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Abstract

We study the structure of invariant symbolic calculi A in the context of weighted Bergman
spaces on symmetric domains D = G/K and the eigenvalues of the associated link transforms
A'A. We parametrize all such calculi by K-invariants maps which have very simple descrip-
tion. We also introduce and study the properties of the fundamental function a4()\) associated
with an invariant symbolic calculus A. Our main result is the formula for the eigenvalues of
the associated link transform A'A:

M(A) _ C(A(c%])-&f;(g) ,

where T is the Toeplitz calculus.

0 Introduction

Let D = G/K be a hermitian symmetric domain in C¢ and let  be a Hilbert space of holomorphic
functions on D with reproducing kernel K (z,w), which is invariant under an irreducible projective
representation U of G. An invariant symbolic calculus A is a linear map b — Ay from a G-invariant
subspace Dom(A) of functions (“symbols”) on D into the space Op(H) of operators on H which
intertwines the natural actions of G on symbols and operators:

U(9) Ay U(g) ' = Apog-1, Vg € G, Vb€ Dom(A).
The adjoint of A is the map A’ : Op(H) — {functions on D} defined by
(A(T),0)12(D o) = (T5 Ab)s,, VT € Dom(A'), Vbe Dom(A),

where i is the G-invariant measure on D and S; is the Hilbert-Schmidt class. The operator
B := A" A : Dom(A) — {functions on D} is the link transform associated with A. It is G-
invariant: B(fog) = (Bf)og for all g € G and f € Dom(B), and is therefore diagonalized by the

exponential functions {ey} in Dom(B):

Be A = B (A) €)-
*(i) Supported by a grant from the German-Israeli Foundation (GIF), 1-415-023.06/95.
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1ne lnkK transiorm o — A A asSSOClated witll tne Invariant symbollC CalCulus A Inaps the
active symbol b of Ay into its passive symbol: B(b) = A'(Ap). For instance, the link transform
associated with the Toeplitz calculus T is the well-known Berezin transform B := T'T, which

plays a central role in quantization on symmetric domains.

The link transform and its eigenvalues reflect characteristic features of the underlying quan-
tization procedure. For example, on the cotangent bundle C* = T*(R") the well-known Weyl
calculus W is unitary (i.e. W' W = I), whereas the Toeplitz (or, anti-Wick) calculus 7 yields the
contraction semi-group of the Laplace operator: 7' T = exp(8A) for some 8 > 0 depending on the
underlying Hilbert space. Even more interesting are quantizations of curved symmetric spaces,

such as the unit disk and its higher dimensional generalizations (Cartan and Siegel domains).

In this paper we develop a unified approach to compute the eigenvalues B (A) of the link trans-
forms B. This approach is based on a new factorization technique and on a parametrization of the
invariant symbolic calculi by K-invariant operators on H which have very simple structure. Let
K, be the reproducing kernel at the base point 0 = K € G/K of D. The formula for the eigen-
values of B := A’ A is expressed in terms of the fundamental function aa(}) := (Ae, (Ko), Ko)n

of the calculus A via

By = 4 aa(d)
a7 (A)

Our approach gives also new proof for the known results concerning the eigenvalues of the Berezin

transforms in the context of the weighted Bergman spaces over symmetric domains. For the flat

case D = C? and the associated weighted Fock spaces F,,, we also show that the general approach

developed here not only clarifies the relationship between the standard calculi (Toeplitz, Weyl,

and Wick calculi) in a very satisfactory manner, but also enables one to construct entirely new

invariant symbolic calculi which, nevertheless, can be fully analyzed by closed formulas.

The organization of the paper is as follows. In Section 1 we give first the necessary background
on symmetric domains D = G/K, Jordan theory, and invariant Hilbert spaces # of holomorphic
functions on D. Subsections 1.2 and 1.3 give the background on the Fock spaces on C? and on
the weighted Bergman spaces over symmetric tube domains respectively. In particular, we give
explicit formulas for the reproducing kernels and the exponential functions in these setups. In
section 2 we introduce and study the notions of invariant symbolic calculus (”quantization”) and
the associated link transform. We establish the one-to-one correspondence between the invariant
symbolic calculi and the K-invariant operators on H. The main examples (Toeplitz and Weyl
calculi, as well as the calculi associated with the projections onto the K-irreducible subspaces) are
discussed. Of special importance is the study of a real-analytic reflection 9 of D = G/K and the
induced involution on the Lie algebra 2 of spectral parameters. The main result of this section is
Theorem 2.1 which provides a new general formula for the eigenvalues of the link transforms. In
Section 3 we introduce the Wick calculus in a general setting via the sesqui-holomorphic extension
of real-analytic functions. We also introduce and study the properties of the fundamental function
associated with an invariant symbolic calculus. Our main result (Theorem 3.1) provides a simple
formula for the eigenvalues of the link transform in terms of this fundamental function. The
remaining two sections are devoted to applications of this general formula, for weighted Fock

spaces over C? (Section 4) and weighted Bergman spaces over symmetric tube domains (Section
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and present a new class of calculi which are still explicitly solvable. For symmetric tube domains,

we present a new proof for the spectral analysis of the Berezin transform.

It should be remarked that our formulas for the eigenvalues of link transforms can be translated
into corresponding formulas describing the link transforms in terms of canonical sets of generators

of the ring of invariant differential operators on D (via the Harish-Chandra transform).

The general theory of invariant symbolic calculi on symmetric domains developed here may
be applied in a much wider setting. For example - in the context of real symmetric domains
our approach led to some definite results, particularly in the rank-one case (see [AUO1]). It is
possible and very interesting to develop our theory in the context of the invariant Hilbert spaces
of holomorphic functions on symmetric Siegel domains, which are associated with the Wallach
parameter but are not part of the holomorphic discrete series. The discrete Wallach points are of
special interest (and most difficult to handle), since they are the only points which survive when
the rank of the domains becomes infinite. The integral formulas for the invariant inner products
associated with the Wallach set obtained in [AU97], [AU98] and [AU99] will be very useful in this
goal. Finally, our theory can also be developed in the context of N A-invariant and vector-valued

Hilbert spaces of holomorphic functions on symmetric domains.

1 Invariant Hilbert spaces of holomorphic functions on symmet-

ric domains

1.1 The general framework

Let D be an irreducible hermitian symmetric domain in C? with a distinguished base point
o € D (called the “origin”). Then D can be realized as the quotient D = G/K, where G :=
Iso(D) C Aut(D) is the real Lie group of all biholomorphic Riemannian isometries of D, and
K := {g € G;g(0) = o} is the maximal compact subgroup of G. Our main applications are in
the cases where D is either C?, or irreducible symmetric tube domain (i.e. a symmetric Siegel
domain of type I), see subsections 1.2 and 1.3 bellow. Nevertheless, we prefer to develop our
theory in the general setup, so as to allow future applications (for instance, to general symmetric
hermitian spaces). [He78] and [He84] are our general references for symmetric spaces and semi-
simple Lie groups. [Hu63], [Gi64] and [FK94] are the general references for analysis on symmetric
domains, and [Lo77], [Up87] are the references to the analysis on symmetric domains from the
Jordan-theoretic point of view. [UU96] and [Un98] are general references for pseudo-differential

analysis on symmetric cones and quantization respectively.

It is known that for every z € D there is a unique symmetry s, € G (i.e. s, 0s, = lg, the

unit of G) for which z is the unique fixed point. Moreover,
s;=gos0g ', VgeG, glo)=z (1.1)

The Cartan involution induced by s,, O(g) := s, 0go s, g € G gives rise to the Iwasawa



aecomposiiion
G = NAK (1.2)

in which A and N are maximal abelian and maximal nilpotent subgroups of G respectively. N A
is a maximal solvable subgroup of G, and the evaluation map NA 3 g — ¢(0) € D is a surjective
Riemannian isometry. Thus, for every z € D there exists a unique element g, € NA for which

g2(0) = z. In what follows we shall use the important map v : D — D which is defined by

P(2) = g; (o). (1.3)

We shall show that 1 is a real-analytic diffeomorphism of period 2 of D whose unique fixed point
is the origin o. It is known that any pair of points in D can be joined by a unique geodesic line.
Also, since the elements of G act on D as Riemannian isometries, they permute the geodesic lines
in D. In particular, the symmetry s, maps each geodesic line through z into itself, reverses its
orientation and preserves distances. Given w € D, let z be the mid-point along the geodesic line
between o and z. We denote ¢,, := s,. Thus

Pw ° Py = lg, (Pw(o) =w, and (PW(w) = 0.

Let 2 be the Lie algebra of A. It is isomorphic to R", where r is the rank of D. Given
g € G with Iwasawa decomposition ¢ = nak (with n € N,a € Ak € K) let A(g) € A be
the unique element for which exp2(g) = a. Then A(nigk1) = A(g) Vn1 € N, Vk; € K, and
Alaraz) = W(a1) +A(az) Va1, a2 € A. Let A*C = C" be the complexification of the dual of 2 and

let p € 2* be the half sum of the positive roots. The ezponential functions

ex(z) == exp(A(g)]A+p), g€G, g(0) =z (1.4)
are N-invariant functions on D which are the eigenfunctions of NA

ex(h(z)) = ex(h(0)) ex(2), Vh € NA, Vz € D. (1.5)

Let us define
X, =span{ey o g;g € G} (1.6)

where the closure is taken in the topology of uniform convergence on compact subsets of D. It
is known that span{X);A € C"} is dense in C*°(D) in that topology. The spherical function
associated with the exponential function e, is

Pa(2) == /Ke,\(k(z))dk.

