of a possible cutoff.

Remark that the spirit of this geometry is that the only authorized groups
are the unitary groups of *-algebras which will be used as gauge groups.

2) The notion of a real structure: It is based on an operator J cor-
responding in the commutative case to the charge conjugation and in the
noncommutative one to the Tomita-Takesaki operator. Recall that if M is
a von Neumann algebra equipped with a cyclic and separating vector & in
‘H, the closure S of the operator applying = & to z* £y has a polar decom-
position § = JAY? where A is a positive operator and J is an antilinear
operator such that

IMITH = M. (3.1.1)

So we obtain a real spectral triple (A, D, H, x, J) satisfying some pre-
cise constraints. Let us emphasize two important axioms: y is a Hochschild
cycle and the Poincaré duality is satisfied.

There are two ideas: The electroweak sector is in Poincaré duality with
the strong sector, and the standard model is, in some vague sense, minimal.
Moreover, for all ¢ and b in A,
J2 = 1,[D, J] = 0,[[D, pla)], Jp(b)J!] = 0 and

[o(a), Jp(b)J '] = 0 (3-1.2)

Consequences: Connes has obtained an algebraic characterization of spin©
riemannian manifolds [39].

Problems

1) Classify the links between Jconnes and Jromita-

2) The commutative and noncommutative geometries [39] are based on dif-
ferent axioms. Note in particular that in (3.1.1), JMJ !t = Jp(A)J ! is
the whole commutant of p(.A), while in (3.1.2), it is only imbedded in it.
The constraints on x are also different. This has important consequences
on the computation of noncommutative distances.

3) Lattice gauge theory has been invented to remedy certain difficulties oc-
curing in field theory. The idea was to discretize the fields, and we saw this
idea in paragraph 1. So, it is natural to see what noncommutative geometry
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can do in this setting. Unfortunatly, a partial negative answer has been pro-
posed [92]. It would be interesting to find a right notion of spectral triple
which is compatible with lattice theory.

Present state of the art

Using all previous ingredients, Connes finally ended up with the replace-
ment of the two algebras A and B by one algebra A = CeH® M3(C) and
B = JAJ L.

At this point, we face different questions.
Problems:
1) H appears because its unitary group is SU(2) while the unitary group
of M5(C) is U(2) and avoids an extra U(1), so we must consider a fully
satisfactory noncommutative geometry for real *-algebras and not only for
C*-algebras. Note that H has no order since the square of a quaternion is
always a multiple of the identity, so H has only one trivial pure state. This
creates problems when one computes distances using Connes’ formula

d(¢, ¢) = Sup{[$(a) — ¢(a)l, a € p(A), [|[D; o] || < 1}

where 1), ¢ are in the state space of p(A).

2) In what sense is the noncommutative standard model minimal? Note
that the algebra looks like A = M;(C) & My(C) & M3(C). What is the
profound reason for this simple form?

3.1.3 Technical points

Scalar products

On the noncommutative differential n-forms 2%,(.A), there is an easy way to
construct a scalar product. For instance, in the finite dimensional case,
take < w, w’ > = Re Tr(w*w') and in the infinite case, < w, w' > =
Re Tr(w* ' |D|~4™).
It is well known that there are logarithmic divergences in this last expression,
so we have to replace the usual trace Tr by the Dixmier trace Trpix-

Problem: Does there exist singular traces which are not of the Dixmier
type? The consequence would be important: Either there are no other traces
and from a physical point of view it is interesting to understand why the
logarithmic divergences are privileged or, if they are others, do they get rid
of other divergences?
Recall that in the commutative situation where M is a 4-dimensional man-
ifold (A = C*®(M), H = L?(Spinors), D = @), we get the identity spelled
out for 2-forms w, W',

<w w > = %/ wZVwL,y,g““’g””’(detg..)1/2 d*z.
M
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The junk
In the construction of Q7 (.A), there is a natural quotient to do by the so-
called junk for getting a graded differential algebra. This junk modifies the
scalar product. In particular it mixes the internal and external forms coming
from the internal degrees of freedom and the external usual spacetime. So,
from a physical point of view, it is also important.

Problems: A natural question is: what is the physical meaning of that
junk? It is important to quote that in noncommutative relativity [40, 31,
110], the junk plays no role since only the one-forms are essential. What is
behind this difference?

Moreover, there is the problem of the unimodularity condition. Do we
have to perform it before or after the quotient by the junk?

The choice of D
For two given spectral triples (A1, H1, D1, x1, J1) and (Az, He, D2, X2, J2),
we have the choice of two candidates for the Dirac operator on their tensor
product:

Dt = D1®12+X1®D2
D, = Di1®x2+11®Dy

Fortunately, the unitary operator U = %(11 +x1) ®@ Ly + (11 — x1) ® x2
intertwines these Dirac operators, UD;U* = Dy, so their distinction is not
relevant.

Importance of the scalar product
We saw before that there is a natural scalar product on Q%(A). However,
natural does not mean unique. So, we clearly have here some flexibility
varying this theme. Playing around this notion, we conclude that the differ-
ent scalar products must be in one-to-one correspondance with the physical
gauge coupling constants gi, g2, g3 which parameterize the invariant scalar
products on the Lie algebra u(1) @ su(2) & su(3) of the standard model.
These three physical quantities have been measured.

In order to get the coupling constants, we soften the scalar products to:

<w,w'>, = ReTrpi[zw* W D7), w,w € QPA (3.1.3)

z is a positive operator on Hilbert space that commutes with p, JpJ !, D

and x. Whether or not z commutes with J will be a difficult choice. In the

commutative case, we have anyhow that z is proportional to the identity.
Note that another scalar product is possible: For w,w’ € Q%.A,

<w,w >y = Re Trpy 2 (w4 JwJ H*(w' + Ju'J 1) D] 4%B.1.4)
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3.1.4 The noncommutative highway

If one admits the fact that the real world is described by the classical space-
time plus the standard model, then everything is now fixed and we only
have to follow the noncommutative highway:

Construction of a spectral triple

A = C®(M)® (He Ce Ms(C),

Dy = 9®1pgp+75@7D,
H; = L*(Spinors) ® Hyap,
Xt = 1»OX

where p, p means particle and antiparticle.

Construction of the standard model
The internal part is defined as follows (cf Sections 2.2, 2.3, 2.5 (K. Elsner,
H. Neumann, H. Upmeier and F. Scheck for more details).

A = HeCao® M3(C) > (a,b,c),
H, = (CoC'eC) o (CoC¥e(C),
Hr = (CeC)eC"eC) & (CoCYeC).

Here p and p mean particle and antiparticule. In each summand, the first
factor denotes weak isospin doublets or singlets, the second N generations,
N =3, and the third denotes color triplets or singlets.

Let us choose the following basis of # = C%:

(o), ()0 G, (), (), (7).

UR, CR, tRa e LR TR:
dRa SR, bRa B ’ '
C C C C C C
b b b b b )
d)p S /L b/, € JL B/ T /)L
uR,  Cpy TR . c

C
5, s%, b, R KR TR
7 7 ?

The representation p acts on H by

pr(a) 0 0 0

— [ pwla,b) 0 __ 0 pwr(b) 0 0
p(‘”””c)"( 0 ps(b,c))“ 0 0 a0
0 0 0 a0



260 CHAPTER 3. NC GEOMETRY AND MATHEMATICAL PHYSICS

with
L a® 1y ®13 0 L B®1ly Q13 0
pusla) = (PO O ) ey = (PONET DY,
b 0
B'_(o 5>’
(bc) o LRIN®Cc ~ 0 (bc) L LR1Iy®c _0
PsL\Y, = 0 blo ® 1 y  PsR\D, = 0 bly .

Note the dissymetry between particles and antiparticles.

gy 0 0 0
0 1;;n 0 0

X= 0 0 —lgnv O
0 0 0 1

0 M 0
M0 0

0

0
D_OOOM
0 0 M* 0

The fermionic mass matrix of the standard model is

( J‘gu J\gd ) ® 13 0
M = )
o ()
M.
with
m, 0 0 mg 0 0
M, = 0 m O , Mg:=Cgm 0 mg O ,
0 0 my 0 0 my
me O 0
M, := 0 m, O
0 0 m,

It follows that z of equation (3.1.3) involves 2(1 + N) = 8 strictly positive
numbers z, y1, Y2, YN, T, U1, Y2, YN,

- zy 0
T 0 2z /)’

$/312®1N®13 0 0 0
P _ 0 L®y 0 0
v 0 0 $/312®1N®13 0 ’

0 0 0 y
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Z/31, @1y ®13 0 0 0
O 0 Lb®y 0 0
o 0 0 £/31,1xy®13 0 |’
0 0 0 U
U1 0 0 ’gl 0 0
Yy = 0 Y2 0 ’ g = 0 g? 0 )
0 0 yn 0 0 9w
while 2z’ only involves 1 + N = 4 numbers &', v}, y5, Yl :
b [ Zw O
cT ( 0 ) |
$I/312®1N®13 0 0 0
d = =1l 0 1@y 0 0
w s 2 0 0 .’I?I/312®1N®13 0
0 0 0 Yy’
Turning the crank
We give only the results.
0 pr(h)M 00
| M*pur(h*) 0 0 0 ,
QpA = v H
DA 1 0 0 0 0 , h,h S
0 0 0 0

The following was noticed a long time ago in [51, 52].
3.1.1 Lemma. The map

0 pr(h)M

1
w:hEH—>w(h):—diag(( M pp(h) 0

VL
is an isometry with
< h,h' >:=tr(h*h') and < w(h), w(h') >:= tr(zw(h*)w(h))
where
L = tr(2,p MM*) = tr(2,pM* M) = z tr(|M, |2 + | My|*) + tr(y| M,|13.1.5)

Since O}, (C®(M)® A) = (QH(M) ® p(A)) & (C®(M) @ Qp(A)), every
antihermitian one-form Hy in Qp, (C°°(M)®.A) can be uniquely decomposed
in Hy=A®H, A= fodfi ® p(z),H = fys ® iw(h), f, fi € C°(M,R),z =
—z*e A heH

The curvature Cp, of H; is decomposed (see [198]) into

Cu, = F+Cy— D9,
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F = (d®1)A+ A? is the field strength in Q*(M) ® p(A),
d : [EC™(M)—0,f,
Cy = (ys®i[D,.])H + H? is the curvature of H,

d ifys @ w(h) —ivs @ w(ly) € C°(M) ® Q}(A) is a change of variable

corresponding to f — fh — 19,
D® = (d®1)®+[A, ®] € Q1 (M)®QL(A) is the covariant derivative of ®.

In this case, the Higgs potential is

V(Ht) = < CHHCHt >
- / Tr(zF* A +F) +/ Tr(2D@* A +D®) + Vh/ «|f 17,
M M M
Vi = ReTr(z(Ch — a(Ch))*(Ch — a(Ch))) =Re Tr(2(C} — (a(Ch))?)

= (- T ) W,

with
1 . *
Cu, =1 - 5Tr(¢*q§)) Cmy,, Cm, = diag(lz ® T, M*M;0), (3.1.6)

where « is a linear map from Q2(.A) onto p(A) + J3 , J3 being the junk

I3 :={[D,p(@)] [D,p(z")] | p(x) [D,p(z")] =0, z,2" € A},

given by

ReTr(z (C — a(C)) p(x)) = 0, z€A,
Re Tr(za(C)j) = 0, j€ Jb. (3.1.7)

This modified Higgs potential, compared with V(Cp,) = Re Tr(z C;C} ),
is due to the decomposition of the global two-forms:

0%, (C¥(M)®A) ~ (*(M)1,® p(A)
+ C®(M) ® Q5(A)) @ (2 (M)ys © Qp(A)),
Jp, = C®(M)1ly® p(A) + C®(M) ® J,

where the + are not direct sums.

Conclusions:

1) The Higgs scalar is nothing else but a natural connection in noncom-
mutative geometry.

2) The Hilbert space representation of this scalar is Hg = {H = —H* €
Q5L (A)}. This implies that all Connes-Lott models are Yang-Mill-Higgs
models while the converse is far from being true.
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3.1.5 Computation of Higgs and W masses

We first use the scalar product (3.1.3). The normalization of the electroweak
gauge boson which appears in the kinetic term of the Klein-Gordon action

gives for the selfcoupling A of the Higgs A = & L2 with
Vi, = t3r(z (CF, = a(C1,))) ;
= St M+ M) + @ (MPIMP) + ey M)

Za tr(|M,,? + | M)
+tr(y|Me|*)? (2Nz + 2tr(y))  + (2Nz + tr(y) + 3tx(7))(3.)-8)
and the Higgs mass is mpg = 4/ 2‘22 .
The normalization of gauge couplings is divided in three parts:
The isospin part : g;2 = Nz +tr(y) implying my := ggﬁ = m .
The color part g; 2= %N I.
Since g1 depends on U(1)y, recall that the Lie algebra of the unitary group
of Aisg={zcA|z*=—z} = su(2) ®u(l) ® su(3) ®u(l). But here, a
miracle occurs. The hyperchrge generator Y is a hnear comblnatlon of the
two u(1)-generators: Y——p(O i13),80 g2 = Nz + 2 s NI+ 5 try + 3try

1206

Remark: The right Lie algebra su(2) @ u(1)y @ su(3)) is obtained by the
unimodularity condition:

tr [Jp(12,0,0)7 7" p(a,b,0)] =0, (a,b,0) € 3, (3.1.9)

which is equivalent to

tr [P (p(a,b,¢) + Jp(a,b,)T™)] = tr [pp(a,b) + pp(b,c)] =0,
where P is the projection on the space of particles, H; ®H g, and so appears
more natural. This condition is also related to a condition of vanishing
anomalies [1].

3.1.6 Parameter counting

The standard model yields 18 parameters: 3 gauge couplings g1, g2, g3, 2
bosons, W and Higgs, 9 fermions, the leptons - electron, muon and tau -,
and the quarks, up, down, charm, strange, top and bottom, plus 4 mixings
appearing in the Cabibbo-Kobayashi-Maskawa matrix

Vud Vus Vub
Vi=| Ve Ves Ve
Via Vis Vi

In the noncommutative Yang-Mills model, there are 19 parameters: the
9 fermionic masses plus the 4 mixings angles encoded in D, plus the 6 non-
commutative gauge couplings related to z: x, y1, y2, y3 Z, Tr(91, U2, U3)-
Consequently, there is a constraint which can be summarized:
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We will use the following abbreviations: f := m?c for all fermions f and
W = m%,V,H = m%{
Here, we treat only the case given by the following hierarchies,

e < 7 < T < W,
u+d < min{c,s} < (1+ ¢ ‘max{c,s},
c+s+min{c,s} < min{t,b} < (1+ ¢€) 'max{t,b},

(3.1.10)
where € := 1 — min{|Vy|?, [Ves|?, | Vua|?} measures the deviation of V from
the identity.

With these hierarchies, the constant

= (3W?H " (r? — ¢?) is positive where
= t+b+c+s+u+td,
r?2 = 34+ +ul+d?)
+2ud|Viyg|? + 2us|Vis|* + 2ub|Vip|? + 2¢d|Veg|? + 2¢5| Vi |* + 2¢b| Vg |2
+2td|Viq|* + 2ts|Vis | 4 2tb| Vi |2

o Q
Il

According to the definition of €, 3 CW?2/2 > u? 4+ d? — eud > 0 because
SOW? =2 + 02+ + % +u? + d?
I (Vil? = 1) + 0 ([Veol? — 1) + ud ([Vaal? — 1]
+ [us [Vys| P +ub [Vop|*+ed [Veal® +¢b Ve [+ | Via 15 | Vis[)
— [t+b)(c+s+u+d)+ (c+s)(u+d).

3.1.2 Theorem ([25]). Assume (3.1.10): the heaviest lepton T is lighter
than the W and there is a hierarchy between quark masses and mizings.
Then, the image, in the five dimensional space (mw,mg,g1,92,93), of the
sixz strictly positive noncommutative gauge parameters T, yi, Yo, Y3, L, § =
tr(diag(g1,92,7s3)), see below, is characterized by the following inequalities
for N = 3 generations:

T < W <

2 W-—r1 g2 !
0 in26 ~ (1 Z2)2 . (3.1.13
< sin W<3(+q—37+(3g3)) ( )

q
N (3.1.11)
Hpmaz (W), (3.1.12)

The saturated bounds for the Higgs are given by

r? — 9¢? (r? — 3ge)e 1 go 2
Hypn(W) = _ — _a+—_ \w
(W) qg— 3e qg—3e¢ W ( +gf2—%g3*2)
r2 — 972 (r? —3qr)T 1 go 2
H. . (W) := — — -1+ — ) W.
mm( ) q _ 37_ q _ 37_ W ( + 91_2 _ %93_2)

In particular, Hpyae(W) — Hypin(W) = (1 —¢) (1 + %) (% —3).
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This shows that the Higgs has a noncommutative fuzzy mass constraint.

As a side product, knowing my = 80.41 + 0.1 GeV and all quark masses,
in particular the heaviest m; = 173.8 £ 5.2 GeV [28], we get that the number
N of generations is less than 5.

It was noticed that this type of inequalities on masses are not invariant
by renormalization [1, 159].

Idea: The noncommutative Yang-Mills theory is an effective theory; there
exists a cutoff A at which energy A; = A while more the energy is decreased,
more the spacetime influence is increased. At our energy, for instance myz
= 91.187 £ 0.007 GeV, this influence is really significant.

Problem: Find an argument giving the energy ranking!

3.1.7 The renormalization machinery

According to the previous idea, the fuzzy constrainsts in theorem 3.1.2 are
bare constraints. This means that we have to do renormalization to quit this
tree level. This approach is standard in perturbative field theory, where, to
include quantum perturbations, one computes the loop corrections. At this
point, there are a lot of possibilities, since there exists different renormal-
ization schemes which are not equivalent. We fix notations:

The kinetic term of the scalar field ¢ is normalized to % in the Lagrangian
which is written as

1 * * 2 ,U,2 *
L= 50,8 0ud + M@ 9 — £ (979) + .

We adopt the mass independent M S renormalization scheme [81, 195]
in the approximation where all fermions masses are neglected but the top
quark mass m;. Asrunning parameter associated to the energy E, we choose
T = logm(m—i). Since the flow of y? is renormalization scheme dependent, we

trade the running top mass for its Yukawa coupling, m; = gv, my = %gw,
myg = 2v2X v, where the expectation value is v = %% We interpret
the five constraints on g1, go, g3, A\, 42 in terms of running quantities at a
noncommutative scale A

For the renormalization flow, the one-loop evolution equations of the
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above variables are the following first order differential equations

Cygi(r) = %QI(T)Sa (3.1.14)
C gy(r) = —%992(?“)3, (3.1.15)
Cgs(r) = —Tgs(r)?, (3.1.16)
Cagr) = gt(?")(—i—;m(r)2 - Zgg(r)2 — 8g3(r)? + 9g:(r)?) (3.1.17)
CN(r) = Mr)(—3g1(r)” — 9g2(r)® + 24g(r)* + 96X(r))
+;—291(7")4 + ;—292(7“)4 — 6gs(r)* + 3—691(7")292(1")%3.1.18)
with C = %

The two-loops equations are just more complicated, but are again one-order
ordinary coupled differential equations.

The initial conditions are taken from experiments: At r = 0, that is, at
myz = 91.187 GeV, we have [28]

91(0) = 0.3575 =+ 0.0001, (3.1.19)
g2(0) = 0.6507 + 0.0007, (3.1.20)
g5(0) = 1.218 +0.0026, (3.1.21)
my(0) = 173.8+5.2GeV, (3.1.22)
mw(0) = 80.41+0.1 GeV. (3.1.23)

So we get for the central values

v(0) = 246.9 GeV,
¢(0) = 0.004.

We neglect all threshold effects and confuse pole masses with running masses
at mz.

Example: If instead of using the scalar product (3.1.3), we use (3.1.4) for
instance, then

gs(M)? = LNz +4a), (3.1.24)
M) = HIN@+2)+y+y], (3.1.25)
(M) = L[Nz +2ZNi+ YN + Sy +35+3y], (3.1.26)
_ +z')?
An) L o= ) (3.1.27)
™k
(M) = @@+ (3.1.28)

Here k is a number which can be computed in the top mass approxima-
tion (see [26].)
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In terms of masses, we get in this case

A =0.96 - 1010 GeV, (3.1.29)
my =214+ 0+ 4 GeV, (3.1.30)
mp =227+ 0+ 4 GeV (3.1.31)

or when 2’ € p(center of A):

my=188+14+ 240 GeV, (3.1.32)
my =198 £8+2+0 GeV. (3.1.33)

The first error comes from the uncertainty in the noncommutative scale, A €
[10'3,10'7] GeV, the second from the present experimental uncertainty in
the gauge couplings, g5 = 1.218 £0.0026, and the third from the uncertainty
in the top mass, if needed as input, ms = 173.8 £ 5.2 GeV.

Problems:

1) Classify all possible scalar products preserving the important physical
constraints and justify the choices. Different possibilities occur (see [175].)

2) Do the same computations as in (3.1.24-3.1.33) for these scalar prod-
ucts.

3.1.8 Noncommutative relativity

Using the approaches of Connes and Chamseddine [40, 31], the effective
action is chosen to be S¢ry = trf(D?/A?), where A is an energy cutoff and
f Ry — Ry is a positive, smooth function with finite, strictly positive first
‘momenta’, fo:= [;° uf(u)du, fo = [;° f(u)du, f4 := f(0).

Using the Lichnérowicz formula and the heat kernel expansion, this action
depends only on the three momenta fy, fo, f4 and takes the form:

F(D}/A%) = / [~ =mp(A)2 R + Ac(A) + Lgs(A) 2 F@)* PO
M
+592(A) 72 ()”‘F(2 ot 2g1(A 2F L+ p(uw

)~
+5 (Dup)* D“so + A(A )|<P|4 — (A ) |<p|2
—a(A)ClupeC*P° + LR ] (det g.) /2 d*z. (3.1.34)

It follows that ¢ is an isospin doublet. After a normalization of the
kinetic terms and a shift of the Higgs field by its vacuum expectation value,
l¢| = v(A), we can identify Newton’s constant G = ficm»?, the cosmological
constant A and the other coupling constants:

mp(A)? = +f [15N 2%2]/&2,
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f3 L*] 4
Ac(A) = 1= [15Nf0— ——] A%,
4 fi Q
CI,(A) = 6:31]7\:2 f4

L(A) == 3g+7+p+e,
Q) == 3>+ +u? + VP + 2 +d>) + 72+ u? + €2,

g3(A) % = 35 fa, (3.1.35)

g2(AN)? = Fafi, (3.1.36)

(M) = 3057, (3.1.37)
oo, L), mp(A)? m(A)?

AMA) T = 5 fa Qa) ~ * f4(1+27mt(A)2 +O(mt(A)2))(3.1.38)

p(A)? = 2f—iA2. (3.1.39)

We ignore the gravitational part because we use the renormalization flow
of the coupling constants. As before, we can soften the action (3.5.33) to
tr[2/ f(D?/A?%)]. Then the constraints read [25]:

g3(A)7? = G5 fuNa, (3.1.40)
@A) = oSN+ oyl +yh +yhy), (3.1.41)
g1(0)72 = S fa(BENZ + 3y + b+ yh)), (3.1.42)
2
AN = ;lzfz;%, u(A)2:2%A2, (3.1.43)
L(A) = z'(t+ct+u+b+s+d) +vhm +yop +yle,
Q) = o+ +uP+b°+ 55 +d%) +ypr + v’ +yre

If 2’ = 1gp, then 2’ = 3, y] = y5 = vy = 1 and we recover the stiff relations
(3.1.37-3.1.39).
Consequences:

1) The constraints, g3(A) = g2(A) and sin?6,,(A) = % = 3 (3.1.35-
1 2

3.1.37), look as in grand unmification. They disappear in (3.1.40-3.1.42),
showing that, in noncommmutative geometry, slight variation on the hy-
potheses may generate important differences.

2) The noncommutative Yang-Mills and noncommutative relativity use
completely different techniques. Nevertheless they intersect in the compu-
tation of the Higgs mass: 188 < mpy < 201 GeV.

Problem: Ts this intersection a pure coincidence or is more profound?

3.1.9 Conclusions

1) Noncommutative geometry appears very successful in particle physics
because a consistent set of axioms yields the following: the Higgs potential is
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an output, the gluons couple vectorially, are massless, the W couples axially,
is massive, the weak sector is in Poincare duality with the strong one.
In particular, there is no right neutrinos. If such particles exist, then the
model has to be changed.

It has not been proven that such an improvement is impossible.
See nethertheless [198]. See the different possibilities of finite spectral triples
in [127], because we have the choice of the representation p(.A) and compat-
ible D, J and chirality.

The message is simple: the Higgs mechanism and the Higgs fields are
just the magnetic fields of gravitational fields.

2) Noncommutative geometry is very rigid: Only few groups are autho-
rized, all existing ”super” versions do not satisfy the axioms. So the domain
to understand is smaller than the classical one but covers nevertheless all
important physical points (see [111] for this point).

3) Despite point 2, noncommutative geometry is very adaptative: a lot
of phenomenology has to be done and some hypotheses to be clarified (cf
the above problems).

A few words about the future: The main step to overcome is to give up
the classical case and to get a real quantum noncommutative geometry. It is
somehow funny to conclude that despite a natural filiation, noncommutative
geometry does not intersect naturally the Schrédinger quantum mechanics!

To go in this direction, we will have to consider the connection between
Feynman diagrams, Hopf algebras and local computations of indices [129,
43, 128, 47, 48|.

One can dream of the realization of Dirac’s program: ”Only one” Dirac
operator is covariant under a Hopf algebra. If it is the case, this Dirac op-
erator must somehow resembles the above one, at least its internal part!
So the answer to the question ”Is noncommutative geometry the millenium
bug of physics” is no. By the way, what about the opposite question?
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3.2 The su(2|1) Model of Electroweak Interactions

and its Connection to Noncommutative Ge-

ometry (R. Héiussling)

I review the su(2|1) model of electroweak interactions which is
essentially based on the super Lie algebra su(2[1), thus incorpo-
rating both usual gauge fields and Higgs fields in one generalized
Yang-Mills field. Special emphasis is put on the natural appear-
ance of spontaneous symmetry breaking and other appealing fea-
tures of the model like generation mixing. Also the connection
of the model to noncommutative geometry is briefly discussed.

3.2.1 Introduction and motivation

Up to now, the minimal standard model (SM) of electroweak interactions
is in an almost perfect agreement with experiment, see e.g. [180]. But
nevertheless, from a more theoretical point of view this model exhibits some
very unpleasant features [197] which roughly can be divided into two classes:

e The

SM contains too many free parameters in order to be a really

fundamental and unifying theory.

e The SM incorporates a lot of apparent arbitrariness that is only justi-
fied by its experimental succes, e.g.:

The higgs mechanism is an ad-hoc procedure rather than a nice
and natural feature of gauge theories.

The Higgs field is taken to be a SU(2)-doublet, only justified by
the experimental value of the p-parameter.

Generation mixing is put in by hand by adding suitable Yukawa
terms to the action.

The assignment of quantum numbers for the fields needs further
experimental input.

The aim of this talk is to review the su(2|1) model, which was developed in a
series of papers, see [52] — [54], and to explain how this model is able to give
new and better insight into the second, more qualitative class of problems
present in the ordinary formulation of the standard model.
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3.2.2 The bosonic part of the model

I want to begin the presentation of the su(2|1) model by motivating the use
and the role of the super Lie algebra su(2|1) which in detail will be defined
below. The fundamental starting point for all considerations to follow is the
fact, very well established by experiment, that in nature quarks and leptons
(which will be represented by some spinors ¥ € C) appear in the form of
purely chiral fields:

Co3V=0,+TzecCl)gc® (3.2.1)
with U7 =1(T—)¥ , Up=1(T+7)T

Hence the space C' of spinor fields carries a Zs-grading, the grading automor-
phism being given by 75 (i.e. 75¥g = Ug, 15V = —¥). This Z,-grading
is consistent with the Z»-grading of the Clifford algebra I' acting on C,

r=r®ger® (3.2.2)
IO = (T, yhy"(u < v),ivs} , TW ={y#,yly"y"(p <v < 1)},
with [F(O)a75] =0 ’ {F(l)a'YS} =0

Furthermore, looking for a theory of electroweak interactions, experiment
also tells us that the chiral fields ¥, and ¥ g have to be classified into differ-
ent representations of weak isospin (i.e. of SU(2)r) and weak hypercharge
(i.e. of U(1)y). As a consequence, the generators

1
Ty , k=1,2,3,8 (Te=1L (i=1,23)or 3Y)  (3.23)

of SU(2)r, x U(1)y have a block structure of square matrices

_ (T 0
T; = ( 0" Tl ) (3.2.4)

along the main diagonal. The generators T}, act on a space V,
V=vVOgv® with vO = M) g x(1)  v() = c(B) g x(B) = (3.2.5)

which inherits the Zo-grading from the space C (3.2.1). X&) and X(®) are
the different representation spaces for left- and right-chiral fields, respec-
tively.

Now we can ask the following question: What happens if one embeds the
su(2) x u(1)-structure (3.2.4) in a minimal way into some larger structure
by filling up the rectangular zeros in the off-diagonal of (3.2.4)7 And, of
course, what would one gain by following such a strategy?

The procedure of filling up the off-diagonal blocks naturally leads to the
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super Lie algebra su(2|1) which, by definition, consists of all 3 x 3 antiher-
mitean matrices

v ( Azxz | Caxa > MO 4 MO | M= M, (3.26)
Dix2 | Bix1i /4.4

with vanishing supertrace:
Str M :=tr A—B=0 (3.2.7)

In (3.2.6) M(©® comprises the blocks A and B along the main diagonal and
is, by definition, even, dM©® = 0, whereas M(}) contains the rectangular
blocks C and D in the off-diagonal and is odd, &M ") = 1. Thus, at this
stage another Zs-grading, the Zs-grading of block matrices comes into the
game.

The Lie bracket in su(2|1) is a graded one and is defined as a combination
of the ordinary commutator [-,-] and anticommutator {-,-}!:

(M, Ny = MO, NO 4+ MO, NO] 4 MO, NO i MV, ND} (3.28)

In direct analogy to ordinary Yang-Mills theory, the connection A of the
su(2|1) model will be a super Lie algebra valued one-form. Let me be more
precise about this point: Call Q4 and €/, the four generators of the odd
part of su(2(1), viz.

0 0]1 0 0|0
Q=000 ],0.=[00]1 ], =©), 9 =@
0 0/0 0 0[0

(3.2.9)
(The generators of the even part are the generators Ty, of SU(2) x U(1), see
(3.2.3).)
Then the generalized connection one-form of the su(2|1) model is given by:

A=i (af- W+ b%W“”) + 25 (@(O)Q’_ +aM, + h.c.) (3.2.10)

In (3.2.10) W = (WO, W® w®) denotes the SU(2) gauge fields, and
W® is the U(1) gauge field. Furthermore, a,b,c are dimensionless real
parameters (which are irrelevant for the following) and p is a mass scale,
necessary to give A a unique dimension.

Because there is, roughly speaking, more space when enlarging the structure
from su(2) x u(1) to su(2|1), i.e. when filling up the rectangular blocks in

1One could, perhaps, wonder about the i-factor in front of the last term on the r.h.s.
of (3.2.8). This factor is necessary in order to stay within the real super Lie algebra
su(2|1) which in turn is of some importance for controlling the physical degrees of freedom
properly.
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the off-diagonal in (3.2.4), A (3.2.10) also contains some additional fields
) o(+) (and their conjugates). These fields have to be scalar fields due
to the fact that A is a one-form, thus carrying total grade one. This total
grade is defined to be the sum of the matrix grade and the exterior form
grade (mod 2):

~

O(MQw)=0M + 0w with M € su(2|1), w € A*(M) (3.2.11)

Here we have used the fact that there is a vector space isomorphism between
the Clifford algebra I'" and the algebra A*(M) of exterior forms (the latter
also being Z,-graded in an obvious way). Hence, the Z,-grading stemming
from the chirality of spinor fields, see (3.2.1), (3.2.5), and the Z,-grading of
exterior forms can be identified [101].

As the forthgoing construction of the model will show, ®(©) and &(+) are just
the shifted (physical) Higgs fields. Thus, the su(2|1) model combines both
the usual gauge fields Wlf, k=1,2,3,8, and the Higgs fields 30 o+ (and
their conjugates) into one single object, namely the generalized connection
one-form A (3.2.10).

Please also note that due to the minimal embedding of su(2) x u(1) into a
super Lie algebra, there is only space for a SU(2)-doublet of Higgs fields.?
In order to proceed we now have the task to construct a curvature two-form
F out of the connection one-form 4, and, finally, to calculate the Yang-
Mills Lagrangian Lp,; by means of F. In ordinary Yang-Mills theories (on
flat spacetime) the construction of F relies on the (local) expression for the
covariant derivative

V=doc+A (3.2.12)

by taking the square of V:
1
F=V?=dcA+ 5 A A (3.2.13)

However, having merged all the Zy-gradings in the game, see (3.2.11), it
is natural to enlarge the exterior derivative d¢ (which acts on differential
forms, raising the exterior form degree by one) by an operation dj; acting
on the Z,-graded matrices and raising the matrix degree by one (mod 2),

dyy - MO 5 0O (3.2.14)

such that the sum of d¢ and dj; acts on both gradings. Without loss of
generality3, the action of dyy on M € su(2|1) can be given by the graded

2Furthermore, no other fields than the usual fields of the SM are introduced here. This
is in contrast to other unifying theories like e.g. supersymmetric theories or GUTs in

which additional fields occur.
3This is discussed in detail in [53].
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commutator of M with a special odd element 7 € su(2[1):

duM = [n,M]y = [n, MO] +i{n, M} (3.2.15)
with 7 =1p (21 + Q") (3.2.16)

The parameter p € IR in (3.2.16), in fact, is not necessary and can be put
equal to 1 without loss of generality. We keep it here in order to have the
possibility of turning on and off the matrix derivative djs later on.
Thus, with M a matrix in su(2|1) and w an exterior form, one has:

dM @ w) =M, ®w+ (-1)°M M @ (dcw) (3.2.17)

The curvature two-form of the su(2|1) model is then constructed by gener-
alizing the standard structure equation (3.2.13) of Yang-Mills theory, i.e.t:

F=dA+ A Al (3.2.18)

Finally, the bosonic Lagrangian in the su(2|1) model is obtained by taking
the trace of the scalar product (F tF ),

Lyos o tr(FTF) . (3.2.19)

((- -) denotes the scalar product in the space of exterior forms.)

Using the trace in (3.2.19) (instead of, e.g., the supertrace) explicitly breaks
su(2|1) invariance of the model, only offering the possibility for a su(2) xu(1)
invariance of L5 to survive eventually. This is equivalent to saying that
su(2|1) is not gauged in the su(2|1) model. Instead, there is only the action
of su(2|1) on the fields of the theory, and, hence, su(2|1) only serves as a
classifying algebra for quarks and leptons. This weak [101] realization of
the symmetry taken alone leads to nontrivial consequences, as will be seen
below.

Instead of going into the technical details of the explicit calculations, see
e.g. [100], I now want to discuss the mechanism of spontaneous symmetry
breaking in the su(2|1) model in some depth.

The mechanism of spontaneous symmetry breaking
Formally, an infinitesimal gauge transformation is generated by an ele-

ment £ of su(2[1) ® A*(M*),
A = A+ dE + A€, , (3.2.20)

where & = £ 4+ £ has total grade 0, o€ = 0, ie. £© and £ contain
0-forms and 1-forms, respectively. Later on, £ will be further restricted to

“The graded commutator of su(2|1)-valued exterior forms includes a slight and straight-
forward generalization of (3.2.8), see [53].
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[su(2]1)]©) ® A?, according to the fact mentioned above that su(2|1) will not
be gauged.

The key observation in the present context is the surprising fact that there
is precisely one connection Ay which is invariant under all constant su(2|1)-
transformations, viz.

Ao=-n=—ip(Qy +9Q°) . (3.2.21)
Indeed, one has:
Ay = Ao + dE€ + [Ao, &g = Ao+ [1,E]g — [1,E]g = Ao (3.2.22)

Thus, Ay is a constant background connection that remains fixed under the
action of the whole algebra su(2|1). The corresponding curvature

1
Fo=dAo + E[.Ao, Ao]g (3.2.23)
is given by (as a short calculation shows):
1
Fo = —in? =ip*(Is + 5Y) (3.2.24)

Therefore, F is proportional to the charge operator Q = I3 + %Y.
With this in mind, it is suggestive to decompose the full superconnection A
(3.2.10) into the constant part Ay and a remaining part Ag,

A=A+ Ao (3.2.25)

where Ag is defined by this equation and easily seen to be:
A Y
Ao = i (aI W+ bEW(8)> + zi ((9(0)9'_ + oM, 4—(&.2)26)

with 0@ = O 4 p | (3.2.27)
o) — g

So far, ©© and ©) are just symbols for some fields. However, it will
turn out in the following that ©(®) and (1) are exactly the unshifted Higgs
fields of the SM. Indeed, rewriting the gauge transformations (3.2.20) for the
connection Ag and restricting £ to the even part of the algebra, i.e. £ 1) =,
these gauge transformations become the well-known gauge transformations
for the gauge fields and Higgs fields of the SM:

Al = Ao + dc€® + [Ae, £O) (3.2.28)

Now, moving on to the curvature F of the su(2]|1) model by using the
generalized structure equation (3.2.18), one finds that F also splits into two
parts,

F=Fo+Fo , (3.2.29)



276 CHAPTER 3. NC GEOMETRY AND MATHEMATICAL PHYSICS

where the constant background curvature Fy was introduced in (3.2.23),
(3.2.24) and where Fg is given by:

1
Fo =dcAe + §[A@,A@]g (3.2.30)

The transformation behaviour of F under the generalized gauge transfor-
mations (3.2.20) is easily found to be:

F' = (Fo + Fo) = Fo + Fo + [Fo, £l (3.2.31)

Thus, restricting as above the gauge transformations to the even part, i.e.
EMW =0, one would recover the well-known transformation law for the curva-
ture of the SM, if Fy on the r.h.s. of (3.2.31) is absent: This term evidently
spoils the full SU(2); x U(1)y symmetry, see also below. Hence, in order
to end up with the SM Lagrangian, at this stage an extra-term® has to be
added to F:
F:=F+Cr (3.2.32)
The most general expression for Cx (not spoiling SU(2)r, xU(1)y symmetry)
is given by:
Cr = —Fo +ip’aY witha € R (3.2.33)
Finally, calculating the lagrangian, see (3.2.19), the supercurvature F yields,
among other terms®, a Higgs potential V' (0):

2 2
V(O) = 9—2 00e® + g e — %au2p2 + const. (3.2.34)

Let me come to the interpretation of the above formulae.
Clearly, in the su(2|1) model spontaneous symmetry breaking is traced back
to the introduction of the matrix derivative dj; and therefore to the “abso-
lute element”

n=ip (Qy + Q) € s5u(2]1) . (3.2.35)

Hence, two cases can be distinguished:

5 A natural explanation for this extra-term can be given in an alternative, but equiva-
lent derivation of the su(2|1) model using 4 x 4 matrices instead of 3 x 3 matrices: In the
4 x 4 formalism su(2|1) and, especially, the connection one-form A (3.2.10) are trivially
embedded into 4 x 4 matrices. This is done in order to get a matrix differential, i.e. to
achieve da; = 0 (which only holds in even dimensions). But because the action of das on
Asx4 also populates the former zeros in the fourth row and column one has to project back
to 3 x 3 after the calculation of F has been done. This projection leads to an extra-term

like above, see [53] for details.
5The other terms are the usual kinetic terms for the gauge fields and the Higgs fields,

i.e.
1
Loos o< =3 D FLFy, + 2(D,0°, p*0®) + 2(D,06 DFOM) —V(O),
a

see e.g. [b3].
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(i) For p = 0 the matrix derivative dps is trivial. At the same time,
the constant background curvature Fy vanishes. The Higgs potential
becomes 5 )

v©)= [606© + 8] (3.2.36)
and has no local minimum away from the origin. The Lagrangian
has the full SU(2);, x U(1)y symmetry and there is no spontaneous
symmetry breaking.

(ii) For p # 0 the matrix derivative is nontrivial and the model contains
the constant background curvature Fy which is proportional to the
charge operator Q) = I3+ %Y. Therefore, the background field F sin-
gles out a specific direction in the representation space of the algebra
su(2|1) and - no matter how the Lagrangian is constructed out of F
- it can have no more symmetry than the isotropy group of Fy, i.e.
the U(1) generated by the charge operator ). This situation is very
similar to the one of a constant magnetic field applied to a spherical
atom; the magnetic field also singles out a specific direction in space
and thus breaks the spherical symmetry of the atom.

In this sense, the mechanism of spontaneous symmetry breaking is a built-
in feature of the su(2|1) model which, in addition, here receives a new and
geometrical interpretation’.

3.2.3 The fermionic part of the model

In principle, the fermionic Lagrangian Lfep of the su(2|1) model is given
by a term like WIp U, where ) is the generalized gauged Dirac operator,
D =iy"0, ® T+ p(A). (p(A) denotes the representation of the connection
one-form A on the fermionic multiplet ¥ in question.)

However, there are some pecularities which have to be handled carefully.
Without going into the details [102], we just want to mention the most
important one: The charge conjugated contribution, stemming from the
multiplet “U of antiparticles, has to be taken into account explicitly. Doing
this in a democratic way the expression for the fermionic Lagrangian reads:

Liom = Wiy, ® MV + 5(C +C) (3.2.37)
with C = Up(A)¥ + h.c. (3.2.38)
°C = “Up(°A)°V + h.c

In any case, because su(2|1) serves as a classifying algebra for the fermions
of the theory, see above, we will have to deal with the representation theory

"Please note that also the correct shape of the Higgs potential is predicted, see (3.2.34).
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of su(2|1) in order to specify the representations ¥ and p(A) in (3.2.37),
(3.2.38).

Representations of su(2|1) and quantum numbers of fields

There exist different types of representations of su(2|1), see [158], [193].
First, there are the so-called typical irreducible representations. su(2|1)
being a Zy-graded Lie algebra, the representation spaces consequently will
carry a Zy-grading, too. A representation of su(2|1) is called typical if the
dimensions of the even and odd subspaces are equal. The simplest typical
irreducible representation of su(2|1) is given by [yo = %,IO = %], where g
and I are (functions of) the eigenvalues of the two Casimir operators Ko
and K3 of su(2|1). When looking for the subspaces which are invariant under
the even part of su(2|1), i.e. su(2) x u(1), this representation decomposes

into an isospin doublet with hypercharge y = % and two isospin singlets with

hypercharges y = % and y = —%, respectively:
1 1 su(2)xu(1) 1 _ _
(Yo = g,fo = 5] — (I= 5);,:% ® (I = O)y:% ® (I 0)y=*§
(3.2.39)

Hence this supermultiplet describes just one family of quarks (u,d), and
the correct assignment of quantum numbers for (ur,dr), ur and dgr au-
tomatically follows from the choice of the representation (3.2.39) (without
any further experimental input). The corresponding antiparticles (“u,“d)
fit very well into the conjugated, but not equivalent, representation [yy =
— £, Iy = 3] of su(2|1).

The second type of representations are the nontypical irreducible represen-
tations (the even and odd subspaces of the representation space not having
the same dimension). In this type of representations, the smallest candidate
is [yo = —1, Iy = 3], whose decomposition with respect to su(2) x u(1) reads:

su(2)xu(l 1
(ﬁ)( ) (I — E)y:—l D (I — O)y:_2 (3240)

o =170 = 7]

Therefore this representation describes one family of leptons, i.e. the left-
handed doublet (er,v;) with hypercharge y = —1 and the right-handed
singlet ep with y = —2. The corresponding antiparticles again fall into the
conjugated, but not equivalent, representation [yo =1, Iy = %]
It should be remarked that the classification of one quark family or one lep-
ton family according to representations of su(2|1) was already discovered in
[167]. (This is also true for the gauge fields and Higgs fields which fall into
the adjoint representation of su(2|1).) However, in these early attempts, it
was tried to gauge su(2|1) which led to serious difficulties with quantization
and redundant or spurious degrees of freedom. For this reason su(2|1) was
discarded for a long time in elementary particle physics.
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Remarks on Generation Mizing

For the classification of several families of quarks we can make use of
another, third, type of representations, the so-called reducible, but indecom-
posable representations of su(2|1). These representations can be written as
the semi-direct sum of representations of, for instance, the first type. Hence,
for three families of quarks we have:

1
o= 5] (3.2.41)

W =

1
I = 5] Elyo =

L =

1 1
[yo = gafo = 5] Elyo =

In this case the generators of su(2|1) have block triangular form due to the
structure of (3.2.41) as a semi-direct sum:

X Q1 0 0 X
Q=1 Qo Q9 0 , T analogously (3.2.42)
Q31 Q32 Q33

Furthermore, it has to be remarked that the generators (3.2.42) of su(2|1)
contain a certain number of arbitrary parameters® which cannot be fixed
by means of the super Lie algebra structure. Hence, when building the
fermionic Lagrangian according to (3.2.37), it is clear that Yukawa terms
will be produced automatically. In addition, the mass matrices originating
from these Yukawa terms have triangular form as a short calculation shows.
This triangular form of mass matrices has proven to be of relevance for the
study of generation mixing, see [103], because of its maximal efficiency which
in turn is due to a maximal number of zeros in the mass matrices.

Finally, the representation theory of su(2|1) also offers the possibility to de-
scribe an extended leptonic family (er,,vr,), eg and vg in case the neutrinos
are massive Dirac particles. This is achieved by making use of a fourth type
of representations which are reducible, but indecomposable, too, see [51] for
details. The possible mixing of several of such extended leptonic families
(via representations of the kind of (3.2.41)) was studied in [105].

3.2.4 The connection to the Connes-Lott model

In this section, I would like to briefly comment on the connection of the
su(2|1) model to Connes’ noncommutative geometry [38], especially to the
Connes-Lott (CL) model building [45]. There are, in principle, two possible
lines to be followed when comparing the two models. On the one hand,
the mathematical structures and ingredients can be compared, on the other
hand, we can discuss the physical outputs of the two models. Of course,
these two strategies are connected to each other.