Then ¢, € &) is K-invariant, ¢5(0) = ex(0) =1, and for every f € X)
[ £kt = fe)4r(2). Ve D. (1.7

Let W be the Weyl group of D. It is a subgroup of GL(C") which contains the permutation

group, and moreover

¢ = ¢y if and only if there exists w € W so that A = w(}'). (1.8)
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Xy = Xy if and only if there exists w € W so that A =w(}).

We denote by Diff(D)“ the algebra of G-invariant differential operators on D (i.e. differential
operators T on D so that T'(f og) = T(f) og for all g € G and all f € C*°(D)). A fundamental

property of the exponential and spherical functions is that they are joint eigen-functions for
Diff(D)%:

T(#) =Ty, Tlea)=T(Ner, VT €Dif(D) VA€ C. (19)
A fundamental result of Harish-Chandra is that the eigen-value map T’ — T'()) (called the Harish-
Chandra transform) is an algebra isomorphism of Diff(D)“ onto the algebra Clz1,...,z,]" of
W-invariant polynomials in z1,...,z,. In particular, Diff(D)¢ is commutative.

Using standard tools from spectral theory, this result extends to more general (bounded or
unbounded) G-invariant operators on D (see [E98]). Thus, if T' is a G-invariant operator, defined
on a G-invariant subspace X of functions on D, then (1.9) holds whenever ey, € &, and the
generalized Harish-Chandra transform T' — IN“() is injective. Thus T' is uniquely determined by
its eigenvalues T(A), and they can be computed by

T(A) = T(er)(0) = T () (0). (1.10)

In what follows we shall use (1.10) with the exponential function, since they are much simpler

than the spherical functions, and obey (1.5).

Let po be the (unique up to a multiplicative constant) G-invariant measure on D, i.e.

/D  dpo = /G 1(9(0)) dg.

The normalization of ug will be fixed in the definition (1.21) below. For any Borel measure p on

D we define a function i by
Dom(f) == {A € C';ex € (D, )}

and

i) = [ ex(:)du(e), VA€ Dom().

Notice that if y is K-invariant then i is its (spherical) Fourier transform and
i) = [ () du(e), VA€ Dom(p).
In particular, if f is a measurable function on D then f := f/cz/_jo, ie.
FO) = [ ere) 162) o). (1.11)
Again, if f is K-invariant then f is its (spherical) Fourier transform,

Q) = /D #2(2) F(2) duo(z) VA € Dom(f).
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(Cuf)(2) == /D f(g(w)) du(w), where g € G and g(o) =

is well-defined (on an appropriate domain) and G-invariant. Its Harish-Chandra transform is the

Fourier transform of u:

Cul) = Culen)0) = [ ex =),

Let H be a Hilbert space of holomorphic functions on D on which the point evaluation func-
tionals H > f — f(w), w € D, are continuous, and let K (z,w) = K,(z) be the reproducing kernel

of H. Let
Ky(z)  K(zw)

IKull K (w,w)/?

be the normalized kernel at the point w € D. For convenience we adopt the normalization

ky(z) ==

K(o,0) = 1.
We assume that G acts on H by means of an irreducible projective representation U of the form:

U(g)(f)(2) =3¢~ 2) flg™ (=), VYg€G, VzeD. (1.12)

Thus, each operator U(g) is isometric on A, the function j(¢~!,z) is holomorphic in z for all
g € G, and

395t o g, 2) = clg1,92) 395 ", 91 ' (2)) i (97", 2), V91,92 € G, Vz € D, (1.13)

where ¢(g1,g2) is a unimodular constant depending only on g;, go. This is clearly equivalent to

U(gi0g2) = c(91,92) U(g1) U(g2), Vg1,92 €G. (1.14)

The relationship (1.13) yields also

li(gs " o gt 2) = 595 " g ()| (g1 ", 2)l, Vai,92 € G, Vz € D.

In particular,
(k1 © kg, 0)| = |j(Kk1,0)|1i(k2,0)|, Vki,k2 € K.

This fact and the compactness of K yield
l7(k,0)| =1, Vke K. (1.15)

Also, (1.13) and the fact that j(1g,z) =1 lead to ¢(g,¢g ') = 1, i.e.

1

jlg,9(2)j(g,2) =1, VgeG, z€D. (1.16)

This implies that U(g~') = U(g) ! for all ¢ € G, and that ¢(g1,92)c(gy ' 97") = 1 for all
g1,92 € G. Thus the natural action of G on operators on H,

m(g)(T) :=U(9)TU(9)~", g€G,
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The fact that the operators U(g), g € G, are unitary on # is reflected in the transformation

formula of the reproducing kernel:

i(9,2) K(g9(2),9(w)) j(g,w) = K(z,w), Vg€ G, Vz,we D, (1.17)

a fact which can also be written as (U(g) ® U(g))(K) = K. Also, (1.17) can be written as

U(g)(Kw) = '(g,w) Kg(w)a Vg € G, Yw € D. (1.18)
Notice that since K(0,0) =1, (1.17) implies in particular that

|7(g, 0)|_2 = K(z,2z), whereg e G, g(o) = z. (1.19)

Of particular interest is the case where H is the weighted Bergman space
H := L2(D, ) = L*(D, 1) N {holomorphic functions}

with respect to a K-invariant absolutely continuous measure g on D. In this case we require that

the measure y transforms under G via

du(g(2)) = i, 2)|* du(z), Vg€ G. (1.20)

Thus U extends to a projective representation of L2(D, ). The transformation rule (1.20) of the
measure 4 and (1.15) yield easily that the measure pg defined by

duo(z) == |j(g,0)| 2 du(z) = K(z,2) du(z), where g € G and g(o) =z (1.21)
is well-defined (independent of the particular g € G satisfying g(o) = z), and is G-invariant, i.e.

duo(g(2)) = duo(2), Vg € G.

1.2 Weighted Fock spaces on C¢

For v > 0 consider on C?% the probability measure

v

d
duy(z) = (2)" " dm(z),
where dm(z) is Lebesgue measure. The weighted Fock space
F, = F,(C% = L2(C%, u,) := L*(C?, ) N {holomorphic functions}

has a reproducing kernel
KW (z,w) = e"®®),

Let G be the semi-direct product of the unitary group U(d) and the translation group T :=
{gw; w € C¢} = C¢, where g,(z) = z + w. Notice that in the Iwasawa decomposition of G we
have K =U(d), A= {lg}, N =T, and that U(d) normalizes T"

kguwk™ = gkw), VEkeU(),VweC.



G aCls 1s0metriCally on L \'\C, [y ) Dy the rule

UW(g) f(2) = (g7, 2) flg™ " (2)),

where

ila72) = exp{=zlgO) +v(z g(0))}

= K®)(z,9(0))/K®) (9(0),(0)) = k'rp) (2)-
Here k') (z) :== KW (z,w) /K" (w,w)'/?. Indeed, for g € G

dp(9(2)) = 13(g,2)|? dpsu(2), (1.22)
i.e. (1.20) holds. To prove (1.22) let us write g = gy, k, where k € U(d) and g,, € T. Then

duy(g9(z)) = (V/ﬂ)d e—vlkz+w|2 dm(k 2 + )
= (v/m)* eV g7 Relm R @h—v vl gy ()
— |e—u(z,k*(w)) -3 V|w|2‘2 dpn (2)

v

|e¥ 5971 @) =5 197 O qu, (2) = |j(g, 2) [ dpau (2)-

The action U®) of G is an irreducible projective representation (see (1.14)) since, by elementary

calculations, one obtains (1.13) with the unimodular constant

c(g1,92) := exp {ivIm{g1(0), g1 (0)(92(0))) } -
Let us define nd
dpg(w) = (;) dm(w).

Then pg is clearly G-invariant. The reason for the particular normalization is the following

relationship between pg and u,

dpo(2) = |3 (9,0)| % duu(2), g€ G,g(0) = 2,

in accordance with (1.21). The ring of G-invariant differential operators is simply the polynomial
ring C[A], where
d
A=(00)=> 0;0;
j=1

is the Euclidean Laplacian (properly normalized). The exponential functions
eap(2) = el glad2) g b e e (1.23)

are eigen-functions of A:
Alegp) =X eqp with A= (alb)

as well as of the translation subgroup T

d
€ap © Guw = €a,p(W) €q b, Yw e C*.
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A= {a,—a) = —||a|/?. The map 1(w) = g,*(0) is simply 9(w) = —w = so(w) and the exponential
functions transform under 1 according to the rule

€a,b O Y = €_q b (1.24)

Since €g 4 = €pq, it follows that

€ah 0P = €_p _q. (1.25)

In this case the spherical function ¢, associated with e, (A = (a|b)) is calculated explicitly

@) = [ easthie) k=Y o M omas ey

U(d) £=0

1.3 Weighted Bergman spaces over symmetric tube domains

Let X be an irreducible Euclidean Jordan algebra of dimension d with unit element e, and let
Q = {z?; X > z invertible} be the associated symmetric cone. The triple product {z,y,z} =
(xy)z + (y2)z — (22)y extends to the complexification Z = X© = X @ iX, and Z carries the
structure of a JB*-algebra with product zw = {z, e, w}, unit e, and involution z* = {e, 2, e} (see
[Up87]). The tube domain associated with € is

TQ):=X+iQ={z€ Z; €0} .