Let me begin with some remarks concerning the mathematical structures:

8This is also the case for the representations (3.2.39), (3.2.40); the free parameters can
be related to the quark and lepton masses, respectively, see [51].
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First of all, the mathematical apparatus underlying the su(2|1) model ev-
idently is much more elementary than the machinery of noncommutative
geometry (NCG). On the other side, NCG has, of course, a bigger character
of generality: Beside its fruitful application in classical model building, it is
a very interesting new branch in mathematics, possibly applicable to other
problems of (elementary particle) physics.

The relevant mathematical objects for directly comparing the two models
are the differential algebras generalizing the de Rham complex of ordinary
differential geometry. In the CL model this differential algebra is given by
7, (A) constructed out of the associative algebra A = (C @ H) ® C>*°(M)
(for electroweak interactions) by means of a Dirac K-cycle (H, D, ). For
the su(2|1) model the underlying differential algebra ¥* was discussed and
explicitly constructed in [54]: Roughly speaking, ¥*, as a vector space, is
given by the set of matrix-valued exterior differential forms, this set carrying
a Z-grading in a natural way by making use of the exterior form grade and
the matrix grade. The definition of the product ® and the differential d (only
possible in even dimensions, see footnote 5) is also straightforward. It can
be shown that the spaces of generalized zero- and one-forms (29 (A), Q% (A)
and X0, %!, respectively) are isomorphic as vector spaces. However, there
does not exist an algebra isomorphism between £* and 7%,(A). This can be
qualitatively seen from the fact that the construction of the product in the
latter case involves the generalized Dirac operator D (and in particular the
fermionic mass matrix) whereas the definition of the product of the former
is totally independent of the Dirac operator®.

Let me finally mention some of the main physical differences of the two
models:

e In the CL model, spontaneous symmetry breaking only occurs if more
than one generation is taken into account [174]. In the su(2|1) model
spontaneous symmetry breaking is always present.

e The CL model is formulated for Euclidean spacetimes. In order to
arrive at the physical situation, a Wick rotation is necessary at the
end. In the su(2|1) model we can work in Minkowski space right from
the beginning.

3.2.5 Conclusions

In this talk I reviewed the su(2|1) model which is one of the noncommuta-
tive approaches to a more fundamental theory of electroweak interactions.
Especially, I tried to show how some of the qualitative problems present in
the ordinary formulation of the SM can be solved within this new approach.

Indeed, in the su(2|1) model the Dirac operator is not an ingredient of the construction
but rather a derived quantity.
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Of course, all the considerations presented here were at the classical level,
and hence, there remains the task to find a noncommutative quantum the-
ory, i.e. a quantum theory which takes into account the noncommutative
structure seriously.

Acknowledgements: It is a pleasure for me to thank the organizers of
the workshop for their kind hospitality at Hesselberg and for the excellent
atmosphere there. Furthermore, my special thanks go to R. Coquereaux, G.
Esposito-Farése , F. Scheck and N.A. Papadopoulos for the fruitful collab-
oration and many enlightning discussions in the course of the development
of the model presented here.
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3.3 Quantum Fields and Noncommutative Space-
time (K. Fredenhagen)

3.3.1 Noncommutative spacetime and uncertainty relations

A noncommutative structure of spacetime induced by quantum effects of
gravity is proposed and the implementation of the locality principle on such
a space is discussed. Heisenberg’s uncertainty relation

h he
Axr > — > —
v= Ap — FE
and Einstein’s formula
E =mdc®

imply that measurements at short scales create strong gravitational fields
which eventually shield the region of interest by a horizon whose size, in the
spherical symmetric case, is given by the Schwarzschild radius R = %’;’ﬂ

Hence, resolutions of distances which are smaller than the Planck length

[Gh
Ap = G—3 =1.6 x 107 %cm .
C

seem to be impossible. Therefore, the association of points of some smooth
manifold with the localization of events has no operative meaning.

A more detailed investigation of the minimal uncertainties of coordinates
of space-time events [69] leads to the result that there are no restrictions on
the possible precision of a single coordinate. But a simultaneous determina-
tion of several coordinates might disturbe the spacetime structure heavily,
so one finds the following uncertainty relations

At(Az + Ay + Az)
AzAy + AyAz + AzAx

> 1 (3.3.1)
> 1. (3.3.2)
Here length and time are measured in so-called Planck units which are ob-
tained when the fundamental constants of nature, ¢ (velocity of light),
(Planck’s constant divided by 27) and Newton’s gravitational constant G,
are set equal to 1. So in this system of units lengths are multiples of the
Planck length.

Similar relations have been found in Ashtekar’s approach to quantum
gravity and in string theory. The analysis in [69] is semiclassical and heuris-
tic, but model independent.

We now make the following hypothesis: Space-time is to be replaced
by a noncommutative space, i.e. the algebra of functions on spacetime is
replaced by a noncommutative unital (complex) *-algebra £, an idea which
seems to have first been proposed by Snyder [204]. Probability measures on
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spacetime then correspond to states on &£, i.e. linear functionals w which are
positive, w(a*a) > 0 and normalized, w(1) = 1.

The noncommutativity implies uncertainties for the coordinates. There-
fore such spaces have been called fuzzy spaces in [155]. We want to find
an algebra such that the uncertainty relations above hold true for all states
where the uncertainty of a selfadjoint element a = a* € £ in the state w is
defined as

Aa) = Vw(a?) — w(a)? .

We exploit the general quantum mechanical uncertainty relation which
is an immediate consequence of the Cauchy-Schwartz inequality valid for the
positive semidefinite sesquilinear form (a,b) = w(a*b),

A(a)A(b) > 5w ([a, b))l

N —

and make the following Ansatz for £:
The coordinates ¢, u = 0,...,3 of spacetime are selfadjoint generators
of £. The Poincaré group acts on & via

(a,A)g" = A", (¢" — a)

The algebra is then defined by the Poincaré invariant relations (Q* :=
_Z[quaqu])

QNVQ;W =0
1w ~po
gQIL Qp €uvpe = +1
@",¢"] = 0.

The algebra above does not possess a C*-norm, but there is a C*-algebra
to which the ¢*’s and the Q*"’s are affiliated as selfadjoint elements (i.e.,
bounded continuous functions of them are elements of the C*-algebra), and
this C*-algebra has a dense set of states which can be extended to £. The
states of £ obtained in this way are called regular.

One obtains the following theorem [69]:

3.3.1 Theorem. Every regular state of € satisfies the uncertainty relations
(3.8.1,3.8.2) with ¢° =t,q¢' = z,¢*> = y,¢* = 2.

The algebraic structure described above is not uniquely fixed by the
uncertainty relations. In particular, the last condition that the commutators
of coordinates lie in the center of the algeba can be weakened [67].
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3.3.2 Noncommutative spacetime and quantum field theory

We now want to formulate physics on the noncommutative spacetime &.
Since the modification of spacetime by the noncommutativity of coordinates
should be relevant only for very small distances we use the framework of
quantum field theory.

Let us first look at the characterization of particles. According to Wigner,
particles are mathematically modeled by unitary irreducible representations
of the Poincaré group. This description of particles makes sense also on
the noncommutative space £ because of its Poincaré invariance. Moreover,
asymptotically, at large distances, the space should look like the Minkowski
space. Hence we expect that the Hilbert space of incoming scattering states,
describing particles which are widely separated from each other at early
times, can be identified with the Fock space of incoming free fields.

In Minkowski spacetime, quantum fields are operator valued distribu-
tions (“Wightman fields”) on some Hilbert space, formally written as

o(f) = / d'f () ()

Physically, the smeared field ¢(f) may be interpreted as a mean value of ¢,
provided fd*z is a probability measure on Minkowski space.

It is therefore suggestive to define fields on a noncommutative space
as affine mappings from the state space of £ (which is a convex space) to
operators on Fock space.

The physical interpretation is as follows: ¢(w) describes a measurement
in a “region” of spacetime which is characterized by the expectation values
w(a), a € €.

As an example let us look at the free scalar massless field

30) = [ du(®) (e alk) + wle #)a (b))

where a,a* are the usual Fock space annihilation and creation operators
and p is the Lorentz invariant measure on the boundary of the forward light
cone. Here w is a sufficiently “smooth” state such that the formula above
makes mathematical sense. For details see [69].

The field defined above looks almost identical to the free field on Minkowski
space, so one may ask where the noncommutativity of spacetime is encoded.
But the physical content of a quantum field theory lies in the information
where in spacetime a measurement corresponding to a selfadjoint element
of the algebra of quantum fields is localized. In the noncommutative case
described above the only possible localizations of observables are character-
ized by states on £. In particular, there are no strictly localized observables,
in accordance with the uncertainty relations.
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The best localization near a point a of Minkowski space, in the sense
that >°(¢* — a*)? is minimal, is obtained by states with

wa(eikq) _ e—%\k|2eika

(cf. ground state of harmonic oscillator). In terms of fields on Minkowski
space, this means that fields must be smeared with a testfunction which is
a Gaussian and which is concentrated in a region whose size is determined
by the Planck length. Therefore, the commutator of two best localized field
operators at spacelike separated points a and b will not vanish. One finds

[$(wa), d(ws)] =

—1 1 1/.0 2 1/,.0 2

(87)~3 (e—g@ ~lel)? _ g=3(c+e)) )

4r|c|

c = (c,C) = a— . ence, 1 any sSpacelike dairection, € commutator
0 b). H i like direction, th tat

decays like a Gaussian.

Let us study the behaviour of the commutator for large distances. We
define the scaled field by ¢y (a) := %gb(w,\a) and find in the limit A — oo

[62(). 47 (8)] — o (5 = el) = 8(" + [e))

=1iD(c)

(Pauli-Jordan-Function). This is the commutator function of the free mass-
less field on Minkowski space. Hence the theory approaches in the long
distance limit the theory of a massless free field on Minkowski space.

3.3.3 Interactions and Noncommutative Geometry

We now come to the crucial question how interactions can be introduced
[68]. In a naive approach, one replaces in perturbation theory the Feynman
propagator by a linear functional on (a dense subspace of) the dual of EQE,

1

ikq o —ik
e @™

Ap(w) = (2m)~ / 'k

This is equivalent to the introduction of a specific nonlocal interaction on
Minkowski space. One might hope that the nonlocalities are harmless at
large distances and that they regularize the theory at small distances. There
is, however, the problem that no Lorentz invariant trace on the algebra exists
which could represent the integral over spacetime, hence it is not clear how
the integral over internal vertices of a Feynman integral should be performed.
This problem is easier in an Euclidean version of our model, but it is not
clear whether the so-called Wick rotation can be performed which makes
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the Euclidean and the Minkowskian theory equivalent on the basis of the
Osterwalder-Schrader-Theorem [173].

It seems to be worthwhile to reconsider the problem from the general
viewpoint of noncommutative geometry. Instead of using the differential
calculus induced by the action of the translations on the algebra one may
apply the universal differential calculus. Let us introduce the differential d
as a map

d:£E—-EQRE

with
doa=1®a—a®1.

We think of the differential of a function a of the noncommutative variable
q as a function of two commuting variables ¢ and ¢’ and use the symbolic
notation

da(q,q') = a(q') — alq) .

A partial derivative may be obtained from the universal differential by
“putting ¢’ near to ¢”. This means that we choose a positive linear functional
w on (some subspace of) £€®E which describes a localization at neighbouring
points. Then w(da) =: 0,,a may be interpreted as a partial derivative.

As an example we may look at the commutative case. Consider the
algebra of smooth functions C*°(R"), and let f € C*°(R"). Then the uni-
versal differential of f is given by df (z,y) = f(y) — f(z). Now consider the
functional

. 1
w(F) = h_}g}lgo EF(J,‘Q, zo + ha)
with F € C°(R" x R*). Then

w(df) = 0af(z0) (directional derivative) .

The universal differential describes not only first derivatives. Let, e.g.,

/ F(zg,zo +10)

Sn—l

where €),, denotes the volume of the unit ball in R®. Then
w(df) = Af(zo) (Laplacian) .

Now for nonabelian algebras, the limit ¢’ — ¢ is in general not possible
because of the uncertainty relations. Instead one may try to put ¢’ “as near
as possible” to ¢. This may be made precize in the following way. Let E be
the projection on the ground state of |¢' — q|2 where some Euclidean metric
on Minkowski space was chosen. Let e be the positive mapping & — &
defined by

e(a) =¢e(a®1)
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where ¢ is a unit preserving positive map from £ ® £ into £ with ¢(E) = 1.
Let w be any state on £ and consider the positive mapping V: £ Q £ — £,

UV=wid+eQuw .
Then the “noncommutative Laplacian” may be defined by
Aag = Y(da) =e(a) —a .

In a similar way one may also define products of singular objects and
obtain field equations, e.g.

Aa+ A\Tre(E(a®a)E) =0.

Again, there is the problem that these concepts rely on the choice of a
Euclidean metric. Unfortunately, it is by no means clear whether a Lorentz
invariant notion of minimal distance exists.

3.3.4 Gauge theories on noncommutative spacetime

We now want to introduce gauge theories on our spacetime. If one uses the
recipe of spectral triples with a Dirac operator D = ) "0, with derivatives
as infinitesimal translations, one finds a noncommutative electrodynamics.
One obtains Yang-Mills equations and gets plane waves as special solutions.
Due to the nonlinearity of the field equations, superpositions of plane waves
are no longer solutions, and one obtains corrections by massive modes. It
is tempting to use these formulas for an experimental test of our equations
in the analysis of electromagnetic waves which travelled over astronomical
distances. Unfortunately, there is an unsolved conceptional problem. As
usual in nonabelian gauge theories, the field strength is not gauge invariant.
But in our case, gauge transformations are unitary elements of the algebra
&, acting by the adjoint action on the field strength. Hence a gauge invariant
function of the field strength must belong to the center of the algebra, and
must in particular be translation invariant.

Because of these difficulties we work again in the general framework of
noncommutative geometry and introduce gauge theories as follows. Let H
be a right £ module. A parallel transport on H may be defined as a module
homomorphism

U:H->HRE

with moU = 1, where my(®®a) = ®a. A covariant differential is then given
by
D :=UG-d1,

and it is easy to see that D satisfies the covariant Leibniz rule.
In the simplest case ("Electrodynamics”) we have H = £ and

Ud(q,q') =Ul(g,q)®(d)
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with some U(q,¢') € ERE.
A gauge transformation is given in terms of an invertible V € £ and it
transforms U according to

Ulg,q) = V(Q)U(g,¢")V(d)™".

The curvature F = D? can be described by left multiplication with an
element of £ ® £ ® £. In terms of the parallel transporters it is given by

F(q,q,4") =U(q,¢"\U(d',q") —Ulq,q") -

We now find gauge invariant quantities by a similar procedure as in
lattice gauge theories.
Let my, : £%" — 9" mu(a1 ® - ®ay) = 6,01 ® - -- ® a,,_1, then the
“Wilson Loops”
wW,(U) :=

mn+1(U(q1,92) - - U(qn, gn+1))

are gauge invariant elements of £%".

Example: Let u;,v; € £,i = 1,...,d with Y w;v; =1 and vju; = d;5
(Cuntz Algebra), then U(q,q') = 3 u; ® v; is a parallel transport with cur-
vature F' = 0 and Wilson loops W,,(U) = d1.

We see that in the abstract approach described above many gauge in-
variant quantities exist. Unfortunately their physical interpretation is not
evident. It is also not clear whether the principle of locality which is crucial
for quantum field theory has an analogue in the noncommutative setting.
Without such a principle there are far too many possibilities for writing
down models, and without sufficient information from experiments a choice
between these models is impossible.
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3.4 Noncommutative Geometry and Quantum Fields:
Simple Examples (E. Langmann)

These notes contain four stories which are all related somehow to quantum
field theory (QFT) and noncommutative geometry (NCG). (I) I sketch how
the generalization of Yang-Mills theory to NCG motivates a useful and sug-
gestive computation method to extract Chern-Simons terms from effective
fermion actions. (II) Four nonconverging infinite series from a famous letter
by Ramanujan are discussed as examples to illustrate a simple technique for
regularization. (III) Regularized Hilbert space traces and their relation to
the Wodzicki residue are discussed and illustrated for the simple example
of matrix valued pseudodifferential operators on R". (IV) To demonstrate
the efficiency of the mathematical tools described in (III), the logarithmic
divergence of the effective fermion action in four dimensions is computed. It
is argued that the result of this computation provides a physical motivation
for a particular form of the spectral action principle in NCG.

3.4.1 Introduction

In these lecture notes I will discuss examples where mathematical structures
related to noncommutative geometry (NCG) are useful when treating tra-
ditional issues in quantum field theory (QFT). These examples all have to
do with effective fermion actions which are fundamental in QFT, and what
I can say I have learned in a few projects (partly together with Jouko Mick-
elsson) in which we have tried to confront QFT with NCG with the aim to
make progress in both subjects: revisit traditional issues in QFT having in
mind ideas from NCG to improve the ‘tool kit’ for QFT, but also to use
problems in QFT as a motivation and guideline to study certain mathemat-
ical issues related to NCG. Rather than trying a review (a more systematic
discussion of part of our work can be found in Ref. [141]) I will tell four
different stories which, as I hope, will give the flavor of what we have been
doing.

The idea to generalize geometry to situations without underlying mani-
fold but rather algebras of Hilbert space operator is very powerful [38]. For
example, it offers a natural way to understand the relation between the rich
differential geometric structure of anomalies (anomalies as de Rham forms,
characteristic classes, descendent equations relating anomalies in different
dimensions etc.) and their explicit QFT derivation (see e.g. [115]). A gen-
eral idea here is to interpret Feynman diagrams as regularized traces of cer-
tain operators on some Hilbert space, and to try to identify NCG structures
based on the algebra of these operators. The regularization of the traces is
necessary since one obtains operators which are not trace class. Anomalies
can often be identified as regularized traces of commutators [a,b] = ab — ba
of certain operators a and b. Even though such an expression is always
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zero if [a,b] is trace class, it can still be defined in more general cases and
be non—zero then. Such regularized traces of commutators are also closely
related to the Wodzicki residue playing a fundamental role in NCG.

The plan of these notes is as follows. In the next Section I summarize
preliminaries from NCG and QFT (they can be skipped at first reading
since I will refer to them in the other Sections when needed; Section 3.4.4
does not need any preliminaries). In Section 3.4.3 I sketch one example of a
QFT computation of an anomaly, namely how to obtain the Chern-Simons
terms from effective fermion actions. I show how some NCG generalization
of Yang-Mills theory naturally appears there and how it can be exploited
to make the computation efficient and suggestive. In Section 3.4.4 discuss
elementary examples for regularization in the context of nonconverging se-
ries. I included this Section as a ‘warmup’ for Section 3.4.5 where I give a
general discussion of how to regularize the Hilbert space trace, something
which is important in many QFT computations but also related to some
basic notions in NCG. I first give a discussion on a general, abstract level
and then illustrate this in more detail for one important example, namely
pseudodifferential operators on R™. The discussion in Section 3.4.5 provides
very efficient mathematical tools to compute effective fermion actions on R”.
To demonstrate this I show in Section 3.4.6 how to compute the logarith-
mic divergent contribution to the effective fermion action on R*. I choose
this example since the result of this computation is actually quite striking:
In the final Section 3.4.7 I will give a physical interpretation of this result
and explain why it has to be what it is. This then gives a simple physical
interpretation of a specific form of the spectral action principle in NCG, see
[38, 31].

3.4.2 Preliminaries

In this Section I summarize some preliminaries. I first describe some basic
notions from NCG, namely how to generalize de Rham forms to operator
algebras where one does not have an underlying manifold. This allows to
naturally extend the notion of Yang-Mills theory and gauge invariance in
a manner which is very useful for QFT (e.g.). I then discuss the formal
definition and some physics background to effective fermion actions. To be
specific, I also give a down-to-earth definition of the mathematical ingredi-
ents for the computation of the effective fermion action on R".

On noncommutative geometry

One important idea from NCG is to generalize the notion of de Rham
forms. To motivate this I recall that it is possible to characterize de Rham
forms on a manifold purely algebraically without reference to the underlying
manifold. This algebraic characterization can be used as a definition of what
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is called a graded differential algebra (GDA). There are several interesting
examples of GDA’s based on algebras of Hilbert space operators [38] (rather
than algebras of functions on a manifold) some of which naturally occur in
QFT. To be specific I will restrict my discussion to manifolds R™.

De Rham forms on R". To construct de Rham forms one can start with
an algebra of ‘nice’! functions on R™, which one regards as zero forms, and
define the exterior derivative? d such that it obeys d? = 0, linearity, and the
Leibniz rule, d(uv) = d(u)v + ud(v) for all zero forms u and v. Then one
can define k-forms as the linear combination of elements

wi = uwod(uq) - - - d(ug)
with u; zero forms, and the definition
d(uod(u1) -~ d(ug)) = d(u)d(ur)---d(ux)

extends the linear map d to all k-forms such that d2 holds. Moreover, the
multiplication of forms is naturally defined by the Leibniz rule,

wod(uy) - - - d(ug)vod(vy) - - - d(vg) = upd(uq)---d(ugve)d(vy) - - - d(vg)
—upd(u1) - - - d(ug—1)ugd(vo)d(v1) - - - d(vy),

which by induction shows that this is a well-defined (k + £)-form. One can
check that then the graded Leibniz rule holds,

d(wgwp) = d(wg)wp + (=) wpdwy
for all k- and ¢-forms wy, and wj.

Generalized de Rham forms. One can mimic this construction of de
Rham forms but instead of the algebra of functions of R take some algebra
of Hilbert space operators which one regards as zero forms. An important
example for a natural definition of the analog of exterior differentiation then
is3

d(4) := [e,0] = et — de (3.4.1)

for all zero forms @ where ¢ is a grading operator, i.e. € is selfadjoint and its
square is the identity. One then can define k-forms, multiplication of k- and
{-forms etc. as above, and the algebraic properties of de Rham forms carry
over to these generalized de Rham forms. Note that these definitions imply

d(w) = edn — (—1) e

1 0
e.g. C§
2To compare with formulas in the other Sections, I note that I use the convention such
that d(u) = —i 3", 2% dz,

p=1 Bz,
3Here and in the following I use hats in formulas for generalized de Rham forms.
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for all k-forms @y.

Generalized Yang-Mills theory. It is often straightforward to generalize
notions and results from de Rham forms on manifolds to general GDA’s by
formulating them in a way which only makes use of the defining relations
of a GDA. An important example for us is the generalization of Yang-Mills
theory to GDA’s based on Hilbert space operators. As a motivation I recall
that any Yang-Mills configuration A on R™ can be associated with a de
Rham 1-form on R”,

A= Xn: Ay (z)da” (3.4.2)
p=0

where the A, are functions on R™ with values in the algebra gly of N x N
matrices. Zero forms u naturally act as (infinitesimal) gauge transformations
on such 1-forms A,

Su(A) = d(uw) + [A,u] = [d+ 4,4], (3.4.3)

and for any one form A we can define the corresponding Yang-Mills curva-
ture,
Fy=d(A) + A? = (d + A)? (3.4.4)

which is a 2-form (we have used d2 = 0 and the Leibniz rule i.e. d(u) = [d, u]
and d(A) = dA+ Ad). The definitions then imply the following transforma-
tion rule for the Yang-Mills curvature,

Su(Fa) = [Fa,u] (3.4.5)

where I used that the definition of gauge transformations naturally extends
to polynomials in A and d(A4),

Supld]) = SplAvuua) (3.4.6)
t=0

One also can construct various other de Rham forms from A with interesting
relations amongst them. One example which will be important for us in the
next Section are forms which I denote as ‘raw data’ for the Chern-Simons
terms: for all positive integers m, the (2m — 1)-form*

1
Cham_1[A] = / Q)™ A, Foy = td(A) + 242 (3.4.7)
0

obeys
(Fa)™ = d(Cham—1[A]) + (--+) (3.4.8)
“Note that the following is not quite the Chern-Simons form since I do not assume

that 2m — 1 equals the dimension of the underlying manifold and I do not take the matrix
trace.
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where ‘(---)’ vanishes when taking the matrix trace (i.e. it is of the form
Awap—1 + wom—14). The last equation is one of the so-called descent equa-
tions which play an important role for the understanding of anomalies in
QFT. The reason for regarding Chop,—1[A] as ‘raw data’ for the Chern-
Simons term is as follows: in case of 2m — 1 = n we can define the integral
of this form, [rs,,_1 tr Chap1[A] where tr is the matrix trace in gly, and
this is precisely the Chern-Simons term on R?™ 1,

All what I discussed here immediately carries over to other GDA’s. For
example, in the GDA based on the Hilbert space operator algebra I can

regard
A= Z Uj [€, ﬁj]
J

as generalized Yang-Mills fields, and all I said above for Yang-Mills theory
on R" immediately generalizes. Especially,

F;=cA+ Ae + A2, (3.4.9)
and we can also construct raw data for Chern-Simons terms related to (F;)™
as above. To get from them Chern-Simons terms we also need an analog
of integration of de Rham forms. There is a natural definition for such a
noncommutative generalization of integration of de Rham forms, see e.g.
[140].

I finally note that it is possible to generalize, in a similar manner, all
descent equations and thus obtain ‘raw data’ for anomalies in general GDA’s
[142].

On effective fermion actions

Formal definition. Fermions on n-dimensional Euclidean spacetime in an
external Yang-Mills field A can be described by an effective action which
formally is given by the determinant of a Dirac operator Dy,

Set(A) = —“log det” (P4 + i M) (3.4.10)

where M is a real constant which is interpreted as fermion mass and Dy
is self-adjoint. To be specific I will give a down-to-earth definition of D4
for the simple (but important) special case where spacetime is R". The
quotation marks in Eq. (3.4.10) indicate the well-known fact that there are
divergences present and the determinant has to be defined and computed
using some regularization. A lot of interesting mathematics and physics has
originated from studying such effective actions in various different situations
and from various different points of view.

Chern-Simons terms. One interesting and important consequence of the
regularizations is the occurrence of what is called anomalies by physicist;
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see e.g. [115]. One prominent example is the effective fermion action in odd
dimensions: even though formally the effective action for massless fermions
(i.e. for M = 0) is real, the imaginary part of the effective action Seg(A)
on R?™~1 does not vanish in the limit M — 0 but is proportional to the
Chern—Simons term discussed in the previous Section,

lim Tm Syt (A) ox / tr CSam_1[A] (3.4.11)
M—0

R2m-—1

with CSop—1[A] given in Eq. (3.4.7). In Section 3.4.3 I will outline a sim-
ple method to perform the computation proving Eq. (3.4.11), and in this
computation a generalization of the CS term to NCG, as mentioned above,
naturally appears. In this example we look out for traces of NCG in a
QFT computation, and we will see that mathematical structures from NCG
indeed appear rather naturally. Another such examples is the scattering
matrix of fermions in an external Yang-Mills field (closely related to the
effective fermion action) as studied in Ref. [144].

Regularized traces and the logarithmic divergence. As mentioned,
one important part in the computation of Seg(A) is the regularization, and
(in our approach) this amounts to making sense of the trace of Hilbert
space operators which are not trace class: one can interpret “log det” in Eq.
(3.4.10) as “Irlog”. The logarithm of the Dirac operator can be defined
in various ways (we will explain different possibilities for that in Sections
3.4.3 and 3.4.6), and one finally has to specify what is meant by the trace
of the operator log(4 +iM). I will explain a general method of how define
such a regularized trace “Ir” in Section 3.4.5, and I will mention also an
interesting relation between “Tr” and the Wodzicki residue [225]: regularized
traces which are essential in QFT are closely related to traces playing an
important role in NCG.

In Section 3.4.6 I will discuss one interesting aspect of the effective
fermion action resulting from one general feature of “Tr”: As will be ex-
plained in Section 3.4.5, “Tr” (a) for many operators a is ambiguous: chang-
ing the regularization amounts to adding to “Tr”(a) a multiple of the oper-
ator residue of a. This ambiguity is what physicists refer to as logarithmic
divergence. As is known by physicists since a long time, in four spacetime
dimensions this logarithmic divergence actually is identical with the Yang-
Mills action Sy ar(A) (see e.g. [114]). I will outline the computation proving
this statement in order to illustrate the use of the mathematical tools (reg-
ularized traces, PSDO’s etc.) in a effective action computation. In the final
Section 3.4.7 I will give a physical interpretation of this result and argue
that this suggests to define the Yang-Mills action also in more general cases
as

Sym(A) x —Res(log(Pa +iM) — log(Ih + iM)) (3.4.12)
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which can serve as an alternative formulation of the definition of the Yang-
Mills action in NCG.

Dirac operators on R". To be specific we restrict ourselves to space time
described by the manifold R”, and we will consider gauge theories where
the Lie algebra of the gauge groups is represented by N X N-matrices. In
this case a Yang-Mills field configurations A is represented by gly-valued
functions A, on R", u = 1,2,..., N, which we assume to be ‘nice’.> To
define P4 we also need a spin structure, which in the present case is given
by self-adjoint matrices v, u = 1,2,...,n, obeying

VYo + YoV = 201 (3.4.13)

with 1 the identity matrix. One can construct such matrices in gl () where
v(n) = 200=D/2 for n odd and v(n) = 2"/2 for n even (explicit formulas can
be found e.g. in [140].) Then 4 is defined by the following differential oper-
ator acting on the space of differentiable and compactly supported functions
on R" with values in C*(") @ CN,

n )
= —i—+ A,z 4.
Da ;W( 5o, T A )) (3.4.14)

(by abuse of notation I write vy, short for v, ® 1 and A,(z) short for
1® Ay,(z)). This operator extends to a self-adjoint operator acting on the
Hilbert space

H = L*(R", d"z) @ C*™ @ CV (3.4.15)

and which I usually denote by the same symbol 4 (except in Section 3.4.6).
Especially Iy = —i 22:1 'y“%. We shall also say that D4 is the Dirac
operator coupled to the Yang-Mills field A = ZZ:l A, (z)dz,, and I is the
free Dirac operator.

3.4.3 Story I: Chern-Simons terms from effective actions

(In this Section I will use notation explained in Section 3.4.2.)

As discussed above, the effective action for massless fermions in the exter-
nal Yang-Mills field A formally is (minus) the logarithm of the determinant
of the Dirac operator Iy + A, or equivalently, the trace of its logarithm. Due
to divergences some regularization of this trace is necessary (one has to add
a small massterm and a large momentum cutoff, e.g.) but we will ignore
this in this Section for simplicity.

5C8°, e.g., but this conditions could be easily relaxed.
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I write this log of the determinant as “Tr” fol dt % log(h + tA), which
formally is equivalent to®

Sef(A) = —“Ty” /0 1 dt(y +tA) L A; (3.4.16)

I take this as definition of the effective fermion action in this Section.
I now define

A=|D|'A and e= || 'H. (3.4.17)

At this point this can be regarded as a useful notation which is motivated by
what we discussed in Section 3.4.2 above (note that ¢ is a grading operator).
Then we can write

—1 ~ —1 ~ ~ -1 ~
(+tA) " A=(e+tA) A= (c+tA)(1+F,,) A
where we introduced the suggestive notation

F,; = t(eA + Ae) + ?A (3.4.18)

which is very natural after our discussion in Section 3.4.2 above (I used
(e +tA)? =1+ F, ;). The imaginary part of the action thus becomes

e 1
ImSez(A4) ~ > (=)F Imé“Ty” / dt(e + tA)(F, )" A. (3.4.19)
k=1 0

This should be equal, up to a constant, to the Chern—Simons term

1
/ tr / dt (Fya)™ 1A (3.4.20)
R2m—1 0

where Fy4 = td(A) + t2A? (de Rham 2-form on R?) and n = 2m — 1. This
result is now very plausible by notation. To prove it requires a nontrivial
calculation: namely to show that

A k-1 4 _
Im“Ty” A(F,)F A = 0

Im“Tr"e(F, ;)" 'A 5k,m/ tr(F0)™ 'A VEk. (3.4.21)
RZm—l

This can be proven in a computation using the mathematical tools explained
in Section 3.4.5 [145]. The second result in Eq. (3.4.21) can be interpreted as
follows: Im“Tr”(e-) is an integration of generalized de Rham forms, as men-
tioned in Section 3.4.2. Note also that all manipulations from Eq. (3.4.16)
to Eq. (3.4.19) did not use any property of the operators I and A except

6In Section 3.4.6 I will give a refined definition, but for our purposes here the following
simplified definition is sufficient.
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that they are self-adjoint operators on some Hilbert space, and thus ev-
erything we said above is valid also for much more general situations. The
place where specific properties of these operators and the Hilbert space we
are using enters is the step from (3.4.19) to (3.4.20). Especially only here
the dimension of the underlying spacetime manifold enters: it is only the
(regularized) trace that distinguishes the different dimensions, and it picks
up exactly one term viz. the anomaly.

3.4.4 Story II: Regularization: elementary examples

(This Section is self-contained.)

A general feature in quantum field theory is the appearance of infini-
ties, so-called divergences. Over the years physicists have learned how to
deal with them, to do computations and extract meaningful, i.e. finite, an-
swers from mathematical expressions involving diverging series and integrals.
Physicists are not always very careful in their notation, and in this context
this can result in rather strange looking equations, for example

1-243—-4+... = 7 (3.4.22)
1—1U4+20—-31+... = 0.5%..., (3.4.23)
1
L+2+3+4+ = ——, (3.4.24)
1
3493133 L34 = . 4.2
13 4+2% 433 +4% + 50 (3.4.25)

In fact, I have taken these equations not from a physics text but from a
letter a prominent mathematician wrote to another, quite some time before
quantum field theory: these equations are stated in the first letter which S.
Ramanujan wrote to G.H. Hardy on January 16, 1913 [14].” However, such
formulas play indeed an important role in QFT and string theory.®

To explain the basic idea of regularization I will now discuss an elemen-
tary method allowing to give precise meaning to these and similar equations.
We start with Eq. (3.4.22). Consider the series

oo

fle)=) (1™ (¢>0)

n=1
which is absolutely convergent and can be summed to

1
£&) =1- 1o

"I should cite here the complete paragraph in this letter containing these equations
(see [14], p.29 ff): “XI. I have got theorems on divergent series, theorems to calculate
the convergent values corresponding divergent series, viz.” (here come Egs. (3.4.22)-
(3.4.25)). “Theorems to calculate such values for any given series ..., and the meaning
of such values.”

8see e.g. Ref. [177], Eq. (2.9.19) on p. 73.
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Formally, the (ill-defined) series > o, (—1)""!n® for a positive integer s is
equal to (—1)°d®f(e)/de®|._,- We can expand f(e) in a series and obtain,

f(&) = 5 — z¢ + O

which shows that we can define

> l n—1_s ._ 13 s d? n—1_,—en

ngl (=1)"7'n? = lim (<1)" D (=1)"le (s€N) (3.4.26)
where the prime is to indicate that this sum is defined with a specific sum-
mation prescription. For s = 1 we obtain an equation giving precise meaning
to Eq. (3.4.22).

To give a precise meaning to Eq. (3.4.23) we use n! = [° dte™'t" and
define

i/ (—1)"n! := /-oo dt ie_t(_t)” (3.4.27)
n=0 0 n=0

equal to [ dte™"/(1+t) = 0.59635.... (I find it quite remarkable that this
‘dangerous looking’ series can be ‘tamed’ simply by changing the order of a
summation and an integration.)

We thus see that the series in Egs. (3.4.22) and (3.4.23) are actually con-
ditionally convergent, and what we did is to specify summation prescriptions
giving well-defined (finite!) results. We now turn to the series in (3.4.24)
and (3.4.25) which are different (they are obviously not conditionally con-
vergent). To give meaning to them we consider

o
= Ze*m (e >0)
n=0

which is absolutely convergent and equals
1
1—e¢’
Formally, the (diverging) sum Y o> ;n® for s € N equals (—1)° d°g(e)/de’|,_,.
Expanding g(¢) in a series we obtain

1 1 1 1
g(E)—g+§+ﬁ€—%€ +0( )

which shows that it is the term 1 which is responsible for (—1)* 8°g(e)/9e°|._,
to be infinite. We can remove this divergence by subtracting this term. We
therefore define the regularized sums

St = lim (—1)" 35 (Z —en _ _> (s € N) (3.4.28)
n=0

where the prime here indicates the regularization. For s = 1 and 3 we thus
obtain equations which give a precise meaning to Egs. (3.4.24) and (3.4.25).

g(e) =
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3.4.5 Story III: Regularized traces of operators

(This Section is essentially self-contained except for some definitions and
motivation given in Section 3.4.2.)

In QFT computation one is often led to compute the trace of a Hilbert
space operator which is not trace class. To give a precise meaning to that one
has to do a regularization. In this section I discuss a rather general method
for this. I will first give a discussion on a general abstract level which is
in the spirit of NCG: given some unbounded operator Dy and some algebra
A of Hilbert space operators with certain properties (depending on D) I
show how a regularized trace Trc and an operator residue Res on A can be
defined, and T will discuss a few interesting properties of Trc and Res. To
simplify the presentation I will be somewhat vague in the precise definition of
A. Instead I will consider a specific example, namely the pseudodifferential
operators (PSDO) on R”, where all statements concerning Trc and Res can
be proven by rather elementary computations.

Conditional traces of commutators and the operator residue

Let Dy be a unbounded, self-adjoint operator and f some real valued,
smooth, function on R obeying

f)20 Ve=0, f(0)=1, [f(t)=00"). (3.4.29)
Specific examples which we have in mind are
ft)=et or f(t)=6.(1—1) (3.4.30)

(0: is an approximate Heaviside step function), but it is useful to leave f
general in the following discussion: Choosing f be regarded as a particular
choice for a regularization. We are mainly interested in results independent
of the regularization, i.e. results which to not change under f — f.9

Given Dy and f we can construct a family of regularization operators

Pyi=f(2d), 0<A< (3.4.31)

which are defined by the spectral theorem (note that Py converges strongly
to the identity operator for A — 00). For all operators a such that aP, is
trace class for A < 0o, we then can define a trace with a cut-off as follows,

Tra(a) := Tr(aPr), 0< A< (3.4.32)

where Tr is the usual Hilbert space trace. The conditional trace class By ¢
then can be defined as the set of all such operators for which Trp(a) has a

9M~ore generally, one could also change the regularization by changing Dy — Do such
that Do — Dy is a bounded operator. The discussion of this is beyond the scope of these
notes.
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finite limit A — oo, and for those operators we can define the conditional
trace
Tre(a) = lim Tra(a) . (3.4.33)
A—oo

Obviously By ¢ contains all trace class operators, and if a is trace class then
Trc(a) = Tr(a). However, Trc is not cyclic: There are operators a and b
such that the commutator [a,b] = ab — ba is in By ¢ but Trc([a,b]) # 0.1°
In fact, the conditional trace of commutators is a very interesting object, as
will be further discussed below.

In many cases (e.g. applications in QFT) one is interested in operators
such that aPy is trace class for all A > 0 and which allow an expansion of
Trp(a) as follows,

Tra(a) = AVen(a) + AN Ley_1(a) + ...+ Aci(a) +
+1og(A)ciog(a) + co(A) + O(A™) (3.4.34)

where N is some non-negative integer (depending on a, of course). Below
we will discuss an important example of such operators, namely pseudodif-
ferential operators (PSDO) on R™. This will give a specific example of what
we now discuss.

We will see below that in general the terms ¢ in the expansion above de-
pend on the function f chosen to define Try i.e. on the regularization. These
terms therefore are not particularly interesting. There is, however, one term
which is regularization independent, namely cjo5, and this indicates that this
term is interesting. In fact, one can prove that for a large class of PSDO a
(and Dy a Dirac operator), ciog(a) is proportional to the Wodzicki residue
[225] (we will discuss this in more detail below). We therefore introduce the
notation'!

Res(a) = ciog(a) (3.4.35)

also in more general cases.
There is one more term in the expansion of Try which is interesting,
namely co: in case of operators a € B ¢,

Tre(a) == co(a), (3.4.36)

and it is natural to use this equation to extend the definition of the con-
ditional trace to all operators allowing for an expansion Eq. (3.4.34). It
is important to note, however, that the conditional trace of an operator is
not quite regularization independent in general: For example, if we change
A — As with s > 0 (which corresponds to a legitimate change of the regu-
larization function) then

Trc(a) — Tre(a) + log(s)Res(a) , (3.4.37)

00ne can therefore say, somewhat paradoxically: the conditional trace is not a trace.
""Our normalization is different from the one in [225]
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and more generally one can prove that a regularization change f — f
amounts also to a change Eq. (3.4.37) with s depending on f and f. However,
operators a with Res(a) = 0 have a regularization independent conditional
trace. Especially, conditional traces of commutators are regularization inde-
pendent, another indication that these are interesting objects. In fact, one
can prove that the trace of a commutator can be computed as a residue,
namely

Trc([a, b]) = Res(a[log |Dy|, b]) . (3.4.38)

We will sketch a proof of these relations for PSDO on R™ below. We note,
however, that the equations Eq. (3.4.29)—(3.4.38) can be extended to large
classes of operators.

The objects discussed above have several important applications in QFT.
For examples, many anomalies in QFT can be computed as conditional
traces of commutators of certain PSDO [141], and this is one explanation
why anomalies are interesting geometric objects. We will also discuss one
interesting QFT application of the residue in Section 3.4.6 below.

Example: Pseudodifferential operators

We consider the Hilbert space H defined in Eq. (3.4.15) ff and PSDO
which are operators on .

Let D be the dense subset of smooth functions f(z) in H vanishing
exponentially for |x| — co. We consider linear operators % — # which can
be defined as follows,

dr . .

(af)(z) = / 2 e gla)(p,x) | dz &PV (y) (3.4.39)
re (2) Rr

for all f € D, where o[a](p, ) is a matrix valued'? function on R x R"

obeying certain conditions'? such that all I write down is well-defined (p-z =

> =1 PuTy)- An example important in this Section are the operators f (%)

which obviously can be represented as in Eq. (3.4.39) with

olf (B, 2) = £(§)
independent of z (|p| = +/p- p). Another example are the Dirac operators
defined in Eq. (3.4.40) above with

o[Pal(p,x) =Y Aulpu + Au(@)] = 7-[p+ A(2)] . (3.4.40)
p=1

(We will use the notation introduced here in the next Section.)

12j e. 8l,(n) ® gly—valued
3to keep our presentation short I do not spell out these conditions; see e.g. in [108]
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Note that Eq. (3.4.39) implies

olat](p, z) = /R n (;573 / 'y Vo la)(g, 2)o () (3.4.41)

(the order of terms is important since the matrix product is understood
here, of course) and one can show that if a is trace—class,

T@w= [ o [ douoldpa)
a) = z trolal(p,
where tr is the usual matrix trace (i.e. sum of diagonal elements).

We now use Dy = [y and some function f obeying (3.4.29) for a reg-
ularization, as discussed in Section 3.4.5. From our discussions above we

obtain, ofaf ()])(p, 2) = olal(p, 2)f (§) and
o) = [ g [ e ol (%) =
.- a¢
| il 8 [ ate - [ e ool o) (3442

where we introduced spherical coordinates, p = |p|¢ (note that [, d™€ 6(|¢|—
1) is just the integral over the unit sphere in R™). We now define A as the
class of all operators which can be represented as in Eq. (3.4.39) with a
smooth function o[a](p, z) on R x R” compactly supported'* in z and such
that that there is an asymptotic expansion

o0

olalp, ) ~ Y olalv, 5(p,) (3.4.43)

J=0

for some finite integer N,, where oy[a](p, z) is homogeneous of degree k in
p (i.e. ox[a)(sp, z) = s*o[a](p,z) for all s > 0 and p # 0) and goes like |p|*
for |p| = oco. We will also use the notation

ola](p, ZJNa—g[a p,z) + O(|p|N=~*1)

for all £=10,1,2.... We note also that Eq. (3.4.41) implies

k kolb
O'[G,b Q); Z Z ‘ a U[a](p, ) 0 U[ ](p,:!:) ) (3444)
par S k. Opuy +* Opy,, 0Ty, -+ Oy,
This allows to determine the asymptotic expansion of o[ab] from the ones of
ola] and o[b]. Especially if o[a] is O(|p|¥e) and o[b] is O(|p|™**) then o[ab]
is O(|p| Mo tM)).

"This condition is not essential and could be easily relaxed.
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We now show that all operators in A allow for an expansion Eq. (3.4.34),
and the asymptotic expansion Eq. (3.4.43) actually allows a simple computa-
tion of the terms cx(a). For that we compute the contribution of ox[a](p, x)
to Tra(a). Using homogeneity of oy[a] we obtain,

[ w8 [ s 1) [ s wofaéa

_ [pl

Changing variables, [p| — u = “, and comparing with Eq. (3.4.34) we see
that forall k= —n+1,—n+2
d"g
Ckn(a) = Nnk o @) 3(I¢| — 1)tr ox[a] (€, ) (3.4.45)
with N, p = [7° duu*T~! f(u) constants depending on f. For k = —n

the computation above does not make sense (the constant N, _, diverges).
However, we can compute ciog(a) as follows. We first subtract from the
symbol of a the part which we already accounted for and define,

Ng+n—1
O'J;n+1[a](17a37) == olal(p,z Z ON,—jlal(p, z) =

=0—n[a](p,x)+0(lpl "h.

Eq. (3.4.34) then suggests that

1 d"
os(@) = Jim s [ S5 [ ol o).