/)
It is well known that 7(Q) is an irreducible hermitian symmetric domain (symmetric Siegel
domain of type I). Thus with respect to the Bergman metric the holomorphic symmetry at ie,

~1,is an isometry, and the group G := Aut (7'(Q2)) of all biholomorphic automorphisms

sie(2) = —%
of T'(f2) acts on it transitively. Let G = NAK be the Iwasawa decomposition with respect to the
Cartan involution g — S g sie. Thus K = {g € G; g(ie) = ie} is a maximal compact subgroup
of G and T(?) = G/K = NA, with A maximal abelian and N maximal nilpotent subgroups of
G. Since NA acts on T(Q2) simply transitively, for any z € T(f2) there exists a unique element

g, € NA so that g,(ie) = z.

Let N(z) and tr(z) = (z|e) be the determinant (”norm”) and trace polynomials (defined on
X via the spectral theorem, and extended linearly to the complexification Z = X©). Fix a frame

e;}t_, of pairwise orthogonal primitive idempotents in X, where r is the rank of X (also, the
JjJj=1 g

T
rank of T(€2)). Thus e = ) e;, and Z has a Peirce decomposition

7j=1
7 = Z@ Zi

1<i<y<r

relative to {e;}7_; (see [Lo77], [FK94], and [Up87]). For 1 < k < r let Ny be the determinant
polynomial of the JB*-sub-algebra,

Zk = ZGB Zi,j

1<i<j<k



whose unit is uy = Y e;. It is known that the characteristic multiplicity
j=1

a=dimc Z;;, 1<i<j<r
is independent of the frame and of the pair (z,7) with 7 < j. Let P be the orthogonal projection

from Z onto Zj and extend Ny to all of Z via Nj(z) = Ni(Px(z)). Clearly, N, = N.

The conical function associated with s = (s1,s9,...,8,) € C" is defined on T(R) via
Ng(z) := N1(2)°* 72Ny (2)°27 % - - - Ny (2)°", z € T(2).

Notice that if s € N and s > 0 in the sense that s; > s9 > --- > s, > 0 then Ng(z) is a

polynomial.

The Gindikin-Koecher Gamma function is defined for s € C" with Re(sj) > (j —1)§ Vj by

the absolutely convergent integral

Lo(s) = [ e @) Ng () dua(z)
/

where dug(z) = N (m)_%da: is the (unique up to a constant multiple) measure on © which is
invariant under GL(Q?) := {g € GL(X); G(R2) = Q}. It is known (see [Gi64] and [FK94]) that

Ta(s) = (27) % Hr(sj—(j—n g) . (1.26)

This allows to extend I'q(s) to an entire meromorphic function on C". Let us denote

T(z,w) := z _%w , z,w€Z and 7(2):=7(z,2) =Im(z).

The functions Ng o 7 are joint eigenfunctions of the group N A:
Ns(7(9(2))) = Ns(7(g(ie))) Ns(7(2)), VgeNA. (1.27)
See [UU94]. Thus the exponential functions in this context are given by

ex(2) == Nyip(7(2,2), z€T(Q), (1.28)

where p == (3((j — 1)a + 1))j= is the half-sum of the positive roots. Property (1.27) allows the

derivation of the fundamental formula

Tols) !6‘<3“>Ns(x)dun(x) = N ((f) 1) = N5 (3) (1.29)

]

valid for all s € C" with Re (s;) > (j—1) § Vj,andall z € T(2). Here, s* = (s, Sy—1,Sr—2," ", 51)

and N, are the conical functions associated with the frame in reverse order {e,, e,_1,€,_2,+ -+ ,e1}.

The Wallach set W (D) is the set of all v € C for which the function

KW (z,w) := N(r(z,w))™", zweT(Q) (1.30)
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For v € W(D) let H, be the Hilbert space of analytic functions on 7'(2) whose reproducing
kernel is K)(z,w). Let p=2% = (r — 1) a + 2 be the genus of T(2). Then (with J denoting the
Jacobian)

(7 9(2)"" KW (g(2),g(w)) Tg(w)"” = K¥(z,w), VgeC, VzweT(Q).
Thus G acts isometrically on H,, via

U9 f=(T(g )P (fog?), ge€G, feH,

and this action is an irreducible projective representation of G which becomes a unitary represen-
tation when v € W(T'(22)) N 3N. Thus, in the notation of subsection 1.1,

i(9,2) = (Jg(2))7, Vg €G, VzeT(Q).
If v > p— 1 then H, is the weighted Bergman space
H, = LA(T(RQ), ) = L*(T(Q), uy) N {holomorphic functions}

where
dpy(2) = a(v) N(7(z))""Pdm(z),

dm(z) being the Lebesgue measure, and

Ca(v)

T Gmitae D)

The measure p, transforms according to the rule

2v

i, (9(2)) = [ T9(2)| ” dan (2), (1.31)

in accordance with (1.20). In particular, the measure N(7(2))™? dm(z) is the unique, up to
a multiplicative factor, G-invariant measure on T(€2). It will be convenient for us to use the

following normalization for the G-invariant measure:
dpo(z) == a(v) N(7(2))™" dm(z).
With this normalization, the measures pg and y, are related by
dpo(z) = [ 9(ie)| "% duu(2), g € G, glie) = 2,

in accordance with (1.21).
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2.1 Invariant symbolic calculi and covariant fields of operators

As in section 1, let D be a hermitian symmetric domain in C¢ and let H be a Hilbert space
of holomorphic functions on D with reproducing kernel K(z,w) = K,(z), on which the group
G := Iso(D) of all biholomorphic Riemannian isometries of D acts isometrically and irreducibly

by means of a projective representation U with multiplier j(g, z) (1.12).

Definition 2.1 An invariant symbolic calculus is @ map b — Ay from a G-invariant subspace

Dom (A) of functions on D into the space Op(H) of closed operators on H, such that

1. span{Xy N Dom(A); A € C"} = span{ercg;9 € G,A € C'} is dense in Dom(A) in the topology

of uniform convergence on compact subsets.
2. span{Ky;w € D} C Dom(Ap), Vb€ Dom(A);
3. A intertwines the natural group actions on functions and operators:

U(9)AsU(g) ' = Apog-1, Vg € G,Vbe Dom(A). (2.32)

The function b is called the active symbol (or, strong symbol) of the operator Ap. The invariant
symbolic calculi appear naturally in Berezin’s theory of quantization on symmetric domains, see
[BeT1], [Be72], [Be73], [Be74-1], [Be74-2], [Be75] and [BeT8].

Remarks: (i) If the function 1 belongs to Dom(.A) then A; commutes with all the operators
U(g), g € G. Since U is irreducible, A; is a multiple of the identity operator. In this case we
normalize A by requiring that
A =1.

(i) We are vague here about the nature of the functions (symbols) in Dom(.4) and the nature of
the operators Ajp. In the applications the symbols are measurable (or even continuous) functions,
and the operators are bounded.

(iii) One can study the more general setup in which A4, is an operator from # into another Hilbert
space L of functions (holomorphic or not) on D which is invariant under an isometric action V'

of G. The intertwining property is then
V(g)AU(9) ™" = Ayyr Vg €G, Vb e Dom (A).

The space L need not be irreducible. For instance, let D be an irreducible hermitian symmetric
domain (realized either as a Cartan or as a Siegel domain), let v > p—1 and let £ := L?(D, u,) and
H := L2(D, p,), the space of holomorphic functions in L?(D, u,). G = Aut(D) acts isometrically
on both £ and H via UM (g)(f) := (J(g~")(2))"/? f o g~'. The study of Hankel operators and

their generalizations [A96] fits in naturally here.

Another important case is when H and L are both Hilbert spaces of holomorphic functions on
D on which G acts isometrically by means of (possibly different) irreducible projective represen-
tations U and V respectively. In this case one can also replace £ by £ := {f; f € £} and replace
V by V, which is defined by V(f) := V(f).
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functions K,,,w € D. We define

Ap(z,w) = Ap (Ky)(2) /Ky (2) = (ApKy, K )

7<Kw, K (2.33)

Then A is completely determined by the function A(z,w). Notice that the function Ay(z, z)
is the Berezin symbol of Ay, and it determines the function Ay(z,w), since the latter is sesqui-
holomorphic in (z,w), i.e. holomorphic in z and anti-holomorphic in w, see subsection 3.1. Also,

the mapping b — A (2.33) is G-covariant, i.e.
Ap(9(2), 9(w)) = Apog(z,w), Vb € Dom(A). (2.34)

Indeed, this follows easily by (1.17) and (2.32).

Conversely, if b — Ap is a map from a G-invariant space X of functions on D into functions
Ap(z,w) on D x D, which are sesqui-holomorphic and satisfy (2.34), then we can define a map
X3b— Ay € Op(H) via Ap(Ky)(2) = K(z,w)Ap(z,w), and (2.32) will hold. Thus, the invariant
symbolic calculi are in one-to-one correspondence with the covariant maps into sesqui-holomorphic

functions. A similar statement is true for the version of the theory in which A, : H — L.

Next, define an operator 8 : X = Dom(.A) — {holomorphic functions on D} by
B(b)(2) = Ap(2,0) = Ap(Ko)(2)/Ko(2). (2.35)

Then S is K-invariant, i.e.

Bbok)=pMb) ok, VEkeK.