The computation of this is somewhat delicate, but a formal argument giving
the correct result is as follows: Using L’Hospital’s rule we get

i d"
os(@) = Jim A [ 22 PR [ o, .0)

— it ([ R R [ rouel (e + 0 )

Changing variables etc. as above and using [, du(—f'(u)) = f(0
(independent of f!) we obtain

= dn£ — riro T
(@) = [ Grdel=1) [ Powo@@a). (G449

We now see that this is independent of the regularizatiation function f used,
and it coincides (up to a constant 1/n) with the the Wodzicki residue on R”
[225].
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We now discuss conditional traces of commutators of PSDO on R". For
simplicity we restrict ourselves to PSDO a and b such that [a,b] is condi-
tionally trace class (the extension of our argument to the general case is
quite straightforward but tedious; see e.g. [29]). We assume that ol[a] is
O(|p|M) and similarly for b. We first determine the conditions on N, and
N, where we expect [a, b] to be conditionally trace class. From Eq. (3.4.44)
we see that the leading term in the asymptotic expansion of the symbol of
[a,b] is the commutator of the leading symbols of a and b which vanishes
when taking the matrix trace. Thus tro|[a, b]] is O(|p|¥=T™e~1). From our
discussion above it thus follows that Trj([a,b]) has a finite limit A — oo if
N, + Ny < 1 —n and (potentially) a log-divergence if

N,4+Ny=1-n. (3.4.47)

Actually, if Ny+ N, < 1—mn, [a, b] is trace class, and Trc([a, b]) = Tr([a,b]) =
0 follows from the cyclicity of the Hilbert space trace. In case N,+Np = 1—n
one can show that only the leading term in the asymptotic expansion of
tro|[a, b]] can contribute to Try([a,b]) in the limit A — co. We therefore
restrict our attention to this term. Using Eq. (3.4.44) and the cyclicity of
the matrix trace we obtain that this leading term equals (—%) times

60Na :II) BO'Nb[b](p, x) _ aUNa[a]( 556) aUNb[b](pa 37)
b Z( Bp] Oz, Oz, opj )

_ 9 don,[bl(p,z) O 9o, [b](p, z)
=tr Z(@UM[@](PJ)N&T - aTjUNa[a](pa ””)NT>

15

which is a sum of total derivatives. The contribution of this term to

Trp([a,b]) therefore is (—i) times

Jo o oot <%)Z§tr%[a](p,$)aama[ p,2) _

don, [b](\pp z)

d"—p _pirlpl = lp_; N p 00N, [b](1], )
/Rn Gy Je T F R > At P onlal(d @) Lkt

Ny = Ny + N, where we performed a partial integration. Introducing

new variables £ = W and u = @ etc. as above we see that this term is

proportional to ANetNo+n=1 and thus finite in the limit A — oo precisely if
N, + Ny < 1—n, as expected. In the interesting case Eq. (3.4.47) this term

'50ne should expect and can actually prove that all of o([a, b]) is a sum of total deriva-
tives.
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is independent of A and equal to

Tre([a,B]) = (—i) / (d"f 5(€l — 1)

BO'Nb[b 57 )
X Rnd”mtraNa[a &z ij a5, . (3.4.48)

On the other hand, using Eq. (3.4.44) it is easy to see that if Eq. (3.4.47)
holds then

p] 80Nb[b](p :E) ]

o_n(allog |Do|,b])(p, z) = ZO’Na [a](p ™ oz, (3.4.49)
Inserting this in Eq. (3.4.46) and comparing with Eq. (3.4.48) and (3.4.35)

we confirm Eq. (3.4.38).

3.4.6 Story IV: Yang-Mills actions from Dirac operators

(Here we apply the calculus of PSDO and regularized Hilbert space traces,
as explained in Section 3.4.5. Some background from QFT and the definition
of the Dirac operator JP4 can be found in Section 3.4.2. A more detailed
version of this appeared in [143].)

In this Section I demonstrate that the mathematics discussed in the
previous Section provides powerful tools to compute effective fermion actions
on R™. We first indicate the general method and in the end specialize and
extract the logarithmic divergence for n = 4.

According to the discussion in Sections 3.4.2 and 3.4.5 we compute

Sa(A) = —Trp (log(Pa +iM) — log(I +iM)) (3.4.50)

where we also need to specify what we mean by log(P4 +iM). We will then
compute Sp(A) as a series in A; see Eq. (3.4.34). In our computation we will
finally specialize to four dimensions and the term o log(A) i.e. we compute

Siog(A) = —Res (log(Pa + iM) — log(Ih +iM)) (3.4.51)

for n = 4. As discussed in the next Section, this term corresponds to an
ambiguity in the definition of of the effective action on R* and therefore is
of special interest.

The definition we use in this Section is

log (P4 +iM)) : = /0 ds (1 — (14 s[Pa+iM —1])" ) (3.4.52)

8Qur presentation here is sketchy, especially we will ignore the following detail [143]:
in our computation the following formula should be used for (4 + iM)/Ao instead of
(Pa +iM), where Ao is an arbitrary constant. Of course, the results will be independent
of |Ag|, but one should have a constant Ao with an infinitesimal imaginary part since
this will specify the branch of log (i.e. the integration prescription in otherwise ill-defined
integrals below).

16
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and is motivated by the following computation

% ( 1\k—1 © 14 1 ds
log(14a) = Z ( 1,2 ak = — Z/o d:(—sa)k = /0 ds (1—(1+4sa)™t)
k=1

S
k=1

which is valid for bounded operators with norm less than one but which we
boldly extend to Dirac operators.

Next we use that there is a simple formula allowing to compactly write
the asymptotic expansion for the symbol of resolvents of the Dirac operators,
namely

ol(er + caPa) P a)(p,x) = (c1 + oy [p — 10+ A(z)]) * ola](z,p) (3.4.53)

for all complex numbers c¢; 2 (we use the notation v - [p — i0 + A(z)] =
Zzzl Yulpu — 10y + Ap(z)] =v-p—iy-0+ - A(x) etc. where 9, = %).
The interpretation of this formula is as follows: expand in powers of |p|~!
and apply the differentiations (which come from —iy - 3) to the right using
the Leibniz rule of differentiation [143].

A simple argument to see that this is true is as follows. We note that
obviously (cf. Eq. (3.4.40))

oleil + caPal(p, z) = 1 + ey - [p+ A(z)],
and since (Paf)(z) = [—i0 + A(z)|f(z) for all f € D,

({1 + e2Pa) af) () = (e1 + coy - [-i0 + A(2)]) (af ) (z) =

/ ST [y e (o 4 ey o 0+ Al)) olal(p,2) S ()
re (2m)" JRn

where we used Eq. (3.4.39) and the Leibniz rule. Replacing a in this Eq. by
(¢1 + ¢2104) " @ and using Eq. (3.4.39) again we obtain Eq. (3.4.53).
We now use these equations to compute Sy (A) and obtain

sa) = [ g i®) [ ous@pn

where
S(z,p) = /OOO i—v([l +o(y-(p—id+ A(z)) +iM)+]~! —
~[L+o(y-p+iM) )

(we used Egs. (3.4.52) and (3.4.53) and changed the integration variable
s — v with s = v/(1 +v)). As already mentioned, S here is to be regarded
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as differential operators which acts on 1. It is straightforward to expand the
integrand in this Equation in powers of v - [—id + A(z)],

N

S = Z S+ Rn+1 (3.4.54)
k=1

where

se= 0t [T (v o A )
o v l4wv(y-p+iM) 1+o(y-p+iM)
(3.4.55)
and Ry41 is a remainder term which we can ignore for N large enough
(since then it does not contribute to the logarithmic divergence, as will
become obvious further below).

We thus obtain an expansion Sy ~ Y 2 | S, where

_ dp_ . ) / n _
Sy = /R T 1) [ e i) = (3.4.56)
n
= > MP . / d"ztrD,, --- Dy, 1 (3.4.57)
1o b =1 R
where we introduced the notation D, = —i0,, + A,(z) and
d"p o _
k — k lp| k—1
ME. = (D [ G B [ awe
1 1 1

Xtr - _ i
T ofy-p+iM] M Tt ofy-p+iM] T oy p+iM]

(we split the matrix trace in traces over gly and gl,(n) and abuse the nota-
tion by denoting both traces by the same symbol). We thus have obtained an
expansion of the effective action in polynomials of the covariant derivatives
D,,. Since these covariant derivatives have simple transformation properties
under gauge transformations we denote our expansion as quasi-gauge covari-
ant (see Ref. [143] for a more detailed discussion). It is now easy to see how
to obtain an expansion in powers of A: Introducing u = |p|/A and v' = vA
one finds that M®) o A"~* (times a function depending on M/A). Espe-
cially, the only terms contributing to log(A) are for K = n. The remaining
part of the computation is to evaluate the constants M*) which amounts to
computing traces of products of «-matrices and computing integrals which
symbolic computation programs like MAPLE actually can handle. In the
following we concentrate on the case n = k = 4 and extract the logarithmic
divergence of the effective fermion action on R*.
After straightforward computations we obtain ,

1
Ml(;?musm - IOg(A)W (25u1u45u2u3 - 25#1#3‘5/12114) + O(AO) )
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and Sy = log(A)Siog + O(A?) with

4
1
Siog = Y 247 Je d*ztr (F.,) (3.4.58)
u,v=1
where
. 0 a0 .
F/“/ = Z[DN’ -DI/] = 6—%(14”) - 81‘1/ (AM) + I[;[Au, Ay] (3459)

are the components of the Yang-Mills curvature(!). This result is very re-
markable (as I will explain in more detail in the next Section): The loga-
rithmic divergent part of the effective fermion action in four dimensions is
proportional to the Yang-Mills action.

3.4.7 Final remarks

One important theory in physics is Yang-Mills theory coupled to fermions
on R", especially for n = 4. It formally corresponds to computing what
physicist refer to as a path integral and symbolically write as

7 = [ D[A] [ Dfy]e S

where A and v stand for the ‘quantum fields’ which occur in this theory: A
is short for matrix valued functions A,, p = 1,...,n, on R™ and represent
the Yang-Mills fields, and 1 is short for certain functions on R* representing
the fermions fields and which we do not need to further specify for what
we want to say here. The theory is defined by the so-called action S(A,)
which is a functional about which we will say more further below.

It is difficult to give a precise mathematical meaning to this path integral
Z (even though physicists have developed remarkably successful computa-
tion methods to extract meaningful answers from such path integrals), and
doing that is a very interesting and challenging problem at the borderline
between mathematics and physics. However, one part of this path integral is
comparably simple, namely the integral over the fermion fields 1/: The action
S is a sum of two term, the Yang-Mills action Sy s depending only on A and
another term Sg depending on 1 and A. The path integral above thus can
be (formally) computed in two steps: first by performing the fermion path
integral, “[ D[¢]” exp (—Sr(4,)), and then the Yang-Mills path integral

7 — :cf D[A]”e—stot(A)

where

Siot(A) = Sym(A) + Sen(A) (3.4.60)
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with Seg the effective fermion action which is the contribution from the
fermion path integral,

e*Seﬂ(A) — uf D[Qp]”efSF(A,d)) )

According to the rules of fermion path integrals this equals
Set(A) = —“log det” (D4 + i M)

as discussed in Section 3.4.2 (D4 is the Dirac operator of fermions coupled
to the Yang-Mills field A).

Our discussion in Section 3.4.5 suggests that we can give a precise defi-
nition of Seg(A) as follows,

Sefi(A) = —Trc (log(Pa + M) — log (P + iM)) (3.4.61)

which we can compute as outlined in the last Section. However, as dis-
cussed in Section 3.4.5, the definition of Trc is ambiguous, and changing the
regularization, e.g. A — sA, amounts to changing

Seff(A) - Seff(A) + log(s)slog (A) (3-4-62)

with Sjog defined in Eq. (3.4.51). The log-divergence is (potentially) ‘danger-
ous’ since it can make the theory ambiguous (i.e. reqularization dependent).
However, the Yang-Mills action is

Sy (A Z /R ) d'ztr(Fy,) (3.4.63)

,ul/l

with F,, given in Eq. (3.4.59) and g the Yang-Mills coupling constant, and it
is proportional to Sj,g as discussed in the last Section. This is why the result
obtained in the last Section is so important: Since S)g is proportional to the
Yang-Mills action Sy s, a change in the regularization can be compensated
by a change in the Yang-Mills coupling constant,

1 1 1

2g2 " 2¢2 2472

2% log(s) . (3.4.64)

To have an unambiguous theory one thus need to assume that the Yang-Mills
coupling depends on the regulations, g = g(A), and one has to adjust the
A-dependence of g such that one obtains regularization independent results
from the theory. As is well-known amongst physicists, this is possible.

One important contribution of NCG to physics is the spectral action
principle [38, 31]: a generalized Dirac operator determines a generalized
Yang-Mills-fermion theory, and especially there is a formula allowing to
compute the generalized Yang-Mills action, up to a constant, from the gen-
eralized Dirac operator. I believe that my discussion above gives a physical
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interpretation of a particular form of this spectral action principle: Assume
one has a generalized Dirac operator D4 which is given by a matrix valued
differential operators. Then the corresponding Yang-Mills action has to be

Syar(A) o —Res((Da +iM) — (D +iM)) (3.4.65)

since this guarantees a regularization independent Yang-Mills-fermion the-
ory. However, as far as I can see, for all practical purposes this definition
should coincide with the standard one [31].
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3.5 Dirac Eigenvalues as Dynamical Variables (G.
Landi)

We review some work done with Carlo Rovelli on the use of the eigenvalues
of the Dirac operator on a curved spacetime as dynamical variables, the
main motivation coming from their invariance under the action of diffeo-
morphisms. The eigenvalues constitute an infinite set of ‘observables’ for
general relativity and can be taken as variables for an invariant description
of the gravitational field dynamics.

3.5.1 Introduction

A (generalized) Dirac operator D is the main actor in Alain Connes program
of noncommutative geometry [38]. This operator codes the full information
about spacetime geometry in a way usable for describing the dynamics of the
latter. Not only the geometry is reconstructed from the (normed) algebra
generated by D and the smooth functions on spacetime, but the Einstein-
Hilbert action of the Standard Model coupled to gravity is approximated by
the trace of a simple function of D [40, 30, 31]. One should stress that the
model obtained is both classical and Euclidean. But there is a new emphasis
and a new conceptual interpretation of particle physics. The latter is used to
unravel the fine geometric structure of spacetime pointing to a noncommu-
tative structure at short distance scales and to an intrinsic coupling between
gravity and other fundamental interactions. Recently [43] there has been a
step in the direction of quantum field theories and it has been suggested
in which sense the spacetime itself and its geometrical structure should be
regarded as a concept which is derived from properties of quantum field
theory.

The previous attitude also suggests the possibility of taking the eigen-
values A\, of D as ‘dynamical variables’ for general relativity. They form
an infinite family of diffeomorphism® invariant quantities and are therefore,
truly observables for general relativity. It is a central point of the latter the-
ory that fundamental physics is invariant under diffeomorphisms: there is
no fixed non-dynamical structure with respect to which location or motion
could be defined. Consequently, a fully diffeomorphism invariant description
of the geometry has long been sought [13] and would be extremely useful
also for quantum gravity [113]. Although this noncommutative approach has
limitations, notably its Euclidean character, it definitely opens new paths
in the study of the dynamics of spacetime.

As a first step for the use of these ideas in classical and/or quantum theo-
ries, an expression for the Poisson brackets of the Dirac eigenvalues has been
derived [138, 139, 59]. Surprisingly, the brackets can be expressed in terms

In fact, the eigenvalues of the Dirac operator are invariant only under diffeomorphisms
which preserve the spin structure [20].
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of the energy-momentum tensors of the Dirac eigenspinors. These tensors
form the Jacobian matrix of the change of coordinates between metric and
eigenvalues. The brackets are quadratic with a kernel given by the propaga-
tor of the linearized Einstein equations. The energy-momentum tensors of
the Dirac eigenspinors provide the key tool for analyzing the representation
of spacetime geometry in terms of Dirac eigenvalues.

In [138, 139] we also study the Chamseddine-Connes spectral action. As
given in [40, 30, 31] it is rather unrealistic as a pure gravity action, because
of a huge cosmological term implying that geometries for which the action
approximates the Einstein-Hilbert action are not solutions of the theory.
We introduce a minor modification which eliminates the cosmological term.
The equations of motion, derived directly from the (modified) spectral ac-
tion, are solved if the energy momenta of the high mass eigenspinors scale
linearly with the mass. This scaling requirement approximates the vacuum
Einstein equations. These results suggest that the Chamseddine-Connes
gravitational theory can be viewed as a manageable theory possibly with
powerful applications to classical and quantum gravity.

3.5.2 Noncommutative geometry and gravity

We refer to [136, 156, 95| for friendly introductions to noncommutative ge-
ometry. In Connes’ program [38], noncommutative C*-algebras are the dual
arena for noncommutative topology. We remind that a C*-algebra A is an
algebra over the complex numbers C, which is complete with respect to a
norm ||+ || : A — C. Furthermore, there is an involution * : 4 — A and
these two structures are related by suitable compatibility conditions. The
(commutative) Gel'fand-Naimark theorem provides a geometric interpreta-
tion for commutative C*-algebras and concludes that there is a complete
equivalence between the category of (locally) compact Hausdorff spaces and
the dual category of commutative C*-algebras (not necessarily with a unit).
Any commutative C*-algebra is realized as the C*-algebra of complex val-
ued continuous functions over a (locally) compact Hausdorff space, endowed
with the sup norm. And the points of the space are seen as the maximal ide-
als (or equivalently, the irreducible representations or the pure states) of the
algebra. A noncommutative C*-algebra will now be thought of as an algebra
of operator valued, continuous functions on some ‘virtual noncommutative
space’. The attention will be switched from spaces, which in general do
not even exist ‘concretely’, to algebras of functions. This fact allows one,
for instance, to treat on the same footing ‘continuum’ and discrete spaces.
It also permits one to address problems associated with spaces of orbits or
spaces of foliations or even fractal sets for which the usual notion of space
is inadequate.

A metric structure is constructed out of a real spectral triple (A, H, D)
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2. Now A is a noncommutative *-algebra (indeed, in general not neces-
sarily a C*-algebra); # is a Hilbert space on which A is realized as an
algebra of bounded operators; and D is a self-adjoint unbounded operator
on H with suitable additional properties and which contains all (relevant)
‘geometric’ information. With any closed n-dimensional Riemannian spin
manifold (M, g) there is associated a canonical spectral triple. The algebra
is A = C®°(M), the algebra of complex valued smooth functions on M.
The Hilbert space is H = L?(M, S), the Hilbert space of square integrable
sections of the irreducible spinor bundle over M, its rank being 2["/2 3, The
scalar product in L?(M, S) is the usual one of the measure du(g) associated
with the metric g,

(4, $) = / AP @) (x), (3.5.1)

with bar indicating complex conju%ation and scalar product in the spinor
space being the natural one in e, Finally, D is the Dirac operator
associated with the Levi-Civita connection w = dz*w, of the metric g. If
(eqsa =1,...,n) is an orthonormal basis of vector fields which is related to
the natural basis (9, = 1,...,n) via the n-beins, with components ef, the
components {g"*} and {7®} of the curved and the flat metrics respectively,

are related by 4

g = e’;egnab s Tab = €bey guu - (3.5.2)

b
ua
of the metric g, defined by Ve, = wlmbeb, are the solutions of the equations

The coefficients (w,,;’) of the Levi-Civita (metric and torsion-free) connection

Ouey, — Oyey, — w“b“e,b, + wyb“ez =0. (3.5.3)

Also, let C(M) be the Clifford bundle over M whose fiber at z € M is the
complexified Clifford algebra Clif fc(Tx M) and I'(M, C(M)) be the module
of corresponding sections. We have an algebra morphism into bounded
operators B(#) on H,

v :T(M,C(M)) = B(H) , (3.5.4)

defined by
y(dzt) =:4*(z) =~%E, wpw=1,...,n, (3.5.5)

and extended as an algebra map and by requiring A-linearity. The curved
and flat gamma matrices {y*(z)} and {7}, which we take to be Hermitian,

%In fact, when constructing gauge theories one needs a ‘quintuple’ (A, H, D, T, J), with
I' a grading operator on # and J a antilinear isometry on # [39, 40]. We shall not dwell
upon these in this paper.

3The symbol [k] indicates the integer part in k.

“Curved indices {u} and flat ones {a} run from 1 to n and as usual we sum over
repeated indices. Curved indices are lowered and raised by the curved metric g, while flat
indices are lowered and raised by the flat metric 7.
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obey the relations

Y (z)v" (@) + 7 (2)7 (z) = —2¢(dz”,dz") = —2¢" , pv=1,...,n;
AN 4yt = —2p%® | g b=1,....,n. (3.5.6)

The lift V¥ of the Levi-Civita connection to the bundle of spinors is then

1
Vi = Ot wi = O+ J0uay*y” (3.5.7)

while the Dirac operator, defined by
D=v0VY, (3.5.8)

can be written locally as

D = y(dat)VS = (@)@ +wf) = 1 kB + g™ - (359)

For this canonical triple Connes’ construction gives back the usual differ-
ential calculus on M together with a metric structure. First of all, exterior
forms on M are represented as bounded operators on L?(M, S). Elements
of C*°(M) act as multiplicative operators on H and for any function f it
makes sense to consider the commutator [D, f] = v#0, f, which results into
a multiplicative and a fortiori bounded operator, and which realizes the ex-
terior derivative df. From this Connes proceeds to obtain forms of higher
degree. In this algebraic framework, the usual geodesic distance between
any two points p and g of M is expressed as

d(p,q) = ?gg{lf(m - (@l = |IID, flll <1}, (3.5.10)

where the norm ||[D, f]|| is the operator norm. The formula (3.5.10) does
not make use of curves on the manifold M. As it stands, for a general triple,
it will provide a distance on the state space of the C*-algebra A, the norm
closure of the algebra A, once any point p € M is thought of as a state
on the algebra of functions and one writes p(f) for f(p) (remember that a
point is the same as a representation of the algebra of functions). In a sense,
formula (3.5.10) identifies the infinitesimal unit of length as the bare Dirac
propagator,

ds=D71, (3.5.11)

the ambiguity coming from possible zero modes being inconsequential (one
can always add a mass term) °.

5In fact, formula (3.5.11) shows all its classical character since quantum effects will
necessarily dress the bare propagator. That the dressed propagator will produce quantum
effects on the geometry is a challenging and fascinating suggestion [43].
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What is more, the Einstein-Hilbert action of general relativity is obtained
as the noncommutative integral (also known as the Wodzicki residue) of the
infinitesimal unit of ‘area’ ds"~2 = D?~" [40, 119, 125],

Resw (D*™") =: - ! n/S*MtT(U_n(m,f))dxdf

(2)
= cn/ Rdz
M

B (2 _ n) oln/2]—n/2 n 1
= g lE YT (351)

Here,
0_n(z,€) = part of order — n of the total symbol of D*>™™ | (3.5.13)

R is the scalar curvature of the metric of M and ¢r is a normalized Clifford
trace. This result follows from the realization that Resy (D?~") is (propor-
tional) to the integral of the second coefficient of the heat kernel expansion
of D?. Furthermore, the result does not depend upon extra contributions
coming from couplings to gauge potentials like U (1) which are present, for
instance, in a spin structure.

It may be worth noticing that the dimension n itself can be extracted
from the operator D as well, the Weyl formula giving A\x(|D|) ~ kY™ for
large values of the index k.

3.5.3 From the metric to the eigenvalues

The idea that the phase space of a physical theory should be identified with
the space of solutions of the equations of motion (modulo gauge transfor-
mations) can be traced back to Lagrange [135] and has been given a new
emphasis in more recent work [33, 58, 229]. In the case of general relativity,
gauge transformations are diffeomorphisms of the space(-time) which are
connected to the identity. Thus, the phase space I' of general relativity is
the space of the metric fields that solve Einstein equations, modulo diffeo-
morphisms (Ricci flat geometries). Corresponding observables are functions
on I' [112, 187, 185].

The Dirac operator allows one to define an infinite family of observables.
The operator D is a self-adjoint operator on H admitting a complete set of
real eigenvalues A\, and eigenspinors %,. The manifold M being compact,
the spectrum is discrete

Do = A Un (3.5.14)

and the eigenvalues are labeled so that A\, < A\,41, with repeated multiplic-
ity. Here n is integer (positive and negative) and we choose A to be the
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positive eigenvalue closest to zero. As already mentioned, for simplicity we
assume that there are no zero modes. The eigenvalues have dimension of an
inverse length.

We shall denote the space of smooth metric fields as M and the space
of the orbits of the gauge group in M as G (geometries). To stress the
dependence upon a metric g of the Dirac operator and of its eigenvalues,
we shall also write D[g] and A,[g]. The latter then, define a discrete family
of real-valued functions on M, A, : ¢ — Ap[g]. Equivalently, we have a
function A from M into the space of infinite sequences R*°

A:M—R*®, g—{\g]}, (3.5.15)

the image A(M) of M under this map being contained in the cone A\, < A\p41
of R*®. As we shall also see explicitly later on, the functions A, are invariant
under diffeomorphisms (in fact, the invariance is only under diffeomorphisms
which preserve the spin structure; however, only large diffeomorphisms can
change the spin structure). Therefore they are well defined functions on G.
In particular, they are well defined on the phase space I'. Thus, they are
observables of general relativity.

Unfortunately, life is not easy: we cannot (completely) hear the shape of
a drum, even if it is spinorial, namely the eigenvalues A,’s need not be a
set of coordinates for G and/or the phase space I'. Two metric fields with
the same collection of eigenvalues {\,} are called isospectral. Isometric g
fields are isospectral, but the converse needs not be true. There exists Dirac
isospectral deformations; continuous 1-parameter family of mutually non-
isometric metrics with the same Dirac spectrum have been constructed in
[4, 3]. They are of the form My = G/Fs ,s € C, with G a nilpotent group
(e.g. the Heisenberg group) and F; a nilpotent subgroup. Also, there exist
known examples of Laplace-isospectral 4-dimensional flat tori [50] which are
also Dirac-isospectral (at least for the trivial spin structure). Not even the
topology is determined [7] . Let us recall that a spherical space form is
a manifold of the form S™/F where S™ is the n-dimensional sphere and F'
is a finite fixed point free subgroup of SO(n + 1) (the group of orientation
preserving isometries of S™). Then, it has been proven in [7] that there
exists two non-isometric spherical space form of dimension 4d — 1 with d
an odd integer greater that 5, having the same Dirac spectrum and the
same fundamental group. The smallest example would be in dimension 19!
However, from what we understand, all the (counter)-examples constructed
so far are very particular and by no means generic. The question of whether
in the generic situation, the spectrum of the Dirac operator characterizes
the metric is still open.

Before we proceed, let us mention another problem, namely the possi-
bility of spectral flows [9]: the map A in (3.5.15) is only defined up to index

bIndeed, it is rather the interplay between the Dirac operator D and the algebra A
that determines topological/geometric properties.
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shift: there may exist non-contractible loops in I' such that by following
the eigenvalues along the loop they come back with index shifted by some
number. A possible way out could be to substitute the target space R* by
R*/(index shift); however, the map A would not be globally (continuous)
defined. Locally, in a neighborhood of some geometry, things are fine.

Let us then proceed locally by working out the Jacobian of the trans-
formation from metric to eigenvalues. The variation of A, for a variation
of g can be computed using standard time independent quantum mechan-
ics perturbation theory. For a self-adjoint operator D(v) depending on a
parameter v and whose eigenvalues A\, (v) are non-degenerate, we have

d/\dqf 2 — (o) (%D(v)> [9n (v))- (3.5.16)

This equation is well known for its application in elementary quantum me-
chanics. It can be obtained by varying v in the eigenvalue equation for
D(v), taking the scalar product with one of the eigenvectors, and notic-
ing that the terms with the variation of the eigenvectors cancel. We now
apply this equation to our situation, assuming generic metrics with non-
degenerate eigenvalues (we refer to [20] for the general situation). We wish
to compute the variation of \,[g] for a small variation of the metric field
g. Let k(z) = (ku(z)) be an arbitrarily chosen metric field and v a real
parameter, and consider a 1-parameter family of metric fields g,

gy = g + vk. (3.5.17)

Then, the variation §A,[g]/0guu () of the eigenvalues under a variation of
the metric, is the distribution defined by

0Anlg] _ dAn o]
/ dnlg) o & buwlr) = CR2 (3.5.18)

Using (3.5.16), we have

Poigol — (o lgull 2 nf]). (35.19)
Explicitly
%}ng] = / dp(gv) Pnlgo] [g”] Yulg0). (3.5.20)
In v = 0 we have
d/\gq[;gv] L / du(9) ¥nlg] ‘”ZIE,Q”] gl (3.5.21)
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We can rewrite this equation as

dxsigv] y di B / dis(9y) Pnlg) Dlgo] $uld]
_/ j—v(du(gv)) *Ozﬁn[g] Dlg] ¢n[g]
- 2 B [ dnta) Bld) Dlgn] 4lg
_ / j—v(du(gv)) _ Wald] Malglul]
= di U_O/ dps(g0) (nDlgo)yn — AntPntpn).  (3.5.22)

The last formula gives the variation of the action of a spinor field with ‘mass’
An under a variation of the metric (computed for the n-th eigenspinor of
the operator D[g]). But the variation of the action under a variation of
the metric is a well known quantity: it provides the general definition of
the energy momentum tensor 7#”(z). Indeed, the Dirac energy-momentum
tensor is defined in general by

0

™ () =: 75911”(3:)

SDhiracs (3.5.23)
where Spirac = [ du(g) (¥ Dy — Mptp) is the Dirac action of a spinor with
‘mass’ A. (Since there is no Planck constant in the Dirac action, A has
dimensions of an inverse length, rather than of a mass.) See for instance
[60] where the explicit form of this tensor is also given. By denoting the

energy momentum tensor of the eigenspinor v, as T,,**(z), we obtain, from
(3.5.18), (3.5.22) and (3.5.23), that

oAnlg]
69w ()

= T, (z). (3.5.24)

This equation gives the variation of the eigenvalues \,, under a variation of
the metric g, (z), namely the Jacobian matrix of the map A in (3.5.15). The
matrix elements of this Jacobian are given by the energy momentum tensor
of the Dirac eigenspinors. This fact suggests that we can study the map A
locally in the space of the metrics, by studying the space of the eigenspinor’s
energy-momenta. As far we know, little is known on the topology of the
space of solutions of Euclidean Einstein’s equations on a compact manifold.
A local analysis on I" would of course miss information on disconnected
components of I'.

It is now easy to prove that the eigenvalues A, are invariant under the
action of diffeomorphisms in the connected component of the identity in the
sense that their variation vanishes when we vary the metric g by the action
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of any such a diffeomorphism. If £ is a vector field on M, the variation of
the metric under the action of the infinitesimal diffeomorphism generated
by £ is given by

(5§g)uu = (‘Cﬁg);w = 2f(u;u) - (3'5'25)

Here L denotes Lie derivative, the semicolon denotes covariant derivative
with respect to the Levi-Civita connection and the round brackets denote
symmetrization. Then, by using (3.5.24) and integrating by parts, we get

5hn ,
xe = [ duta) 9 (segh = 2 [ ) T 6
uv

= —Z/du(g) T W€, (3.5.26)

and this expression vanishes by the very ‘equation of motion’ for the spinor
field v, that is (D, — Ap1p,) = 0, which just state that v, is an eigenspinor
with eigenvalue \,.

It is worth stressing that the quantities A, are not invariant under arbi-
trary changes of the metric fields, i.e. the left hand side of (3.5.24) does not
vanish in general.

Finally, we mention that the above derivations would go through for sev-
eral other operators, beside the Dirac operator. In [162] a formula similar to
(3.5.24) has been derived for any second order elliptic self-adjoint operator.

3.5.4 Action and field equations

We now turn to the gravitational sector of the spectral action introduced
in [40, 30, 31]. This action contains a cutoff parameter [y with units of a
length, which determines the scale at which the defined gravitational theory
departs from general relativity. We may assume that [ is the Planck length
lo ~ 10733¢m (although we make no reference to quantum phenomena in
the present context). We use also mg = 1/ly, which has the same dimension
as D and the eigenvalues A,,. The action depends also on a dimensionless
cutoff function x(u), which vanishes for large u. The spectral action is then
defined as

Sq[D) = & Tr [x(§ D?)] . (3.5.27)

Here & is a multiplicative constant to be chosen to recover the right dimen-
sions of the action and the multiplicative overall factor.

To be definite, we shall work in dimension 4, although much of what
follows can be easily generalized. The action (3.5.27) approximates the
Einstein-Hilbert action with a large cosmological term for ‘slowly varying’
metrics with small curvature (with respect to the scale ly). Indeed, the heat
kernel expansion [30, 31, 90], allows to write,

Sa(D) = (Io)~4for /M\/g}dx + (o) "2for /MR Jde + ... . (35.28)
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The momenta fy and fo of the function x are defined by

1 © 1 ©
/0 x(wudu ,  fo= —/0 x(u)du . (3.5.29)

fo=tm 182

The other terms in the expansion (3.5.28) are of higher order in .

The expansion (3.5.28) shows that the action (3.5.27) is dominated by
the Einstein-Hilbert action with a Planck-scale cosmological term. The pres-
ence of this term is a problem for the physical interpretation of the theory
because the solutions of the equations of motions would have Planck-scale
Ricci scalar, and therefore they would all be out of the regime for which
the approximation taken is valid! However, the cosmological term can be
cancelled by replacing the function x with ¥ defined by

X(u) = x(u) — e*x(eu) , (3.5.30)

with € << 1. Indeed, one finds for the new momenta fo =0, f~2 = (1—¢€) fo.
The modified action becomes

Sa(D )_flzf /MR Jads + ... . (3.5.31)

We obtain the Einstein-Hilbert action in dimension four by fixing

12
K=—0"0 (3.5.32)
167‘(’sz

If Iy is the Planck length v/AG, then k = %h, where h is the Planck constant,
up to terms of order e. Low curvature geometries, for which the expansion
(3.5.28) holds, are now solutions of the theory. Thus we obtain a theory
that genuinely approximates pure general relativity at scales which are large
compared to [g.

Next, let us consider the equations of motion derived from the previous
action when we regard the A\,’s as the gravitational variables. The action
can easily be expressed in terms of these variables:

SalM] —NZ (12)2). (3.5.33)

However, we cannot obtain (approximate) Einstein equations by simply
varying (3.5.33) with respect to the A,’s. We must minimize (3.5.33) on
the surface A\(M), not on the entire R*°. In other words, the A,’s are not
independent variables, there are relations among them and these relations
code the complexity of general relativity. We can still obtain the equations
of motion by varying Sg with respect to the metric field:

_ 4Sq 08¢ A, dX(BBA2) . .
= =y 2200 ok 5.34
TR IR o b Dl et (3.5:34)
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By defining f(u) =: %%(u), equation (3.5.34) becomes
D FUBAE) A Tolf = 0. (3.5.35)
n

These are the Einstein equations in the Dirac eigenvalues formalism.
Up to now, the cutoff function y(u) is arbitrary. The simplest choice is
to take it to be smooth and monotonic on R with

(3.5.36)

X(U)Z{ 1 ifu<l—-94§

0 ifu>1496

where 0 << 1. Namely x(u) is the smoothed-out characteristic function of
the interval [0, 1]. With this choice, the action (3.5.27) is essentially (k times)
the number of eigenvalues A, with absolute value smaller that mg! (up to
corrections of order §). Then the function f(u) vanishes everywhere except
on two narrow peaks. A negative one (width 2§ and height 1/24) centered at
one; and a positive one (width 26/¢ and height €3/26) around the arbitrary
large number 1/e =: s >> 1. The first of these peaks gets contributions
from A,’s such that A, ~ mp, namely from Planck scale eigenvalues. The
second from ones such that A, ~ smg. Equations (3.5.35) are solved if the
contributions of the two peaks cancel. This happens if below the Planck
scale the energy momentum tensor scales as

An(mo)p(l) Tn(mo)l;(x) = S_ZAn(smo)p(S) Tn(smo)l;(x)' (3537)

Here p(1) and p(s) are the densities of eigenvalues of [3D? at the two peaks
and the index n(t) is defined by

loXopy = t- (3.5.38)

For large n the growth of the eigenvalues of the Dirac operator is given by
the Weyl formula A, ~ V27V ~/4n!/% where V is the volume. Using this
one derives immediately the eigenvalue densities and simple algebra yields

T (3) = Ay lo Tol(x) (3.5.39)

for n. >> n(mp), where Toy/ () = Ty ()7 (¢) is the energy momentum at the
Planck scale. We have shown that the dynamical equations for the geometry
are solved if below the Planck length the energy-momentum of the eigen-
spinors scales as the eigenspinor’s mass. In other words, we have expressed
the Einstein equations as a scaling requirement on the energy-momenta of
the very-high-frequency Dirac eigenspinors. This scaling requirement yields
vacuum Einstein equations at low energy scale [138, 139].
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3.5.5 Poisson brackets for the eigenvalues

A symplectic structure on the phase space I' can be constructed in covariant
form [5]. First of all, we recall that a vector field X on the space S of
solutions of Einstein field equations can be written as a differential operator

)
69w ()

X = / 'z X, (2)lg] , (3.5.40)
where X, (z)[g] is any solution of the Einstein equations for the metric
field, linearized over the background g. A vector field [X] on T is given
by an equivalence class of such vector fields X, modulo linearized gauge
transformations of X, (). A linearized gauge transformation is given by

g+ g+ 09 = Leg, (3.5.41)

where ¢ is a vector field on the spacetime M (generating an infinitesimal
diffeomorphism). Two linearized field X and Y (around the metric g) are
gauge equivalent if

Y =X+ d¢g (3.5.42)

for some vector field &.
The symplectic two-form Q of general relativity is given by [5]

4

Q(X,Y) = / B, (Xua Yy Yyg) €9, cvoi (3.5.43)
P
where
<_.
(Xpa Vi Yop) = (Xua Vs Yog — Yua Vi Xo5) - (3.5.44)

Moreover, ¥ 3 0 — z(0) € M is chosen to be a (compact non-contractible)
three-dimensional surface, such that, topologically, M = 3 x S! (so that it
gives the single non trivial 3-cycle of M), but otherwise arbitrary, and n,
its normal one-form.

Both sides of (3.5.43) are functions of the metric g, namely scalar func-
tions on §. The form 2 is degenerate precisely in the gauge directions,

QX,Y)[g] =0 iff Y =oéxg, (3.5.45)

thus it defines a non-degenerate symplectic two form on the space of the
orbits of the diffeomorphism group, namely on I'. The coefficients of €2 can
be written as

-
09(a,y) = [ Fo ny (6a,2(0) V b)) €. (35.46)

Because of the degeneracy, 2 has no inverse on S. However, let us (arbi-
trarily) fix a gauge (choose a representative field g for any four geometry,
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and, consequently, choose a field X in any equivalence class [X]). On the
space of the gauge fixed fields, €2 is non degenerate and we can invert it. Let
P,.0p(x,y) be the inverse of the symplectic form matrix on this subspace,
namely

[y [ @ Pusasla.s) 075 0,2) Frnlo) = [ 'z 8(0,2) 8 8 Fin(2)

(3.5.47)
for all solutions F' of the linearized Einstein equations, satisfying the gauge
condition chosen. Integrating over the delta functions, and using (3.5.46),
we have

4~
/Ed?’a 1y [P (7, 2(0)) ¥ pFroy (2(0))] €97, €77 = Fyo(a).  (3.5.48)

This equation, where F' is any solution of the linearized equations, defines
P, in the chosen gauge. Then, we can write the Poisson bracket between
two functions f,g on § as

_ of dg
tfa} _/ d%/ Y Por (#:9) 0G0 (2) 0gur(y) (3:5.49)

If the functions f and g are gauge invariant, i.e. are well defined on I', the
r.h.s of (3.5.49) is independent of the gauge chosen. But equation (3.5.48) is
precisely the definition of the propagator of the linearized Einstein equations
over the background g, in the chosen gauge.

By combining (3.5.48,3.5.49) and (3.5.24) we obtain the Poisson brackets
for any two eigenvalues of the Dirac operator as

D} = [ [y T2 (0) Puas(o.) Ty ) . (3550

This equation gives the Poisson bracket of two eigenvalues in terms of the
energy-momentum tensor of the two corresponding eigenspinors and of the
propagator of the linearized Einstein equations. The right hand side does
not depend on the gauge chosen.

3.5.6 Final remarks

Recent work of Connes and Chamseddine on a spectral description of funda-
mental interactions and in particular of gravity, has suggested our attempt
to describe gravity by means of the eigenvalues of the Dirac operator. This
approach could open new paths in the exploration of the physics of spacetime
and find applications in classical and quantum gravitation. The main obsta-
cle for a full development of this approach is its natural euclidean character
since, at the moment, there does not exist a satisfactory ‘Lorentzian’ version
of Connes’ program. Some interesting steps in the direction of a ‘quantum
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spectral approach’ have also been recently presented [43, 186]. An extension
of these ideas to supergravity has been considered in [214, 215, 36, 176].

We have analyzed some aspects of the dynamical structure of the theory
in the A, variables by computing their Poisson algebra (3.5.50). In the way it
is presented, the Poisson algebra is not in closed form, since the right hand
side of equation (3.5.50) is not expressed in terms of the )\, themselves,
and it is unclear if this can be done in general. Still, representations of
this algebra could give information on a diffeomorphism invariant quantum
theory.

The central and important feature of the approach that we have pre-
sented is that the theory is formulated in terms of diffeomorphism invariant
quantities. The \,’s are a family of diffeomorphism invariant observables in
euclidean general relativity, which is presumably complete or ‘almost com-
plete’ : it would fail to distinguish possible isospectral and not isometric
geometries, although at the moment it is not clear what it is the generic
situation. Another remarkable aspect of the spectral approach is that there
is a physical cutoff and an elementary physical length in the action that
does not break diffeomorphism invariance. All high frequency modes are
cuts off without introducing background structures, then in a diffeomorphic
invariant manner. Since the number of the remaining modes is determined
by the ratio of the spacetime volume to the Planck scale, one may expect
that such a theory would have infrared divergences but not ultraviolet ones
in the quantum regime.

The key open problem is, of course, a better (complete) understanding
of the map A\ given in (3.5.15) and its range. Namely a characterization of
the constraints that a sequence of real numbers A, must satisfy in order to
represents the spectrum of the Dirac operator of some geometry. We have
partially addressed this problem locally in the phase space of the theory
by studying the tangent map to A. This tangent map is given explicitly
in terms of the eigenspinor’s energy-momenta and of the propagator of the
linearized Einstein equation. The constraints on the \,’s are the core of
the formulation of the gravitational theory that we have begun to explore
here. They should be contained in Connes’ axioms for D in its axiomatic
definition of a spectral triple [38]. The equations in these axioms capture
the notion of Riemannian manifold algebraically and they should code the
constraints satisfied by the eigenvalues A,’s of the operator D.

Finally, we mention that it would be very interesting to extend the
approach presented here to the noncommutative manifolds recently con-
structed in [44, 41].
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3.6 Hopf Algebras in Renormalization and nc Ge-
ometry (R. Wulkenhaar)

We review the appearance of Hopf algebras in the renormalization of quan-
tum field theories and in the study of diffeomorphisms of the frame bundle
important for index computations in noncommutative geometry.

3.6.1 Introductory remarks

This contribution focuses on two applications discovered during the last two
years of the Hopf algebra of rooted trees. They suggest an amazing link
between mathematics and physics. There exists an excellent review [43] of
these topics, written by the authors of these ideas. In what follows I am
going to explain parts of this development which I was able to understand.
I hope it can be useful to somebody else.

In mathematics, foliations provide a large class of examples of noncom-
mutative spaces and lead to an index problem for the transverse hypoelliptic
operator [47]. The computation of the cocycles in the local index formula
turned out to be extremely lengthy even in dimension one. Alain Connes
and Henri Moscovici [48] were looking for an organizing principle for that
calculation, which they found in the cyclic cohomology of a Hopf algebra
‘Hr obtained by the action of vector fields on a crossed product of functions
by diffeomorphisms.

Concerning physics, Dirk Kreimer [129] discovered that a perturbative
quantum field theory carries in a natural way a Hopf algebra structure Hp
given by operations on Feynman graphs. The antipode reproduces precisely
the combinatorics of renormalization, i.e. it produces the local counterterms
to make the divergent integral corresponding to the Feynman graph finite.

Noticing that both Hopf algebras have formally a very similar structure,
Connes and Kreimer gave the precise relation [42] between Hy and Hg.
This is very transparent in the language of rooted trees they used. The
commutative Hopf subalgebra H' of Connes-Moscovici is (in dimension 1)
a Hopf subalgebra of Kreimer’s Hopf algebra for a quantum field theory with
a single primitively divergent graph.

Recently it was pointed out [23] that the same algebra of rooted trees
plays a role in Runge-Kutta methods of numerical analysis.

3.6.2 The Hopf algebra of Connes—Moscovici

In principle, the Hopf algebra of Connes and Moscovici can be understood
from classical differential geometry [34]. We give here a somewhat shortened
version of the derivation and refer to [226] for more details. We recommend
[157] for a useful introduction to Hopf algebras and related topics.
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We regard the frame bundle F* of a manifold M and in particular the
vector fields on F*. There is a natural notion of vertical vector fields, these
are the tangent vectors to curves in F'* obtained by the right action of the
group GI*(n) of n x n matrices with positive determinant. The horizontal
vector fields are not canonically given, they are determined once a connection
is specified. For our purpose we can work in local coordinates.

Let {z#},—1..n be the coordinates of z € M within a local chart of
M and {yf }mzl,___n be the coordinates of n linearly independent vectors of
the tangent space T, M with respect to the basis §,. On F't there exist

the following geometrical objects, written in terms of the local coordinates
(zt,y!") of p € FT:

1) an R"-valued (soldering) 1-form o with o = (y~')!dz* ,

2) a gl(n)-valued (connection) 1-form w with w} = (y_l)L(dy;-‘—I-FZﬂ y;?‘dxﬂ),
where I‘Zﬂ depends only on z¥ ,

2 . i MOl
3) n® vertical vector fields Y} = y;'9), ,

4) n horizontal (with respect to w) vector fields X; = y'(9, — I‘Zuyfaﬁ) .

A local diffeomorphism 1 of M has a lift 4 : (z#,y") — ((z)*, Oyab(z) yY)
to the frame bundle and induces the following transformations of the previ-
ous geometrical objects:

1) (§*a)], = al,
2') (&*w)|p = (y_l)ft(dy;-‘ + f‘gﬂ y;-"dxﬂ) is again a connection form, with
T, = (0v(z) ™)K T3]y (a) Oath(2)’ Op1p(2)+((09(2)) ™)y Dpdatp(x)7

3) @Y, =Y|,
4" (P1X5) ‘p = yi'(0 — fzuyjay) is horizontal to *w .

We refer to [226] for the proof.