Indeed, by (2.34) 8(b)(kz) = Ap(kz,0) = Ap(kz, ko) = Apox(2z,0) = B(bok)(z). Also, 8 determines
A and A via

Ap(z,w) = B(bog)(g ' (2)) and Ay(Ky)(2) = K(z,w) B(bog)(g ' (2)), (2.36)

where g € G is any element for which g(0) = w. We therefore obtain

Corollary 2.1 (2.35) and (2.36) establish a one-to-one correspondence between the invariant
symbolic calculi b— Ay and the K-invariant maps b — B(b).

In what follows we shall assume that 3 is an integral operator:

Bb)(2) = / F(z,w) b(w) dpo (),

D

where F(z,w) is holomorphic in z and is K-invariant in the sense that
F(k(z),k(w)) = F(z,w), Vke K VzweD. (2.37)

This is indeed the case for the interesting calculi A on the weighted Fock and Bergman spaces.

Next, for each € D define an operator B;, on H via its action on the reproducing kernel functions

By(Kuw)(2) = F (g7 (2),97" (1)) K(2,w), (2.38)



where, agalil, g 1s any €leiment ol r witllh glo) = w. 1t 1S WELI-KNNIOWI1 and €asy 10 prove that tne
kernel functions { K, },ep are linearly independent. Hence, the K-invariance (2.37) shows that
B,, is well-defined (independent of the choice of g) on span{K,,; w € D}. Under mild assumptions
on F (or B) By is also a closed operator. This property can be derived also on the basis of the
properties of the adjoint A’ of A, which will be studied in the next subsection (see (2.49)).

Proposition 2.1 For every b € Dom(A),

Ay = / b(n) By do(), (2.39)

D

where the integral converges in the weak operator topology on the dense subspace span{K,;w € D}.

Proof: It is enough to act on the reproducing kernel functions. Now (with g € G, g(0) = w),
Ap(Kw)(z) = Ab(z UJ)K(Z w) Bbog)(g™(2)) K(z,w)
- / P (57(2),€) b9(6) duol€) K (z,w)

- / F (g74(2),97 (0)) b(n) dpson) K (z,w)

D
= [ b0 BK)@) duoto) = | [ o) By dmo(o) | () (o).
D D
Q.E.D
Proposition 2.2 The map D > n— B, € Op(H) is G-equivariant, namely
U(g)' By Ulg) =By1(y, Vg€eG, VneD. (2.40)

Proof: Again, it is enough to act on the kernel functions {K,, },ep. Now, for all g € G,

(U(9) ' B, Ulg) Ku) (2) = jlg,w) (U(g™") By Kyqu) (2)
= jlg,w) j(9,2) (BpKyww))(9(2))
= j(g,2) (g, w) F((gh)~"(9(2)), (gh) " (1)) K(g9(2), g(w))

where h € G is any element for which h(o) = w. Using (1.30) we see that the last expression is
F(h™(2), ™9™ () K(z,w) = By-1((Kuw)(2)-
Q.E.D.

Definition 2.2 A covariant field of operators on H is a family {By}y,ep C Op(H) satisfying
(2.40).

Corollary 2.2 Given a covariant field of operators {By}ncp on H define a map b — Ay via
(2.39). Then (2.32) holds. Thus, the invariant symbolic calculi A are in one-to-one correspondence

with the covariant fields of operators {By}pep via (2.39).
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(i) The operator B, is K-invariant, i.e.
U(k)B,U(k) ™' =B,, VkecK. (2.41)
(ii) B, determines all other operators By, via
B, =U(g) B, U(g)™", g€, glo)=n. (2.42)

(iii) Given a K-invariant operator B on H, define B, := B, and let B, be defined by (2.42).
Then {By}nep are well-defined (independent of the choice of g € G for which g(o) =n) and form
a covariant field of operators. Thus, (2.42) establishes a one-to-one correspondence between the

covariant fields of operators on H and the K-invariant operators on H.

Proof: (2.41) follows from (2.40): U(k)B, U(k)™! = By(0o) = B,, VY k € K. Also (2.42) follows
from (2.40). Finally, (iii) follows from the fact that U is a projective representation. Q.E.D.

Corollary 2.3 The invariant symbolic calculi A are in one-to-one correspondence with the K-

invariant operators B on H, B <+ AP, via
47 = [ vato) V(o) B U dg = [ b&)Bedn
Moreover, AP is given also by the following formulas

AP = /D b(n) Ulga) B Ulgy)~" dpo(n) = /D b(1) Ulpn) B Ulipy) dpio(n),

where g, € N A satisfies g,(0) =1, and ¢, € G is the symmetry at the geodesic mid-point between
o and 7.

Remark: It is possible to develop our theory so that A will extend to a certain class of distri-
butions. Then, the K-invariant operator B which determines A is given by B = A;,, and the

associated covariant field of operators is given by By = .A(sg.

The next class of examples of invariant symbolic calculi, related to irreducible representa-
tions of K, is described in the setting of symmetric tube domains (cf. section 1.3). The minor
notational changes needed for the weighted Fock spaces are obvious. Let {Pm}m>0 be the irre-
ducible K-invariant subspaces of H. It is known that these subspaces are pairwise orthogonal and

mutually K-inequivalent, and ) Py, is dense in H (see [Sch69]). Therefore Schur’s lemma in
m2>0
representation theory implies that every K-invariant operator B on H leaves each P, invariant

and B"pm = bm Ipm. Thus
B=) bnPm

m>0

where P, is the projection onto Py, which annihilates all the spaces P, for n # m.
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{bm}m>0 of complex numbers, via

A«— B= me P,
m>0

Remark: B, is bounded on # if and only if all the {B,; n € D} are bounded, and ||B,| =

|1Boll, ¥ n € D. Moreover, B, = > bmPm is bounded if and only if {bm }m>0 is bounded.
m>0

Definition 2.3 A™ = APm je. A™ is the invariant symbolic calculus determined by the K-
invariant operator B = Pp. Let A™, F™, and ™ be the maps associated with A™ in the

manner described above.
The importance of the A™’s is exhibited in the following simple fact.

Proposition 2.4 Given a K-invariant operator T = > tym Pm on H, the corresponding invari-
m>0

ant symbolic calculus is given by Ay = .A;;F = > tm A
m>0

Definition 2.4 The covariant field of operators associated with Py, is

Py =U(9) Pm U(9)™, g€G, glo)=n.

Definition 2.5 The reproducing kernel of Pm with respect to the inner product of H is denoted
by Km(z,w) = KJ(z,w).

Thus
Pm(f)(2) = (f, Km(2))n-

Lemma 2.1 Let m >0 and n € D. Then for every g € G with g~ (0) = we have

Pny(Kw)(2) = j(g,2) Km(9(2),g9(w)) j(g,w) (2.43)
A (z,w) = K(z,w) ™! /b(n) Km(gy ' (2),97" (w)) j(g;",2) jlgn",w) dpo(n) (2.44)

where gy, is the unique element of NA for which gy(o) =n. In particular,

B(b)(2) = K(z,0)”" /b(n) Km(9, ' (2),9, ' (0)) 5(9,"+2) 597", 0) duo(n) (2.45)
D

and
F™(z,m) = K(2,0) ' Kml(g, ' (2), 9, (0)) i(g,",2) jlgn ', 0)- (2.46)
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Py (Ku)(z) = (U(9)™" P Ulg) Ku) (2)

This establishes (2.43). Next,

AE)E = [ b) Pan () 2) o)
D
= /b(ﬂ) Kum (97" (2), 97" () 597", 2) d(g7 ', w) dpo(n).
D
This implies (2.44). Finally, (2.45) and (2.46) are direct consequences of (2.44). Q.E.D.

Remark: In (2.44), (2.45) and (2.46) we can replace g, by any other g € G for which g(o) = 7.
In what follows we describe the basic examples of invariant symbolic calculi.

Example 2.1 The most important symbolic calculus is the Toeplitz calculus (called also “Toeplitz
quantization”, or “Toeplitz-Berezin quantization”). Let us consider the case where H is the
Bergman space H = L2(D, u) := L?(D, 1) N {holomorphic functions on D}, and y is a measure
on D satisfying (1.20). Let P : L?(D, u) — H be the orthogonal projection. The Toeplitz operator
with an active (strong) symbol b € L*°(D, i) is the operator T, : H — H defined by

(Tof)(2) = P(of)(2) = /D b(w)f (w)K (z,w) du(w), fEH, z€D.
It is well known that (2.32) holds with A =T

Example 2.2 Another important invariant symbolic calculus, the Weyl calculus W, is defined in

the general setting via
Wi i= [ 50 Us,) disn,

where s, € G is the symmetry at n and pg is the G-invariant measure on D. Namely, the domain

of definition Dom(W) of W consists of all measurable functions b on D for which the integral

WN(E) = [ b W) N(E) diolr)
D
converges weakly in A for all f € H. Using (1.1), (1.14) and (1.16) one obtains
U(g)U(sy) U(g)~" =Ul(sym), Yg€G, VneD,

and this implies that (2.32) holds with A =W.
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The adjoint of an invariant symbolic calculus b — Ay is the map A’ from Op(#H), the space of

closed operators on H, to functions on D is defined via
Dom(A') := {T € Op(H); TA; € S1(H) Vb€ Dom(A)},
where S1(#) is the space of trace class operators on H, and
(A'(T), b)2(Duo) = (T, As) s, = trace(T Ay) (2.47)

for all T' € Dom(A’) and for all b € Dom(A). Here Sy is the Hilbert-Schmidt class. The function
A'(T) is called the passive (or, weak) symbol of T

Proposition 2.5 (i) For every T' € Dom(A’),
A (U TU(g) ™) =A(T)og™, VgeQG. (2.48)
(ii) For every T € Dom(A'),

A(T)(n) = (T, By)s,»  Vn€D. (2.49)
Proof: (i) is a consequence of (2.32) and (2.47). From (2.39) we obtain, formally,

(A(T), b) () = (T / b(n) By duo(n))s, = / (T, By s,b() do (),

and this yields (2.49). Q.E.D.

Example 2.3 (i) For the Toeplitz calculus 7 (see Example 2.1) we have B, = k, ® k,, where
k, = K,/||K.|. Hence
TI(T)(Z) = <T kzakz>7-l

is the Berezin symbol of T.

(ii) For the Weyl calculus W (see Example 2.2) we have
W/(T)(n) = (T,U(sp))s,,
where s;, € G is the symmetry at n € D.

Remark: (2.48) implies that the function A’'(I) satisfies A'(I)og = A'(I) for every g € G. Hence
A'(I) is a constant function. We therefore assume without loss of generality (by modifying the

definition of A’ if necessary) that

A'(I)(z) =1, VzeD.
We now associate with an invariant symbolic calculus A two linear transformations, namely

B=AA and Q:=AA,



aCting on lunctions on L/, and on Ooperators on 7i respectively. 1ne operator o 1s Called tne uny
transform associated with A, because it maps the active symbol b of A, to the passive symbol
Bb=A'(Ap) of Ay. We call Q the corresponding ”co-transform”. It maps an operator S to the

operator Q(S) whose active symbol is the passive symbol of S.

Example 2.4 The link transform associated with the Toeplitz calculus 7 on the Bergman space
H = L2(D,p) with respect to a K-invariant measure u is the Berezin transform B = T'T

associated with u:

B(b)(z) = (b, ks H—/b K () dpo (w),

where dpg(w) := K (w,w) du(w) is the (properly normalized) G-invariant measure on D and

K (2, w)|”

Kz w) = K(z,2z) K(w,w)

is a G-invariant kernel, i.e.: K(g(z),g(w)) = K(z,w) for all ¢ € G. This exhibits B as the operator

of convolution with p:
(Bb)(2) = / bogdu, g¢eG, g(o) =z (2.50)
D
Also, in the case of the Toeplitz calculus the co-transform Q = 7 7" is given by

Q(8) = / (S s )2tk ® by dpo()-
D

The link transforms associated with the Weyl calculus W are given formally by

:/Db(f)(U(s§),U(3n)>S2 dpo(€)

and

WIW/(T) = /D (T, U(s¢))s, Ulse) dpo(E).

Proposition 2.6 Let A be an invariant symbolic calculus with adjoint A’.
(i) The link transform B = A" A is given by

(Bb)(n) = / b(€) (Be, By)s, dpno(€). (2.51)

D

(it) The co-transform Q = AA’ is given by

Q(8) = / (S, By)s, By dyioln). (2.52)

D

Proof: (i) Using (2.39) and (2.49) we obtain

(Bb)(n) = (n) = (As, By)s,
= /b Bg d/L() ) ) /<B£a 7))52 d,U'O(éL)

(ii) Formula (2.52) is a consequence of (2.39) and (2.49). Q.E.D.
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(Apy s Aby) s, = // b1(€) ba(n) (Be, By)s, duo(€) dpo(n)-

DxD

Proof: Using (2.51) we obtain
Aps An)s, = (Bbrbo)pau) = / (Bba(€) Bam) duo(n)

/ / b1(€) 20) (B, By)s, dno(€) dyuo(n).

DxD

Q.E.D.

Proposition 2.7 (i) The link transform B = A' A is G-invariant, i.e.

B(bog) =(Bb)og, VYgeqaq.
(it) The co-transform Q = AA' is G-invariant in the sense that

Ulg) Q(S) Ulg)™ =2 (Ule) SU(g) '), Vgeq.
Proof: This follows from (2.32) and (2.48). Q.E.D.
Remark: If 1 € Dom(A) then 1 € Dom(A'A) as well, and
AA(L) = 1.

Indeed, this follows from the facts that A; = I and A'(I) = 1.

Lemma 2.2 Let &,m € D. Then

(Be, B / / Flg'(2),971€) Flg™ ().~ (0) [K (zsw)? dpu(e) dps(w)  (2.53)

where g € G in the inner integral is an arbitrary element for which g(o) = w.

Proof: It is a well-known fact that for every operator T on H = L2(D, u) for which the trace
tr(T) is well defined (i.e., T € S; or T' > 0),

(1) = [(T(), Ko dis(w).
D
Therefore, using (2.38) we obtain

(Bg, By)s, = tr(B, Be) =/ Be(K Ky))w dp(w)
D

- / / (2,07 () Fla (), ) |K (7, w)[? du(z) dp(w).

Q.E.D.
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invariant symbolic calculi. The corresponding mized link transform and co-transform are
BT = (ASY AT and QTS .= AT (A5 (2.54)
respectively.

It is clear that these two transforms are G-invariant, i.e.
BT (bog) = (B"b)og, VbeDom(B®), Vged

and
Ulg) °(X) Ulg) ' = "5 (Ulg) X U(9) '), Vg€ @, VX € Dom(Q").

Our results extend to the context of the mixed link transforms and co-transforms.

2.3 The reflection 1 and the associated involution of 2*¢

In this subsection we study in detail the real-analytic reflection 9 of D at o mentioned above
(1.3) and its connection to a natural involution on 2*C. Recall that for any z € D there exists a
unique element g, € NA C G for which g,(0) = z. The map v : D — D is defined by

¥(2) = g5 (o). (2.55)

Proposition 2.8 v is a real-analytic diffeomorphism of D satisfying ¥(¢(z)) = z for all z € D.
The unique fized point of ¥ is o.

Proof: Let w = (2) = g;'(0). Then gy,(0) = w = g;'(0) hence g, = g;!. Thus 9(w) =
g:(0) = z, i.e. ¥(¢(z)) = z. The fact that 9 is a real-analytic diffeomorphism follows from the
fact that NA > g — g(0) € D is a real-analytic diffetomorphism. Finally, 1(z) = z if and only if
g:°9, = lg. Since g, € NA, this is equivalent to g, = 1¢, and so z = ¢,(0) = 1g(0) = 0. Q.E.D.

In view of Proposition 2.8 we call 9 a reflection of D at o. Unless D = C%, 4 is not holomorphic,

and thus - not a member of G.

Lemma 2.3 There exists an involution A — \* on the Lie algebra WAC =" such that

[ @@ 1) duo(e) = [ ex(©) 7€) duol©) = Fx)

D D

holds for all admissible functions f on D and A € C".

Proof: In the case of the Fock space on C¢ (see subsection 1.2 above) we have g¢(2) = 2z + ¢ and
thus 1(£) = (g¢)"1(0) = —¢. Hence, for a,b € C? with (a,b) = A one can take ey (2) = eqp(2) =
exp({a, z) + (z,b)). Therefore one obtains

/ea,b(ﬁ) F($(€)) dpo(§) = /eb,a(ﬁ) f(&) dpo(8). (2.56)
& e



OINCe \—0, —a) — A the 1nvolutlon x Satlslylng {4£.09) 18
A= (2.57)
In the case of a symmetric tube domain T'(2) C C% we shall prove in Lemma 2.4 below that

(o)) = F(-2). (2.58)

Since e)(z) = e;(#) in this case, we obtain
| @ 166 duo© = [ e5() 1(€) duo(®)
T(Q) T(Q)

Hence Lemma 2.3 holds with the involution

A= —

[>~I

(2.59)

Q.ED

It remains to prove (2.58) in the setting of symmetric tube domains.

Lemma 2.4 In the context of symmetric tube domains T(S2), the map 1 satisfies
Detr ((dyp)(2)) = Nap-2p(7(2)).
Proof: The evaluation map
e:NA—T(Q), e(g) = g(ie)
is a real-analytic diffeomorphism whose differential
de(l):a@dn=T1(NA) = Z =T;.(T())
is also an evaluation map
de(1)(X) = X(ie), VX E€adn

which is a real-linear isomorphism of a ® n onto Z. For every ¢ € N A consider the inner auto-
morphism
cg(h) =ghg™', heaq

and its differential
Ad(g) =dcyg(1) :a®n—adn.

Let j : NA — NA be the inversion map j(h) = h~!. We claim that for every g € NA we have

g_logojocg:¢ogog, (2.60)

namely the following diagram is commutative

NA 2 NALNA 5 T(Q)
el Lg! (2.61)
TQ) L T 2 T(Q)
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-1

“H(((ghg™) " )(ie))
“Ho(h g™ (@) = A (g (ie)).

(g7 ceojocy)(h) =

g
g
Also,

($ 0 goe)(h) =(g(h(ie))) = (gh) " (ie) = K™ (g~ (ie)),

and (2.60) is proved. Since T,,(T(2)) = Z for all w € T(Q2) and dj(1) = —I, we obtain from
(2.61) by taking differentials the following commutative diagram

adn %) a@nia@n ds(—1>) A
de() | L d(g™)ie) (2.62)
z MW g g

where z := g(ie). Identifying a @ n and Z via the evaluation map de(1), we obtain from (2.62) by

taking determinants

Detr(Ad(g))Detr(d(g™")(ie)) = Detr(dg(ie)) Detr (dip(2))-

Now the well-known modulus function of N A, determined in a general setting in [AU99], yields

DetR Ad(g) = NQE(T(z))‘

Since Detg(dg(ie)) = N(7(z))? and Detr(dg='(ie)) = N(7(z)~1)? = N(7(z))~P, we obtain

Deta(ai(z)) = Ty S = Nay (7 (2).