Given these tools of classical differential geometry, the new idea is to
apply the vector fields X,Y to a crossed product A = CX(F1) >T of the
algebra of smooth functions on F™ with compact support by the action
of the pseudogroup T' of local diffeomorphisms of M. As a set, A can be
regarded as the tensor product of C®°(F*) with I. It is generated by the
monomials

fUy,  feCX(Dom(y), 9eT, (3.6.1)

where 9 is the diffeomorphism of F obtained as the lift of 9 € . As an
algebra, the multiplication rule in A is defined by

UG, F2U, = fi(f2 0 1)Uy, - (3.6.2)
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Here, the function fi(f2 o 91) evaluated at p (in the domain of definition)
gives f1(p) fo(¥1(p)), i.e. we have a non-local product on the function alge-
bra.

The action of vector fields on A is defined as the action on the function
part. Interesting is the application to the product (3.6.2), because the non-
locality in the function part leads to a deviation from the Leibniz rule. For
V being a vector field on F* one computes

V(AU f2Uy,) = V(AU f2U5, + AU, (91.(V)) (f2U5,) - (3.6.3)

Since diffeomorphisms and right group action commute, we get the un-
changed Leibniz rule for the vertical vector fields,

Yi(ab) = Y/ (a)b+aY/ (), abeA. (3.6.4)

For the horizontal vector fields, however, there will be an additional term

(¢1*X X;)(b). Comparing 4) 4") and 3) above we have 91, X; — X; =
(5 ;Y;, for some function (5’“ Using (3.6.2) we commute this function in front
of a and obtain

X;(ab) = Xi(a) b+ a X;(b) + (@) Y/(B), abeA. (3.6.5)
The operator 5’“ on A is computed to
Gi(fU) = (o = Ta)yits (v sy (3.6.6)

where fgu are the connection coefficients belonging to 9*w. It turns out
that 5;?1- is a derivation:

8%;(ab) = 6%, (a) b+ a 8% (b) . (3.6.7)

These formulae can now be immediately interpreted in the dual sense,
for instance X;(ab) = A(X;) (a®b), which leads to a structure of a coalgebra
on the linear space R(1, X;, Y/, 6%),

k77t
AY)) =YFe1+10Y],
A(X;) = ;X®1+1®X4wﬁ® : (3.6.8)
A@l) = df01+10465,
Al)=1®1,

with 1 being the identity on A. Coassociativity (A ®id)o A = (id® A)c A
is easy to check.
Vector fields form a Lie algebra, so the next step is to ask whether

R(1, X; Yk,éﬁ) close under the Lie bracket. The first commutators are
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OK,

Y}, YR(Uy) = (1Y = 657 (fU)
[YF, Xi|(fU;) = 68 X;(fU) (3.6.9)
Y}, 85l (fUS) = (8105 + 81005 — 65 07,) (FUS) -

The next one between horizontal fields
[X:, Xj] = RE; Y 4 OF X (3.6.10)

leads to new generators, because curvature R and torsion © are no structure
‘constants’. Therefore, one uses a different strategy and considers instead
of A a Morita equivalent algebra A’ based on a flat manifold N = [[U,
— the disjoint union of the charts U, of M. Now, there is neither curva-
ture nor torsion, and horizontal vector fields commute. There remain the
commutators of X with §, which lead indeed to new generators of the Lie
algebra:

&by, (FUY) = Xt Xy, 65 1(FU) (3.6.11)
= Or, O, ((O9(@) )5 BuDath(@)” )iyl (y ™MV E it -+ u ST

All these generators 5;% 0.0, commute with each other.

Now having established a Lie algebra, we call H its enveloping algebra,
i.e. the algebra of polynomials in {1, X;, ij,dfi, 5;-“1-’31..1"“.}, with the com-
mutation relations inherited from the Lie algebra. With the coproduct A on
the Lie algebra, H becomes automatically a bialgebra, where the coproduct

is defined via the algebra homomorphism axiom:

A(h'h?) = A(WY) A(R?) == hihh @ B3h3,  A(h) = hi@hZ,
(3.6.12)
for hi,hs € H. The counit € : H — C is defined by

e(l)=1c, ¢eh)=0 Vh#1. (3.6.13)

The counit axiom (¢ ®id) o A(h) = (id® €) o A(h) = h is straightforward to
check.

There also exists an antipode on H which makes it to a Hopf algebra.
The antipode is the unique antiautomorphism of # satisfying

S(hihg) = S(h2)S(hy)
mo (S®id)oA(h) = 1le(h) =mo (id® S) o A(h) ,  (3.6.14)
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for h, h1, hs € H, and where m denotes the multiplication. From the second
line and (3.6.8) one easily obtains

S1) =1,
Sy = -y,
S(6k) = —dk (3.6.15)
S(Xi) = —X; + ohY] .

The action of S on the other generators of H can be derived from (3.6.14).

The purpose of this Hopf algebra H is to ease the computation [48] of
cocycles in the local index formula [47] of Connes and Moscovici. So far I
did not study this calculation for myself, but I think a good way to learn it
would be to consult [56].

3.6.3 Rooted trees

Coproduct and antipode for the generators (5%,@1___@”___ are only recursively
defined via the axioms of coproduct and antipode. Now we are going to
present an explicit solution — via the concept of rooted trees. This was
introduced by Connes and Kreimer [42] to clarify the relation between the
two Hopf algebras in the theory of foliations and in perturbative quantum
field theory. We generalize [226] their construction from dimension 1 to
arbitrary dimension of the manifold M. To the first three classes of §’s we
associate the following trees:

kK _
5jz‘— ® i

kK _ |7t
5ji,l = I )

om = 81 + /\” . (3.6.16)
l

The rule is obvious. A symbol (5;?1-7 40> for A a string of | A| indices, is obtained

from 6;%, A= ZLA:'; tLA| by attaching to each of its trees tLA| a new vertex with
label £ successively to the right of each vertex. The root (with three indices)
remains the same and order is important.

Coproduct and antipode require the definition of cuts of a tree. An
elementary cut along a chosen edge splits a tree into two — the trees above
(trunk) and below (cut branch) the cut. It is clear that we have to add
2 indices to complete the root of the cut branch. This will be a pair of
summation indices. We define the action of a cut as the shift of one index

of the vertex above the cut to the first position of the new root of the cut



3.6. HOPF ALGEBRAS IN RENORMALIZATION 331

branch. The remaining position to complete the root of the cut branch is
filled with a summation index and the same summation index is put into
the vacant position of the trunk. In the case of cutting immediately below
the root, we have to sum over the three possibilities of picking up indices
of the root, adding a minus sign if we pick up the unique upper index. The
following examples illustrate the definition of a cut, where we write the trunk
as the rhs of the tensor product and the cut branch as the lhs:

k
Jjio_ a k a k k a
~I> =0, Qe te; e, —0y ey,
!

k

Jt _a.a k a k k a
A =0 O 04l T O @5 — ®am @ @i,
l m

k

gi k.
J°

l :.gm@;l : (3.6.17)
a

m

A multiple cut consists of several elementary cuts, where the order of cuts
is from top to bottom and from left to right. An admissible cut is a multiple
cut such that on the path from any vertex to the root there is at most one
elementary cut. The product of all cut branches forms the lhs of the tensor
product, whereas the trunk alone containing the old root serves as the rhs.
The purpose of these definitions is to give an explicit formula for coprod-
uct and antipode. Indeed, by induction one can prove the following:
oy All LA . .
3.6.1 Proposition. The coproduct of 5;%714 = Z‘ail L s given by
Al
A A
A ) =5 a@1+1@68%5 4+ > Y P @ RE(tY),  (3.6.18)
a=1 C
where for each tLA| the sum is over all admissible cuts C of tLA|. In eq.
(3.6.18), R°( ‘aA|) is the trunk and PC( ‘aA|) the product of cut branches ob-

tained by cutting tllA| via the multiple cut C.

Proof. We start from

AR 1) = [A(S5; ), AX)] =08 40 ®1+1® 685 4+ RE 44
RE 40 =[Xe®14+1® Xp, RE ]+ 6 @Y, RY, , + (1@ 6% ) e HOH .

By definition of the tree, the commutator with X, attaches a vertex £ suc-
cessively to all previous vertices, where X, ® 1 attaches to the cut branches
and 1® X, attaches to the trunk. Next, the commutator with 7, ® Y, puts
for each vertex of the trunk (due to the commutator with Y') a cut branch
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consisting of a single vertex to the lhs of the tensor product. Both contribu-
tions together yield precisely all admissible cuts of the trees corresponding
to oF i, A O

The antipode is obtained by applying the antipode axiom m o (S ®id) o
A =0 to (3.6.18). By recursion one proves

3.6.2 Proposition. The antipode S of 5;'61',,4 = Zlﬁ'l tLA‘ is given by

|Al!

S(0k 4) = =685 4 = D> (~1)lCl PCe(e ) RO (£A) (3.6.19)
a=1 C,

where the sum is over the set of all non-empty multiple cuts C, of tLA| (mul-
tiple cuts on paths from bottom to the root are allowed) consisting of |Cq|
individual cuts. [

3.6.4 Feynman graphs and rooted trees

In a perturbative quantum field theory it is convenient to symbolize contri-
butions to Green’s functions by Feynman graphs. These Feynman graphs
stand for analytic expressions of momentum variables. Internal momentum
variables have to be integrated out. Very often some of these integrations
formally yield infinity. The art of obtaining meaningful results out of these
integrals is called renormalization. A central problem is the existence of
subdivergences which cannot be regularized by a simple subtraction of the
divergent part. Bogoliubov [19] found a recursion formula for the regular-
ization of Feynman graphs with subdivergences and Zimmermann gave an
explicit solution — the forest formula [228].

In 1997 Dirk Kreimer discovered [129] that there is the structure of a
Hopf algebra behind this art of renormalization, with the combinatorics of
the forest formula produced by the antipode. Kreimer’s idea was to visualize
the divergence structure of Feynman graphs in terms of parenthesized words,
which are in 1:1 correspondence to rooted trees [42]. Let us exemplify this
idea by a Feynman graph from QED:

Straight lines stand for fermions and wavy lines for bosons, and the boxes
contain divergent sectors. A criterion for superficial divergence of a re-
gion confined in a box is power counting. If a box has np bosonic and nrg
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fermionic outgoing legs, the power counting degree of divergence d is (in four
dimensions) defined by d :=4 — ng — %np > 0. Owing to symmetries the
actual degree of divergence of one graph or a sum of graphs can be lower
than d, see [114]. The construction of the rooted tree from the Feynman
graphs with identified divergent sectors is clear: The outermost (superficial)
divergence (5) is the root vs. The box (5) contains the boxes (3) and (4) as
immediate subdivergences, hence we connect two vertices ps and vy directly
to the root v5. The box (4) contains the subdivergences (1) and (2), so
we attach the vertices s; and v9 to vs. This works as long as there are no
overlapping divergences, which must be resolved before in terms of disjoint
and nested ones and lead to a sum of rooted trees [128, 130].

Having identified the trees to Feynman graphs, it are the same cutting
operations on trees as before which give us coproduct and antipode. Here,
a cut splits a Feynman graph into several subgraphs — a standard operation
in renormalization. It is very remarkable that the antipode obtained in this
way reproduces the combinatorics of renormalization [129]. These surprising
facts have been extended to a complete renormalization of a toy model [131],
which we review in the next section.

Before, let us ask an interesting question: What is the role of the op-
erators 5;%,@1___% in quantum field theory, and what is the meaning of the
individual trees for diffeomorphisms? I am not aware of an answer, but
there is an interesting observation [226] concerning the relation of the deco-
rated rooted trees (3.6.16) to Feynman graphs. The trees emerging from the
Connes—Moscovici Hopf algebra are decorated by spacetime indices (three
for the root) whereas in QFT the decoration is a label for divergent Feynman
graphs without subdivergences. Although the operators ¢ are invariant un-
der permutation of the indices after the comma, for instance (5fi,lm = (5;-“i,ml,
see (3.6.11), this symmetry is lost on the level of individual trees. That leads
us to speculate that the sum of Feynman graphs according to the collection of
rooted trees to 0’s has more symmetry than the individual Feynman graphs.
This should be checked in QFT calculations. Another interpretation would
be the observation from (3.6.16)

k. k.

gt k. gt k.

; +/\” — m—/\” =0, (3.6.21)
l m m ® ]

m l

which could possibly be regarded as a relation between Feynman graphs
similar to those derived in [132]. According to a private communication by
Kreimer, (3.6.21) is satisfied in QFT for the leading divergences, as it can
be derived from sec. V.C in [133]. For non-leading singularities there will be
(probably systematic) modifications.

In mathematics, Connes and Kreimer extended the investigation of the
commutative Hopf subalgebra H! in [48] to the level of individual trees [42].



334 CHAPTER 3. NC GEOMETRY AND MATHEMATICAL PHYSICS

They showed that the Hopf algebra of rooted trees H g is the solution of a
universal problem in Hochschild cohomology. We recall [48] that H! is the
dual of the enveloping algebra of the Lie algebra £ of formal vector fields
on R vanishing to order 2 at the origin, and that #' itself is isomorphic
to the Hopf algebra of coordinates on the group of diffeomorphisms of R of
the form v (z) = = + o(x). By analogy, Connes and Kreimer regard Hpg as
the Hopf algebra of coordinates on a nilpotent formal group G whose Lie
algebra L' they succeed to compute. This group was recently found to be
related to the Butcher group in numerical analysis [23]. It will certainly
contain precious information for quantum field theory because the antipode
in Hp governing renormalization is the dual of the inversion operation in
G. Renormalization seems to provide a new mathematical calculus which
generalizes differential calculi.

3.6.5 A toy model: iterated integrals

In the spirit of Kreimer [131] we are going to give the reader a feeling for
renormalization by considering a toy model. The toy model is given by
iterated divergent integrals, in close analogy to QFT. The only difference is
that the integrals are very simple to compute.

Let us take the integral

dp
I’ :/ ) 3.6.22
(t) . e ( )

which diverges logarithmically for € — 0. We can regard it as the analytic
expression to the Feynman graph

T

To a Feynman graph with subdivergence there corresponds an iterated in-
tegral:

dp; dps
I =<[ — F2(t):/ 1+e/ “Te
t P p1 P2
/ OO
:<[[ - [T [T T
p1 p2 P3

Clearly, these iterated integrals form a Hopf algebra of rooted trees without
side branches, and the coproduct is given by the admissible cuts of the trees.
The renormalization of these integrals requires an algebra homomorphisms

/
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¢q on iterated integrals, which represents a certain way of evaluation under
“a set of conditions a”. For our purpose we take

ba ( II ri(t)) =[], (3.6.24)
icl icl
the evaluation of the integrals at ¢t = a. In QFT, a should be regarded as
an energy scale, and ¢, evaluates the Feynman graphs at this scale.

The essential idea [131] is now to consider the convolution product of
these homomorphisms, defined via the Hopf algebra structure:

(pxp)(h) :=mo (d@P) o A(h), heMN. (3.6.25)

The antipode axiom can be written in the compact form S xid = 1e. It is
however more interesting to consider the following modification:

€ap = Sa *idp := (P 0 S) * ¢y . (3.6.26)

Due to the Hopf algebra properties, the ¢, satisfy a groupoid law. We give
the derivation in full detail, using 1) associativity of m and coassociativity
of A, 2) the antipode axiom, 3) homomorphism property of ¢, 4) ¢ole = le,
5) the counit axiom:

Eab*Epe =MO ((mo (Sa® ¢p) 0 A)) ® (mo (Sb®¢c)°A))) oA
:mo(m®m)o(Sa®¢b®sb®¢c)o(A®A)oA
:mo(id®m)o(m®id®id)0(Sa®¢b®sb®¢c)o

o(A®id®id)o (id® A) o A
=lmo(m®id)o (m®id®id)o (S® ¢ ® 5 ® ) o

o(A®id®id)o (A®id)o A
:mo(<mo(m®id)o(Sa®¢b®Sb)o(A®id)oA)®¢c)oA
:lmo((mo(id®m)O(Sa®¢b®sb)0(id®A)0A)®¢c)°A
—mo((mo{Su® (mo (@t o([d®S)oA)}or) @)
:2,3mo((mo{sa® (¢,,o1e)}oA) ® ¢c) o A
:4mo((mo(Sa®id)o(id®1e)oA)®¢C)OA
=mo(m®id)o (S, ®id® ¢.) o (Id® le®id) o (A®id) o A
= mo (id®@m)o (S, ® ¢ ® ¢e) o (i[d® le®id) o (id ® A) o A
=3mo (S, ®¢c) o (id® (mo (le®id)oA))o A
:577'7/0(Sa®¢c)oA

=¢€qc -
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We apply now the g4 operation to the divergent integrals to compute
cap(T(1)) = Ty
Ty =mo(¢u ® ) o (S ®@id) o Afs)
:mo(¢a®¢b)0(—o®1+1®.)

a dp
— —Il(a) +T}(b) = /b -

The result I‘Cll’b is finite for ¢ — 0 and vanishes for a = b. We proceed with
the next integral, using the definition of A as given by the admissible cuts
and S as given by all cuts (with sign from the number of elementary cuts)
of the graphs:

T, :m0(¢a®¢b)0(5®id)oA(I)

o(¢a®¢b)o(S(I)®1+S(o)®0+1® I)

o (- [orsem ]

:—1“2()+1“1( )T (a) — TH ()T (a) + T2(b)
G // //pl
[

p1 P

Again, the result is finite. Note that in e ® e the root which stands for
the p; integration is the right vertex and hence is evaluated at t = b. The
computation for F?’b is left as an exercise.

(From the identity e,p x €5, = €4, and the coproduct rule given by
admissible cuts of a tree without side branches we get Chen’s Lemma [32]:

I =TL,+T} +ZFJ oI - (3.6.27)

For 7 = 2 it reads

/ dpy dpzz/“@/“@Jr/ dp1/ dps /dp1 dp2
p1 b P1 Jp P2 c p1 P2 b

The purpose of these considerations was the renormalization of a QFT.
Let us assume a theory where all contributions to the coupling constant
come from the following ladder diagrams:

<<=l
e+ rt + I + s +

I =
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Formally, this series evaluates to infinity, but this infinity can be renormal-
ized to a finite but undetermined value. That value has to be adapted to
experiment and yields a normalization condition. At some energy scale a
we are allowed to fix the coupling constant T, = I'%(a). But suppose we
measure now the value of the coupling constant at another energy scale b.
The normalization condition is fixed so that in the diagrams we have to use

in all vertices the normalized coupling constant — = TI',. Since the renor-

malization removing the infinities was scale dependent, the loop diagrams
I now give a contribution, and this contribution is precisely Ff17b. Hence,

Ly=Co+Tg,+T0,+T0,+... (3.6.28)

Assuming the series converges, we get a finite shift of the coupling constant.
In realistic quantum field theories, the agreement of this value with exper-
iment is overwhelming. In particular, in first order we recover the familiar
logarithmic energy dependence of the coupling constant. We also learn from
(3.6.28) that one can completely avoid talking about infinities.

As it is clear from our model, the running coupling constants resulting
from renormalization are governed by the Hopf algebra structure together
with the convolution product. The Hopf algebra structure not only pro-
duces the combinatorics of the forest formula, it also allows to compare
different renormalization schemes, which arise from each other by a finite
re-normalization. The theory is consistent without a preferred scale or pre-
ferred renormalization scheme. They are always related by the convolution
identity €4,c = €qp * €bc, Where a, b, ¢ stand for parameterizations of different
renormalization schemes. Applications of these ideas to QFT calculations
are starting [133].
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3.7 The Noncommutative Geometry of Strings and
Duality Symmetry (F. Lizzi)

The aim of this talk is to introduce the spectral triple of strings, together
with some of the main string symmetries, like duality in the target space etc.
It is a report of work done in collaboration with G. Landi and R.J Szabo.
Classical geometry has been an excellent tool for the description of the
physical world, the whole of classical mechanics and general relativity are
based on it. Nevertheless there is a growing belief that the onset of quan-
tum mechanics in the gravitational theory will require a change in the very
structure of space time, which may not be describable with the tools of clas-
sical geometry. A suitable candidate for this new mathematics goes under
the name of Noncommutative Geometry, [38]. In noncommutative geometry
classical notions such as point, lines etc. are substituted by algebraic enti-
ties, using the duality between Hausdorff topological spaces and C*-algebra
commutative algebras, seen as the algebra of complex valued functions on
the space, with the obvious generalization given by noncommutative alge-
bras. I will not introduce noncommutative geometry here, there are excellent
reviews, and it is covered in several of the contributions to this Arbeitsta-

gung.

3.7.1 String theory and T-duality

Lately a strong candidate for a theory of quantum gravity has emerged as a
String Theory [97]. There is no room for the introduction of string theory,
so we will just point out the string theory is a field theory defined on a
two dimensional surface, the world sheets of the theory, and space time
appears as a field of this theory. Interacting strings are described by higher
genus surfaces, and in the nonperturbative regime we have the appearance
of nonstandard phenomena, such as co-genus surfaces, duality, branes whose
coordinates are (noncommuting) matrices...

Crucial to string theory is the conformal invariance of the world-sheet,
the two dimensional generalization of the world line, swept by the string.
The richness of string theory stems from the fact that in two dimensions the
conformal group is infinite dimensional, giving rise to a wealth of interesting
phenomena. Spacetime is a derived concept, and it appears as the fields
of a field theory defined on the world surface. In this talk I will assume
spacetime to be toroidally compact, d dimensional and the bosonic sector
of the string theory. Spacetime is thus R? quotiented by an abelian infinite
group (a lattice) I' generated by d generators e;. On the generators of I' we
define an inner product which provides a metric (of Euclidean signature) on
the torus 7y:

(€i,ej) = gij - (3.7.1)
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Classically the string is described by a two dimensional nonlinear o
model, whose fundamental objects are the Fubini—Veneziano fields, which,
for the case of a closed string are:

Xi(r,0) = ' + gpim + gl wic + - aB)? gik(rze) (3.7.2)
k70

where z represents the centre of mass of the string, p its momentum and
w is the winding number, the number of times the string wraps around the
direction defined by the e;.

Notice that, since the space is compact, the momentum is quantized,
and in fact it must be p € I with " the dual lattice spanned by the basis ¢’
with (we implicitly complexify " and extend the product):

(el e;) = 31 . (3.7.3)

The inner products of the e'’s define a metric which is the inverse of g;;,
that is: o -
(e',e?) =g" . (3.7.4)

Notice that, if all of the e; are quantities of order R (we take Planck’s length
to be unit unless otherwise stated), with det g of order R?, then the ‘size’ of
the dual lattice is a quantity of order 1/R. In this sense, if to a given lattice
corresponds a large universe, to its dual it will correspond a small one, the
dual torus Tg*.

The winding number, on the other side must belong to the original lattice
w € I'. For R — oo the momentum spectrum becomes continuous, while the
values of the windings different from 0 drop out. On the other side R — 0
inverts the situation, in fact the role of p and w in (3.7.2) is symmetric. In
the following I will mainly deal with the zero modes of the string, mostly
ignoring the oscillator modes. These are internal excitations, not sensible
to the target space in which the strings live, and will therefore not play
a central role in considerations dealing with the structure of spacetime at
least at low energy, as the oscillators describe excitations at the Planck mass.
Although the excitations are the hallmarks of the “stringy” character of the
theory we will see that already the zero mode describe behaviour different
from particles.