Q.E.D.

Corollary 2.6 The G-invariant measure ug on T(Q) transforms under v according to the rule
dpo($(2)) = Nap(7(2)) dpo(2)-
Proof: (1.27) shows that

N(r(1(2))) = N(7(g; ' (ie)) = N(r(gz(ie))) " = N(r(2)) "

Therefore we obtain

dpo((2)) = N(7(¥(2)))"Pdm(s(2))
= N(7(2))" Nop-2p(7(2)) dm(2) = Nop(7(2)) dpso(2)-

Q.E.D.

Corollary 2.7 For every A € C" and z € T(12)
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1 = Na(7(ie)) = Na(7(g(g™" (i€)))) = Na(7(g(ie))) Na(r(g" (ie))).

Thus
No(rly ™€) = §moragyy = Nalrlotie))

Putting z = g(ie) and using (1.28), this implies

ex(¥(2)) = Nary(7(97" (i€))) = Nox—(7(2)) = e-r-32p(2).

Q.E.D.

Corollary 2.8 Let f be a locally integrable function on T(Q) and A € C". Then A\ € Dom (m)
if and only if =\ € Dom (f) and
fop(A) =F(=2).

Proof:

Fon) () = / (=) ea(2) dpaolz) = / £ (w) ex (@ (w)) dpo (4 (w))

T(Q) ()

= fw)eosap(w) Nop(r(w)) dpso (w)
T(Q)

- / f(w) e (w) dpo (w) = F(~)
T(Q)

Q.E.D.

2.4 Eigenvalues of the link transforms

Let A be an invariant symbolic calculus on H = L2(D,u), and let 3, F, A’ and B be as in
previous sections. Recall that the “exponential functions” ey, A € C", are joint eigen-functions of
the G—invariant operators on D, and that the K-averages of the e)’s are the spherical functions

#a(z) = [ ex(k(2)) dk. In particular, if B is a link transform then for every ey, € Dom (B)
B(ey) = B()\) ey, where B()\) = B(ey)(o).

In what follows we shall use the notation
JF(w):= F(z,w), Vz,weD
as well as the notion of the transform f of functions f on D (see (1.11)).

Proposition 2.9 For ey € Dom (B)
/ T o)) K (20| du(2) (2.63)
D

—_—~—

where ,F()\) and (F o 1)()) are defined via (1.11).



L'rool: Using \4.01) witll 0 = €) ana 71 = 0, a5 wWell as (4.99) W€ Ilnd

B = [ e (BeBo)s, duol?)

D

= / ex(€) { / ( / F(95"(2),9%" (€) Fgw' (2); 9w (0))

K (2, w)|? du(2)> du(w)} dpio(§) -

Letting u = g, (2), then

K(z,w) = K(gw(u), guw(0)) = K(u,0)/j(gw,u) j(gw,0) -

Using (1.20) and (1.21) with g,,, we obtain

BQ) = / /

Interchanging the order of integration, we obtain

/ F(g3"(€) uF (g (0)) | K (u,0)? d(u )} dpiow) dpio €).

- / K (u1,0)|? dps() / dpio uw) [ / F(G31(6)) e(€) dpio(€)

D

The substitution = g1 (£) and the fact that ey (¢) = ex(g9uw(n)) = ex(w) ex(n) lead to
- / K (w,0)]” du(u) [ [ duotw) T emu)] [ F @) extu) diso)
/ . () K (u,0)? du(u).
D
Q.E.D.

Formula (2.63) can be extended to the context of the link transform BT% = (A%) AT, see
(2.54). Indeed, if FT, F¥ are the F-functions associated with A7 and A° respectively then the
proof of Proposition 2.9 yields also the following result.

Proposition 2.10 The eigenvalues of the link transform BT are given by

BT3(3) = / FT(A) 775 0 () |K (2,0 dpu(z)-

Notice that, by definition,

FT() = / ex(6) F7(2,€) dpo(€) = 87 (ex)(2) = AT, (2,0) = AT, (K,)(2)/ Ko(2).

D



£A1S0

<§§%®=/Q@F@wmwmy (2.64)

Using Lemma 2.3, (2.64) can be written as

(FFow) = [ ear(©) F.) dunt) = A oI
D
Therefore Proposition 2.10 yields our first main result.

Theorem 2.1 Let AT, AS be two invariant symbolic calculi associated with the K-invariant op-
erators T,S on H = L2(D,p). Then the eigenvalues of the associated link transform BT>S =
(AS)' AT are given by

BTS(A /A ) A5 (Ko)(2) du(2) (2.65)

= (AL (Ko), A5 (Ko)) 12,0,

For weighted Bergman spaces over a symmetric tube domain 7'(€2) we obtain in particular

Theorem 2.2 The eigenvalues of the link transform B associated with the invariant symbolic

calculus A on L2(T(Q),u,) are given by

3 The Wick calculus, the fundamental function, and eigenvalues

of link transforms

3.1 Sesqui-holomorphic extension of real analytic functions and the Wick cal-
culus

Let D, G, H, K(z,w), U, u, po etc. be as in the previous sections. Recall that a sesqui-
holomorphic function f(z, w) on Dx D is a function which is holomorphic in z and anti-holomorphic

in w. The following result is well-known.

Lemma 3.1 Ewvery sesqui-holomorphic function f(z,w) on D x D is determined by its restriction
to the “diagonal” f(z,z). Namely, if f(z,2) =0 for all z € D, then f(z,w) =0 for all z,w € D

as well.

We proceed with the definition of the Wick calculus £. We denote by Dom(€) the space of all
real analytic functions ¢ : D — C for which there exists a (unique) sesqui-holomorphic function
E, on all of D x D satisfying

Ey(z,z) = p(2), VzeD.



vwe Call the Imap ¢ — L, (dellned Oon DJom\c )) the eriecnston operator. INOLe that JOIC ) 1S a

linear space, and it contains all real analytic functions on D of the form f(z) = f1(z) f2(z) where
f1 and fy are holomorphic in D (since then E(z,w) = f1(2) fa(w)). Moreover, Dom(£) contains
all exponential functions ey, A € C". This can be obtained via case by case considerations (using
(1.23) in the case of the Fock space or (1.28) in the case of the weighted Bergman spaces over
symmetric tube domains), or via the general formula (1.4)) and the relationship between the

complex structures of G and D.

We define a map £ : Dom(€) — Op(span{K,;w € D}) C Op(H) via its action on the kernel
functions
Eo(Ku)(2) := Ey(z,w) K(2z,w), Vz,w€ D.

Lemma 3.2 & is an invariant symbolic calculus, i.e. Dom(E) is G-invariant and

Ug)E,Ulg)™ =€ Vo € Dom(E), Vg € G.

pog~1s

Proof: Since G consists of biholomorphic automorphisms of D, it is clear that whenever ¢ €
Dom(€) and g € G the function (2, w) — E,(g(z),g(w)) is sesqui-holomorphic in all of D x D.
Moreover, E,(g9(z),9(z)) = ¢(g(2)) for all z € D. Thus, ¢ o g € Dom(€) and

Eyog(z,w) = Ep(9(2),9(w)), Vz,w € D.

Thus Dom(€) is G-invariant and E is G-covariant (cf. (2.34)). From this it is clear by the
discussion following (2.34) that £ is the invariant symbolic calculus associated with E.  Q.E.D

Definition 3.1 The invariant symbolic calculus € is called the Wick calculus.

The name “Wick calculus” is justified by the following result.

Lemma 3.3 Let ¢ € Dom(E) admit a factorization ¢(z) = ¢1(z) p2(2), z € D, where p1,ps €
H. Then
Ep = To1 Toz (3.66)

where T is the Toeplitz calculus.

Proof: 7,,, Tgz are well-defined operators, at least on span{K,;w € D}, and it is well known

and easy to prove that

T@(Kw) = (pg('w) Kw, Yw € D,
whereas 7, is the operator of multiplication by ¢;. Therefore we obtain for all z,w € D
(Tor Tes) (Kw)(2) = ¢1(2) Tz (Kw)(2) = ¢1(2) p2(w) K (2, w)
= E‘P(z7 ’LU) K(Z, w) = EW(Kw)(z)a
and this yields (3.66). Q.ED

Remark: It follows from (3.66) that if ¢ € Dom(€) admits a representation ¢ = Z?Zl fihj with
fishj € H, then &, = 370, Ty, Ty;» regardless of the representation of ¢. This does not look

obvious at first glance.
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The following Lemma, is a key result. It indicates the central role played by the Wick calculus in

our theory.

Lemma 3.4 Let A be an invariant symbolic calculus. Define
a4(d) = Ae, (Ko)(0), Vex € Dom(A).

Then
Aey (Kuw)(2) = 04(Q) &y (Kuw)(2) = a4(d) Ee, (z,w) K(z,w) (3.67)

for all ey € Dom(A) and z,w € D. Thus the Berezin symbol A., of Ae, is given by

Aei(z,w) = a4(}) EeA(Z,’lU), z,w € D.

Proof: Both sides of (3.67) are sesqui-holomorphic in (z,w). In view of Lemma 3.1 it suffices to
prove (3.67) for z = w. Let ey € Dom(A) and z € D. Let g, € NA C G be the unique element
for which g,(0) = z. Using (1.18), (2.32), (1.5) and (1.19) we obtain

Aey (K2)(2) = :
7(gz,0) j(gz,0)
Aeyog. (Ko)(0)
= Tigap ~Aalf@al Ke?)
This completes the proof. Q.E.D

Corollary 3.1 The map A+ a4 is injective. Thus a4 completely determines A.

Proof: Since span{K,;w € D} is dense in H it suffices to show that the function a4 determines
the action of Ay on the kernel functions for all b € Dom(.A). To this end we claim first that for
every b € Xy NDom(A) (see (1.6))

Ap(Kw)(2) = aa(Qd) Ep(Kw)(2) = aa(Qd) Ep(z,w) K(z,w), Vz,w € D. (3.68)

Indeed, it is enough to prove this for b = e o g for some g € G, and in this case (1.19) and (3.67)
yield

Ap(Kw)(z) = (U(g7") Aey Ul9)) (Kuw)(2)
(

= a4(}) Ee,(9(2),9(w)) (g, 2) j(g,w) K(g(2),g(w))

= aa(d) Eexog(za w) K (z,w).

Since span{Uyecr Xy N Dom(A)} is dense in Dom(.A), (3.68) shows that a4 determines A. Q.E.D

Definition 3.2 The function a4 s called the fundamental function associated with the calculus

A.
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via the fundamental functions of the associated calculi. Notice also that we clearly have
ac(A) =1, VAeC.

This follows easily from (3.67).

Let B be the K-invariant operator on 4 which determines A via Corollary 2.3, i.e. A= AB.
For simplicity we write also a45()) = ap(A). Let {B¢}eep be the covariant field of operators
generated by B via (2.42). Let us define

bA(&) = BE(KO)(O) = <B£(Ko)aKo>Ha §eD.

Lemma 3.5 (i) The function ba(¢) is K-invariant in the sense that ba(k(€)) = ba(&) for all
ke Kand €€ D.
(i) a4 is the spherical Fourier transform of by, i.e., for ey € Dom(A) we have

a(d) = 04 = [ ex(€) b(6) duo(©). (3.69)
(iii) a4 is invariant under the Weyl group W :
aa(w(d) =aa(d), VweW. (3.70)
(iv) Let 9(€) = g7 ' (0), see (2.55) and Proposition 2.8. Then
ba(§) = B(Ky(e))(#(8)) K(4(£),¥(¢), VEeD.
Proof: (i) Let ¢ € D and k € K. Then By = U(k) B¢ U(k)~". Hence, (2.42) yields

ba(k(€)) = (BeU(k) ™ (Ko), Uk) ™ (Ko))u
= <B§(j(k_1,O)Ko),j(k_laO)Ko>H = <B§(Ko)aKo>H = bA(é),

since j(k~', 0) is unimodular and k~!(0) = o.

(i) This follows from the definition of a4:

8A() = Aqy (Ko)(0) = /D ex(€) Be (KoL) (0) duo(€) = /D ex(€) bA(E) dpo ().

(i) This follows by (i), (ii) and (1.8). Indeed, let w € W, then

D = [ €846 duol©) = [ buiw(©) La©) dinole) = aaw(d).
(iv) Using (2.42) we obtain for all £ € D

ba(€) = Be(Ko)(0) = (Ulge) BU(9¢"))(Ko)(0)
= j(gg " 0) B(j(g¢,0) Kp(e)) (W (€)) = B(Ky(e)) (1 (€)) K (1 (€), 9 (€)).

Q.E.D.
The proof of Corollary 3.1 yields the following result.
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of C". Then there exists a unique invariant symbolic calculus A on H for which a = a4.

Proof: Notice first that since ey € Dom(€) for all A we have Xy C Dom(€) (cf. (1.6)) by the
G-invariance of Dom(£). For A € Dom(a) and b € X, we define A, on the kernel functions via
(3.68), and extend it to span{K,;w € D} by linearity. To check the invariance (2.32) let g € G.
Then, for all z,w € D,

Ulg) AU NEw)(z) = g7 2) 5971 w) Ap(Ky 1)) (97" (2))
) B9~ (2),97 (W) K (97 (2),97" (w))
)

= j(g_laz)j(gilaw) G(A
= Abog—l(Kw)(z)'

= 0() Bpoper (5, 0) K (2,0
We extend A to span{UAEDom( a)XA} by linearity, and define Dom(A) to be this space. Then
Dom(.A) is G-invariant and A is an invariant symbolic calculus. Finally, the uniqueness of A
follows from (3.68) and the fact that A4, is determined by its action on the kernel functions
Ky, we D. Q.E.D.

The function b4(§) is real analytic and K-invariant on D. The next result shows that such

functions are in one-to-one correspondence with the invariant symbolic calculi.

Proposition 3.2 Let b be a K-invariant real analytic function on D. Then there exists a unique
covariant field of operators {B¢}eep on H so that b(§) = Be(K,)(0) for all £ € D. Consequently,
b = b4 where A is the invariant symbolic calculus generated by {B¢}ecp via (2.39).

Proof: Fix { € D and define the operator B in the following steps. First, we define for every
weD
Bg(Ky)(w) = K (w,w) b(g*(€£)), where g € G, g(0) = w.

The K-invariance of b implies that the definition is independent of the particular g. The real
analyticity of b implies the real analyticity of the function w — B¢(Ky)(w). We assume the
existence of a unique sesqui-holomorphic extension to D x D, which is denoted by Bg(K,,)(2).
Now extend this operator by linearity to span{K,;w € D}. The family of operators {B¢}¢ep
constructed in this way is covariant. Indeed, let {,w € D and let h € G so that h(o) = w. Then

for any g € G,
(U(g™) BeU(9))(Kuw)(w) = |i(g,w)]” Be(Kyu))(9(w))
= |ilg, w)|* K (g(w), g(w)) b((g o h)~*(€))
= K(w,w)b(h™ (g71(€))) = By-1(Ky)(w)

This shows that U(g™') B¢U(g) = By-1(¢). Finally, the relationship b(¢) = B¢(K,)(0) follows

from the definition of B. Q.E.D.
Proposition 3.3 Let A be an invariant symbolic calculus on H and let B be a G-invariant oper-

ator on D. Define the composition AB via

Dom(AB) = {be€ Dom(B); B, € Dom(A)} and
(.AB)() = AB(b)? Vb € Dom(AB)
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(i) The fundamental function of A B is

axs(}) = ax(d) B(Y).

(iii) Let A = U |A| be the polar decomposition of A with respect to inner products of L2(D, ) and
So(H) respectively, and let B =V |B| be the polar decomposition of B with respect to L2(D, uo)-
Then |A|, |B| and V are G-invariant operators on D, U is an invariant symbolic calculus on H,

and the polar decomposition of A B is
AB = (UV)(|AllB]),

namely |AB| = |A||B| and the partial isometry in the minimal polar decomposition of AB is
uv.

Proof: (i) Since Dom(B) is G-invariant, Dom(B) N X # {0} implies that X\ C Dom(B) and
B, = B(\) I|x,- Thus B : Dom(B) — Dom(B) and the composition A B is defined in Dom(A) N
Dom(B). Next, for every g € G and b € Dom(.A) N Dom(B),

U(g)(AB),U(g™") = U(g) Ay U(g™") = Appyog-1 = AB(pog-1) = (AB)pog-1-
(i) Let ey, € Dom(A) N Dom(B). Since B(ey) = B(A) ex, we obtain
a45(A) = (AB)e, (Ko)(0) = Ap(ey)(Ko)(0) = B(A) Ay (Ko) (0) = B(A) aa(2).

(iii) For the modulus of AB we have |AB|?> = (AB)'(AB) = B'|A>B = |AJ]?|B|?, since all
invariant operators commute. Taking the square root and using the commutativity again, we

obtain |AB| = |A||B| and
AB=U|A|VI|B|=UV|A||B|=UV|ABI.

Since V maps Dom(.A) NDom(B) isometrically onto itself and this space is the domain of definition
of U, we see that U V is a partial isometry, whose kernel is the same as that of | A B|. This completes
the proof. Q.E.D.

Every invariant symbolic calculus A on H can be factorized in many ways as A = A; B with A
invariant symbolic calculus and B a G-invariant operator on D. Besides the trivial factorization
A = AI and the factorization coming from the polar decomposition A = U |A|, there is a canonical

factorization in which A; is the Wick calculus &.

Proposition 3.4 Let A be an invariant symbolic calculus on H. Then
A=ECy, (3.71)

where C 4 is the operator of convolution with b4:

(Caf)(z / flo §) duo(€), where g € G, go) =
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symbolic calculus. Moreover, the eigenvalues of C 4 are @(A) = [JA;(A) = a4(A). Hence,
ae o, (A) = ae(A) Ca(Q) = aq().
since ag(A) = 1. Thus Corollary 3.1 guarantees that (3.71) holds. Q.E.D.

Remark: Propositions 3.2 and 3.4 can be generalized to distributions. We outline this general-
ization briefly. Let b be a K-invariant distribution on D, and let Cj, be the operator of convolution
with b:

(be)(z) = <foga b)a where g€ G7 g(O) =z
Then A := £} is an invariant symbolic calculus on # in its canonical factorization. In the

important case of the Dirac measure b = J, we obtain A = & since C5, = I. However, this general

approach leads to some open problems which will be discussed in a subsequent publication.