Consider he following action for a nonlinear ¢ model:

1 ) ) ) )
S=_ / dodr /P 0o X' ;0577 4+ €Pb;j0, X 05 X7 | (3.7.5)
™

where 7 is the world sheet two dimensional metric, € is the antisymmetric
tensor with €12 = 1, G is the metric defined in (3.7.1), and b is an antisym-
metric tensor which represent the ‘torsion’ of the string.

*Strictly speaking however this conclusion is only valid only in the absence of torsion
(introduced below) in the action [70].
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Perform a chiral decompositions of the X’s defining:

) ) - 1 o
Xi(r+0) =al +g7p;(rH0) + )~ o) eiklrE0) (3.7.6)
k0

The zero modes z', (the centre of mass coordinates of the string) and the
(centre of mass) momenta pl?IE = 27p; % (g—Fb);;w’ are canonically conjugate
variables, '

[z, p;] = —id] (3.7.7)

with all other commutators vanishing. The left-right momenta are
F=L (pit (e 3.7.8
p; = \@(pz (ei,w)) (3.7.8)
The p*’s belong to the lattice:
A=Terl (3.7.9)

The fields X = X + X_ are defined in a natural way, but equally natural is
the definition of the fields X = X, — X_, whose zero mode we will indicate
as z.

Exchange of a lattice with its dual is a symmetry called T-duality [126,
91, 164]. It corresponds to an exchange of the momentum quantum number
with the winding, and of the zero mode corresponding to x, the position of
the centre of mass of the string with its dual . This is a symmetry of the
Hamiltonian:

1 g . ~ . o
H = 5 ((27T)2pi9”pj +w'(g — by~ 'b)iw’ + 47Twzbik9kjpj)
(+)i (+)d (<) (i d
+Zgij O‘—Iczak T+ Zgij a_kzak 7 - 12 (3.7.10)
k>0 k>0
1 o 2 . d
= §(p+ + p~ ) + Oscillators — 2 (3.7.11)

the term —% due to normal ordering. Since momenta and windings belong
to a lattice, the spectrum is discrete.

The physics of T-dual spaces is the same, they are indiguishables if one
exchanges windings with momenta. This can be seen heuristically [21] if
one considers the fact that in ordinary quantum mechanics position is just
a derived concept, it is the Fourier transform of momentum spaces. In a
string theory is possible however to consider winding (and its eigenstates)
rather than momentum. If the compactification radius is of the order one,
the two choices are equivalent, but for a very large radius the eigenvalues of
momentum are nearly continuous, while the ones of winding are far apart,
the first one above zero being at a very large energy. It is therefore difficult
to make “localized wave packets” with the Fourier transform of winding.
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Conversely, with a small radius of compactification, it is the winding which
gives the possibility to create localized wave packets.

The case b = 0 (called the torsionless case) is simpler and in it T-dualiy
corresponds to an exchange of g with its inverse g—!, and the change of size
of the target space in which the radius R — 1/R. In the presence of torsion
the exchange is g~ <+ g—bg~'band bg~1 +» —g~'b, and it depends crucially
on the values of the b;;. In the toroidal case it is possible to exchange only
some of the generators of the lattice with their duals, giving rise to a group
of factorized T-dualities.

The theory has two continuous symmetries common basically to all string
theories:

e Target Space reparametrization:

Xi(zi) — Xi(zi) + 5X:|:(Z:|:) (3.7.12)

e World sheet conformal invariance, represented by two Virasoro alge-
bras:

(i L] = (B=m)Li , + 5 (K = K) kim0
[Le L] = 0, (3.7.13)
both these symmetries play a crucial role in the theory.

The full group of symmetry is even larger: it is in fact O(d,d,Z) [165,
166, 91], generated from three kinds of transformations:

- We can change the basis of the lattice without changing the physics,
this is done by a matrix in

- The factorized dualities we have already discussed: G(d,Z),

We can effectuate he factorized dualities we mentioned earlier.

We can transform b;; — b;; + ¢;;, this is a symmetry as long as c is
antisymmetric with integer entries.

A further Z, symmetry is obtained exchanging ¢ and 7 on the world
sheet, this last symmetry does not affect the target space.

In the following I will try to construct the Noncommutative Geometry
of String Theory following ideas originated by Frohlich and Gawedzki [86],
and describe some later developments in [149, 150, 151, 137, 205, 148, 152].

3.7.2 Interacting strings and spectral triples

Given this scenario I will now proceed to construct a noncommutative geo-
metry of interacting strings. We will therefore construct, in the spirit of
Connes, a spectral triple, the Frohlich-Gawedzki Spectral Triple [86]
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The first ingredient is the Hilbert Space of String states. Upon first
quantization the oscillator modes become creation and annihilation opera-
tors:

m

[az(ci)ia a(i)j] = kg B4 mo (3.7.14)

while the zero modes have the usual commutation relations (3.7.7). The
Hilbert Space of (excited) string states therefore is:

H = Lo(sp(T))O @ F+ @ F~ (3.7.15)

where Ly(sp(T?%))" (spinors on T¢) is a set of spinors for each winding sector,
labelled by the lattice I'. These are the so called ‘tachyon states’, although,
depending on the actual string theory at hand, they may not be tachyons
(and hopefully they are not, as in superstring theory). The spaces F* are
the Fock spaces of higher excitations (graviton, dilaton etc.) acted upon by
the oscillator creation and annihilation modes. They represent the internal
excitations of the strings and have an indirect effect on spacetime, which is
described by the zero modes.

The description of interacting strings is done via the insertion on the
world-sheet of Vertex Operators. The fundamental operator is the“tachyon
vertex operator”

Vot (zx) = e—idi Xk(r40) . (3.7.16)
where : - : represents normal ordering obtained putting creators to the left
of annihilators:

:ozl(ci)ia%)j: = al(ci)iag:)j for k<m (3.7.17)
= ol for k>m (3.7.18)

and . to the left of p;—L. The tachyon vertex operator represents the inser-
tion on the world sheet of a ground state (tachyon) of a given momentum.
higher states (the dilaton, graviton etc.) are obtained acting with the ap-
propriate combination of creation operators.

One of the aspects of Vertex Operator Algebras which is important in
this context is the Operator—State correspondence. We can put the generic
vertex operator:

. RO o (k= ;
V(zq,2-)p =i Vorg- (24, 2-)[]; [CyEsy] 8:1 X% Tl (e =Ty oy X7
(3.7.19)
in correspondence with the state:
B . . B (i
) = lg*sq) @ T T a0y © T r{? el 00~ (3.7:20)

of H, where (¢*,q7),(r*,r7) e T @ T
We thus have the second element of the spectral triple, an algebra of
vertex operator. A warning however: a vertex operator algebra (in the
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common use of the term) is not a C* algebra. In general vertex operators
are not even bounded operators! The problem stems from the fact that
vertex operators are not defined at coinciding points giving rise to nontrivial
Operator Product Expansions [97]. One can do two things to regularize the
theory: smear the vertex operators [86, 87]:

Vi, f) = / 42V (2)f(2) (3.7.21)

but this not always cures the problem, as discussed for example in [49]. An
alternative is to consider truncated Vertex operators:

N
VE(z) =Ny [ Wn (3.7.22)
n=0
where W contains the zero modes xz and p, while the W},’s (n # 0) involve
only the n* oscillator modes a%i) and a(_j;). This is equivalent to an ultravi-
olet cutoff on the world sheet, a standard practice in string theory to avoid
the infinities arising from the product of operators at coincident points. At
the end one considers N — oc.

It is however fair to say that, at present, the rigourous definition of a C*-
algebra of operators representing interacting strings is (at least to my mind
and my knowledge) still an open problem. We have the tachyon operators
and the higher spin state (3.7.19), and one should regularize them, and
create an algebra with the appropriate completion. It is in a sense like
attempting to construct C(R) from the knowledge of plane waves e’?*. The
general idea is present but many (crucial) details have to be filled. This is an
area in which the collaboration of mathematicians would be of paramount
importance. In the following we will indicate with the generic term vertex
operator algebra a proper completion of the regularized operators.

It is easy recognize the two fundamental continuous symmetries of the
theory in the vertex operator algebra. As we said the tachyon operators are
in a sense a “Fourier”, or plane wave, basis on the space of conformal field
configurations. The tachyon states are highest weight states of the level a
pair of u(1)% &u(1)¢ current algebra (3.7.14), so that the entire Hilbert space
can be built up from the actions of the ay’s for £ < 0 on these states. This
current algebra represents the target space reparametrization symmetry of
the string theory. On the other side, the two Virasoro algebras which rep-
resent the world sheet conformal invariance have irreducible representation
whose highest weights grade the Hilbert space H. The Virasoro operators
in the present case are L = 2> ez Gij ¢ a%)zaii:)fn :, with agi)z = gijpjj-:.
They generate a representation of the Virasoro algebra (3.7.13) of central
charge d. The grading is defined on the subspaces Ha, C H of states (3.7.20)
which are highest weight vectors,

Lylp)y = Afly)y , Lily)=0 Vk>0, (3.7.23)
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where Al = %gijq;'q;-' + 22 nj and Ay = %gijqi_qj_ + >, mg. The corre-
sponding operator-valued distributions (3.7.19) are called primary fields.

Vertex Operator Algebras are very important in several branches of
mathematics: modular functions, Monster Group, Lie Algebras and there
are many good reviews, including[84, 89, 116]. In this talk however the re-
lant aspect is that they are operators on A describing (via the operator-state
correspondence) the interaction of strings.

The last element to complete the spectral triple is the Dirac operator.
We have not one but two natural Dirac Operators:

D* = yfal ol = —idL XL (3.7.24)

These two operators generate target space reparametrization of X,. More-
over it can be seen that they they are square roots of the Laplace—Beltrami
operator. They are also naturally related to the other symmetry of the string
theory, in fact worldsheet conformal symmetry has the conserved stress en-
ergy:
T%(zy) = —% :DE(m)?: =Y LEsgh? (3.7.25)
k

In analogy with the X and X we can define:
D=D"+D~ ; D=D"—-D" (3.7.26)
The spectral triple 7 of string geometry therefore is:
A H D (3.7.27)

One can ask now what happened to ordinary spacetime? Spacetime
emerges as a “subtriple” 7g, that is, a spectral triple with a subalgebra, a
subspace of Hilbert space, and an operator which is the reduction of the
Dirac operator on the subspace:

Ay Ho 9 (3.7.28)

In order to construct the low energy subtriple we first have to project out
all of the oscillator modes to obtain Ay and #y. The rationale behind
this is that, since the excited oscillators start at the Planck mass, and this
is much larger than ‘ordinary’ space time energies, we have to isolate the
modes of the string which will be accessible at low energies. This is still
not sufficient however, as, in the case of large uncompactified directions,
the modes associated to the winding are also highly energetic. We therefore
choose:

C(Rd) : f € AO : [D, f] =0 commutant of P

- 3.7.29
LQ(Td, Sp) H 'lp € %0 : D'w =0 kernel of D ( )
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It is easy to connect Ay with the algebra of complex valued function
on spacetime, it is sufficient to notice that it is constructed from the (com-
mutative) ‘vertex operator’ e’?*0. Here we encounter the already mentioned
problems of the appropriate completion in order to obtain a well defined C*-
algebra . The essence of T-duality lies in the relatively simple observation
the instead of D we could have chosen D as well. In this case we would have
obtained the triple pertaining to the torus whose coordinated are the z, that
is the T-dual torus 7y, with all the radii of compactifications inverted:

D* - DF¥ D& D (3.7.30)

That the full theory is invariant under his change is ensured by the
observation that this transformation is a gauge transformation. In fact there
are (many) u € A unitary such that:

uDu™' =D (3.7.31)

For example:
u = e'9% (3.7.32)

with

0, = [ T (WK IEO ) + XX I 060)) Flero)
(3.7.33)

where a = +, J;t @ _, e“ika('l)in :, X+ are sections of the spin bundle and fg
is a smearing function.

This T-duality is a however a gauge transformation only in the full FG-
triple. 'When this is projected to the subtriple so to give a commutative
spacetime, in general the process will give rise to very different spacetimes.
We can in fact consider T-duality to be the commutativity of the following
diagram:

o — T2Tp
Po | d Po (3.7.34)
T =% T

The operation Ty is what we call T-Duality, and from the previous discussion
it is clear that it is just the low energy projection of a gauge transformation.
All of the remaining O(d,d,Z) dualities can be obtained in the same way,
as gauge transformations [150].

There are many more inner automorphisms, gauge transformations, which
project down to non trivial transformations. Defining the currents:

Ji(r+o)=0:X\(r+0)= Z B gik(ro) (3.7.35)

k=—00
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a general spacetime coordinate transformation X — £(X), with £(X) a local
section of spin(T™), is generated by G, = G¢ with

Ge= / T T G0 (Th(e) + T (20) S o) (3.7.36)

Amziz_

The means that the also the diffeomorphisms of the (low energy) target
space are gauge transformations of the full spectral triple. The inner au-
tomorphisms project down to outer automorphisms of spacetime. This is,
in my opinion, one of the best justifications of the often heard statement
that “general relativity is a gauge theory”. We can see also a glimpse of an
huge group of symmetries, which when projected down connects different
low energy theories.

3.7.3 Compactification and noncommutative torus

If we try then to uncover the structure of spacetime at higher energies we
would have to consider momentum and winding modes on a par. This will
be relevant when the radius of compactification is comparable with Planck’s
length, as in this case is not possible to ignore the former over the latter.
We will however limit ourselves for the time being to the tachyonic case.
Nevertheless the oscillators (at least the lower ones) do play an important
role. Consider therefore tachyon vertex operators, for which we only excite
the first N oscillators (for the basis €', of y®T'*). The commutation relation
among the elementary operators are:

Vi (e V) () = Vi (o)) Vi (221)

T
V;Izi(z:l:z) Vi(ziz) = V;Z(ziz) V;Z(Z:tz) =1
. ij .
ng(zii)veii(zij) _ 2miun VCJJZ(Zij)‘QZ(Zﬂ) . i A(B.7.37)

where the z4* are distinct points, and

2; 1 2; Z;
wn' = +g" <1og (ﬁ) — E :; ((ﬁ) — (zii) )) . (3.7.38)
J n=1 J 7

One can easily recognize in (3.7.37) a noncommutative torus structure [182].
If we enclose more and more oscillators:

lim wy = wY =+ g% sgn(arg 2 —argzF) i #j (3.7.39)
N—00 J

The symmetries of the theory are still present, even in this truncated
version, in fact theories related by O(d,d,Z) transformations give rise to
Morita equivalent tori [182, 181, 183, 184, 137]. The commutative case is
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recovered in the uncompactified /large compactification radius because when
R — 00, the off diagonal elements of g/ — 0 and we recover the commutative
torus.

“Turning the NCG crank” it is also possible to write a Low Energy Dual
Symmetric Action [137]:

o (F+*F)ij (F-l-*F)ij
- . And _ ~. heg ~
-y (31' + iAz’) =1y (32 + iA“) P (3.7.40)
where the dual field strength is defined:

Fy = 0idj—0jA; +i| Ay, 4y

~gix gjt (A = § Ak i | A% A1) (3.7.41)

All of the O(d, d,Z) transformations, being unitary transformations, do
not change the spectrum of D. Let us analyse in some details the trans-
formation which changes the components of the antisymmetric second rank
tensor b;; by the addition of an arbitrary, integer valued, constant matrix.
Altough this transformation does not change the lattice I', it will change the
momenta conjugated to the zero modes of X and X. In particular, in the
spectrum (3.7.11), the relative contribution of the momenta (represented
by the first term,) with respect to the windings, and the mixed term will
change. Choosing the components of the antisymmetric tensor b arbitrarily
large, we can make the contribution of the second and third term arbitrarily
large. We have therefore concentrated the lowest eigenvalues of the Hamil-
tonian in the momentum part. The low energy spectrum is made only of
the momentum eigenvalues. The lattice is still the same, but the strings are
extremely twisted, and we have transferred the lowest eigenvalues of the en-
ergy from winding to momentum. Roughly speaking, a low energy strings,
which in the original (small radius) lattice had a combination of momentum
and winding, will now be twisted in such a way that it will appear to have
just momentum, it is like the lattice “repeats itself over and over”.

Again, as in the case of the of the R <+ 1/R symmetry, we have to
ask ourselves ‘what is position’? ‘How is it measured’? And using the same
heuristic arguments of [21], we can think of making wave packets using super-
positions of the eigenvalues of the momentum In the case of large torsion the
eigenvalues of momentum are continuous for all practical purposes, therefore
the superposition will have the character of a uncompactified space, rather
than a string moving on a lattice. And this will be the situation until ener-
gies in which the new eigenvalues (coming from windings or the oscillatory
modes) start to play a role.
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3.7.4 Noncommutative configuration space and spectral geo-
metry

Let us briefly discuss the role of the classical configuration space in ordi-
nary quantum mechanics in the language and formalism of noncommutative
geometry. We will be very brief and refer to [148] for further details and
references. Consider a purely quantum observer, that is a set of operators
which form an algebra. For example bounded operators constructed from p
and z. The information on the topology of M, the manifold on which the
motion is happening, can be recovered in the programme of noncommutative
geometry by considering the algebra of position operator, that is, the alge-
bra of continuous!, complex valued, functions on M, seen as operators on
L?(M), with a norm given by the maximum of the modulus of the function.
This is a simple application of the Gel’fand—Naimark theorem.

We will consider the configuration space of a quantum mechanical space
therefore not as a set of points, but rather as an abelian C*-algebra. The
Hilbert space could also be easily constructed a posteriori by giving a sesquilin-
ear form (a scalar product) on the algebra, and completing it under the norm
given by this product. Other choice for the Hilbert space are possible, a rel-
evant one for instance is the space of spinors. A quantum observer will
have at his disposal, among the bounded operators on the Hilbert space, an
abelian subalgebra Ay which he will identify with the continuous function
on his space.

The “size” of this configuration space is given by the Dirac operator via
Connes’ distance formula [38, 80, 136, 156, 217:

d(z,y) = sup |a(z)—aly)] a€ Ay . (3.7.42)
lI[D,a]l[<1

noncommutative geometry equips our quantum observer with a series of
tools suited to him: algebras of operators, traces etc. In the commutative
case these tools reconstruct the usual differential geometry, but they can be
used in the noncommutative case as well. If we are in a commutative case,
the quantum observer has therefore at his disposal an algebra of observables,
in this algebra he recognizes an abelian subalgebra, that he calls the space
on which he lives, and with formula (3.7.42) he calculates distances, metric
etc.

In string theory, spacetime, as described for example by (3.7.37),the
quantum observer finds himself on a noncommutative space. That is, among
his set of quantum observable he does not identify an abelian algebra giving
him the configuration space, he can however define some sort of “noncom-
mutative ” space, to which it corresponds a noncommutative algebra.

fIn the following we will consider M compact, therefore continuous functions are
bounded as well.



3.7. THE NC GEOMETRY OF STRINGS 349

To specify the meaning of “low energy” we will resort to the spectral
action principle [30, 31], and argue that low energy means a theory in which
only the lowest eigenvalues of D are accessible to experiment. In fact the
spectrum of D (and its fluctuations), hold the information on the physics,
in the form of metric properties of the noncommutative space.

Let us briefly describe the main aspects of the spectral action principle.
The main idea is, as we said, that the covariant Dirac operator hold all of
the information on the metric properties of the space, and that the action
principle is based on the variations of the covariant form of the operator,
which of course depends on the algebra, remembering that one forms are
obtained combining the elements of the algebra with their commutators
with D. The action must be read in a Wilson renormalization scheme sense,
and it depends on an ultraviolet cutoff mg:

D2
Sy = Trx (—g‘) (3.7.43)

my
where D4 is the covariant Dirac operator and x(z) is a function which is
1 for z < 1 and then goes rapidly to zero (some smoothened characteris-
tic function). The action (3.7.43) effectively counts the eigenvalues of the
covariant Dirac operator up to the cutoff. The trace in the action can be
calculated using known heath kernel techniques [30], and the resulting the-
ory contains a cosmological constant, the Einstein-Hilbert and Yang—Mills
actions, plus some terms quadratic in the Riemann tensor.

It is suggestive [138, 139] to consider the sequences of real numbers which
form the spectrum of D4 as dynamical variables. In this theory the spectral
action is then nothing but the general relativity action of this space.

Let us stress the importance of the spectral principle, which considers
as starting point the spectrum of an operator, and its variations as the
backgrounds fields (the one—form A in this case) change. One can ask, in
fact, what is the role of the algebra in the spectral action, as the latter
depends just on the trace of the Dirac operator. Of course the role of the
algebra is in the fact that in (3.7.43) appears the covariant Dirac operator.
And the form A = Y a;[D,b;] depends on the algebra chosen. Let us now
apply these considerations to the Frohlich-Gawedzki spectral triple.

The spectrum of D and D, or of any operator obtained from them with
an O(d,d,Z) unitary transformation, are the same. Let us call D for con-
venience the one for which the lowest eigenvalues are the one relative to
momentum. Here by lowest we mean the ones which are lower than the
energy of the oscillatory modes (of the order of the Planck mass m,). If the
cutoff mg is lower than m,, the cutoff function x causes the projection of the
operator on the Hilbert space Hy. Elements of the algebra which commutes
with D (such as the elements of A) will not contribute to the variations of
the action, and will therefore be unobservable. This algebra can be con-
structed as the commutant of the T-dual operator D. This means that the
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winding modes degrees of freedom are unobservable. Since the Dirac oper-
ator has a near continuous spectrum, the tachyonic, low energy, algebra is
spanned by operators of the kind

V, =e?? | (3.7.44)

can be considered the Fourier modes describing an uncompactified space.

In fact, a quantum observer with a spectral action, will be able to mea-
sure (in the form of fields, potentials etc.) only the elements of the algebra
which give low energy perturbations of the lowest eigenvalues of D, always
with the assumption of the cutoff my < m, so that oscillatory modes do not
play a role. This is the abelian algebra of functions on some space time. If,
as we have seen, there are many low eigenvalues, the observer will experience
an effectively decompactified space time. The algebra which he will measure
will be composed of the operators which will create low energy perturbation
to D. At this point we have to make the sole assumption that D has a
spectrum with several small eigenvalues. In this way the quantum observer
will experience a (nearly) continuous spectrum of the momentum, the sign
of an uncompactified space.

The strings could still be seen as compactified on a “small” lattice, but
the presence of a very large torsion term b has drastically changed the op-
erator content of the theory, and this has rendered space effectively uncom-
pactified.

3.7.5 Conclusions

String Theory and Noncommutative Geometry are good example of the
fruitfulness of the interaction between physics and mathematics. But while
the mathematics used in String theory has been essentially “classical” dif-
ferential geometry, noncommutative geometry requires the indroduction of
new tools, essentially the ones introduced by quantum mechanicas. Here 1
tried to give an impressionistic way on how the mathematics well suited to
describe strings in the high energy regime (which is proper to them) should
be some sort of noncommutative geometry. While from the physical point
of view some (initial) result are already to be seen: duality, gauge transfor-
mations ..., from the mathematical point of view the structures to use are
still in need of proper definitions.

A proper mathematical sharpening of the tools is necessary not so much
for abstract mathematical rigour, but to help uncover the beauty which lies
behind such a rich structure.
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