3.3 Eigenvalues of link transforms via the fundamental functions

Proposition 3.5 Let T be a K -invariant operator on H = L2(D, u) and let ar be the fundamental
function associated with the calculus AT. Let T* the adjoint of T as an operator on H. Then for

all admissible A € C" we have

ar-(A) = ar(Q). (3.72)

Proof: Let bp (&) = byr (&) = (T K,, Ko) and define br-(§) similarly. Then, by (€) = by (€).

Using the fact that e)({) = e;(£) we obtain by (3.69)

ar-(A) = /D () b (€) dyuo €)

~ [ ex@ 5@ duo(©) = [ ex©) br(€) dinl€) = ar ().
D D

Q.ED

Remark: In the case where # is either the weighted Bergman space over a symmetric tube
domain L2(T(f2), u,) or the weighted Fock space F, we have also

ar«(A) = ar(A”). (3.73)

Indeed, in the case of L2(T(f),u,) we have \* = —) (see Lemma 2.3 and (2.59)), and (3.73)
follows from (3.70) and (3.72). In the case of F,, if a,b € C% are so that (a,b) = A then
exs = €e_p,—q (see (1.25) and (2.57)). Hence

ar (V) = /@ e —al€) br(€) dpo(€) = /@ 5.0(—€) BT(E) dpo(€) = ar- (V).

since ar(§) = ar(—¢) by Lemma 3.5.

We now combine the results of subsections 2.3 and 3.2 to obtain our main result.



1 neorem o.1 Let o, L4 0€ nA-itnvariant operators on ji — Lg\U, ) ana et ag, ar 0€ tne Jun-
damental functions of the associated invariant symbolic calculi AS and AT respectively. Let
B5T = (AT A% be the corresponding link transform. Then the eigenvalues of BST are expressed

in terms of the fundamental functions in the following way

as(A) ar (A7)
ar(d)

where ar(A) is the fundamental function associated with the Toeplitz calculus T and A — A\* is

BST()) = VA € Dom(BST), (3.74)

the involution whose existence is guaranteed by Lemma 2.35.

Proof: We know by Theorem 2.1 that

BST() = [ 45, (K@) AL (K@) du(a).
D

However, Lemma 3.4 says that
A2 (Ko)(2) = as(Q) Eey(2,0) K(2,0), A, (Ko)(2) = ar(X) Ee,. (2,0) K (2,0).

Thus,

BST()) = as(}) ar (M) c(A), (3.75)

where
e = /D B, (2,0) Fey. (2,0) | K (2,0)? dpu(2)

is independent of the particular calculi A%, AT. Let us apply (3.75) with A5 = AT = 7. This
yields

(=TT
ar(A) a7 (A7)

In the case of the Toeplitz calculus we have T = Af°, where P, := (-, K,)3 K,, the projection on
CK,, is a self adjoint operator. Hence a7 (A*) = ar(}), and

—~—

T T(A) = <7:357P0>52(7-L) = EA(KO)(O) = aT(A)'

Therefore 1
c(A) = —.
Q) posy
Using this fact, Proposition 3.5 and (3.75) we obtain (3.74). Q.E.D.

Remark: In the case where # is either the weighted Bergman space over a symmetric tube
domain L2(T(Q), u,) or the weighted Fock space F, we can write (3.74) also as

2oy _ 8s(A) ar(d)
BHQ) = ar(A)

Indeed, this follows from (3.74) and (3.73).

VA € Dom(B%T),

Theorem 3.1 is a substantial improvement of Theorem 2.1, since instead of the inner product
of the functions A7 (K,)(z), A2 . (K,)(z) one needs only to compute the product ar(}) as- () =

€\ *
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a7 (A), which is known in the cases under consideration. Indeed, in the case where H is the Fock
space F, we have

ar(A) =ev,
and in the case where H is the weighted Bergman space L2(T(f),u,) we have, by [UU94] (see
also [Be78]),

ar(d) = ——— —— r (3.76)

We will give a new proof of this result in Section 5.

We close by observing that the results in this section yield also interesting information on the
fundamental function of the unitary part of an invariant symbolic calculus A. Let A =U (A’A)%
be the minimal polar decomposition of A (thus ker(.A) = ker({/)). We know that U itself is also

an invariant symbolic calculus. Thus for ey € Dom(A) we have

1

Ay =U AAN))" Uey.

€N (.A’.A)%eA: (

From this it follows that

=

N—

N =
g
Lo
[

as() = (LA (M> ().

ar(A)

Thus, if a4()) # 0 then

4 Application to weighted Fock spaces

In this section we apply the general theory developed above to study various important invariant
symbolic calculi in the context of the weighted Fock spaces F, over C¢ introduced in subsection
1.2 above. After describing the standard calculi of Wick, Weyl and anti-Wick (Toeplitz) type
in the following subsection, we construct new families of calculi, related to the “k - homoge-
neous” projections in the next subsection, and give a detailed numerical analysis of their spectral

properties. This yields a rather surprising interrelationship between different calculi.

4.1 The Toeplitz, Weyl and Wick calculi

Proposition 2.9 yields the following result.



1 Nneoreim .1 Let A 0€ an tnvariant SYmooutC CAtCULUs on e weigniea £'0Ck space J~y — Lig\\v", Uy ).

Then the eigenvalues of the associated link transform B = A' A are given by

/Aeab Ae_y (D) duy(2) = (Ae, , (1), Ae_,_, (D)7, (4.77)

where a,b € C* are arbitrary vectors for which \ = (a|b).

Proof: With the notation as in the previous section, we have

FO) = / F(z,w) eap(w) dpio(w) = Bleap)(2)
Cd
= A, (Ko)(2)/Kol(2) = Ae,,(1)(2),

since K,(w) = 1. Similarly,

TFop(h) = / 7o, ) cap(w) duo(w) = / F(2,€) cas (@) dpio(t(0))

Cd Cd
= [P enmal®) duo®) = A, D).
Cd
These results imply (4.77) via (2.65). Q.E.D.

The extension of Theorem 4.1 to the link transform B7>® is a consequence of Proposition 2.10.

Theorem 4.2 Let AT, A° be invariant symbolic calculi generated by the K -invariant operators
T,S on holomorphic functions on C*. Then the eigenvalues of the associated link transform

BT:S = (A%) AT are

BT (A /A AZ, (D) du(z) = (AZ, (1), A2, _ (D)7,

where a,b € C* are arbitrary vectors for which {(alb) = A.

We turn now to some important examples to illustrate the scope of our theory.

Example 4.1: Toeplitz calculus. Let 7, = T ") be the Toeplitz operator with symbol b on
F, =L2(C% pu,). Then
Teun(D)(2) = ev ),

and in particular
ar(A) =ev.

Indeed, if A = (a,b) then

Teus)) = [ e 25500 i ) = € el20)

Similarly,



ence

/ TeosD) Tera ) din(2) = [0 0009 ) = &2,
Cd

Therefore the eigenvalues of the Berezin transform B =T'T, i.e.

w (1,) 2w 2 2
e «

B\ =e>, AeC.

are given by

From here one concludes that

B=ev
We remark that in the case of the Berezin transform one can compute the eigenvalues directly.
Indeed, if A = (a,b) then

A
v

B(A) = B(eay)(0) = / eap(w)dp () = / W Haw) g 0y o3

e e

We calculate now the standard functions of our theory in the case of the Toeplitz calculus 7T .
First

Ty(zw) = To(Ky / b (f’ 9 4 (€).

Hence

) dpo(§)

5T0)() = To(=,0) = [ b(e) =2
(Cd

and therefore

FT(Z, 6) =

From this we conclude that K(z,n) K( )
Z,7 n, w

and therefore T, f = (f, ky,), ky for all f € F,. In particular Ty = ky®ko = 1®1, i.e. Tof = (f,1)1.

This is the K-invariant operator which determines 7. Also, it follows that

b7 (€) = (Teko, ko) = |(ke, 1) = e £, ve e C?.

Example 4.2: The Weyl calculus. It is easy to see that the symmetry at w is given by s,(z) =
—2z 4+ 2w. Therefore the corresponding isometry of L?(C%, u,) and F, is

U(sw)(£)(2) = f(—2+ 2w) 72 wlH2v o), (4.78)

The Weyl calculus is defined by

W = / b(w) U(su) diio(w),

Cd



where apip\w) = 27 apo\w) = 7)) amlw). Namely,

(%”)d / bw) f(—z + 2w) e W2 El0) i),

Cd
It follows that for a,b € C? with A = (a, b)

2w\ ? o
Wea,b(l)(z) = (?) /e(w|b)+(a|w)+2u(zw) o2 w2 dm(w)
.

/ e Ky (2 + oo w) dpny () = oFF ) = o3 D),
d

In particular, if A = (a|b) then

Wi (f)(2)

Similarly,

and hence,

WW()

4

Thus the eigenvalues of the link transform W' W associated with the Weyl calculus are

WWHN =1, VieC
From this we deduce that

WWw =1,
namely W is an isometry from L?(C%, u,) into the Hilbert-Schmidt operators So(F,) on the

weighted Fock space F, = L2(C%,u,)). This result is well-known, but its derivation by direct
methods is more involved.

It is easy to compute the standard functions of our theory in the case of the Weyl calculus.
First

Wi(z,w)

Wo(Kw)(2)/ Ku(2)

. 20 (1) v (Ew)
J—2wzl) / bE) g dol®)

Cd
e / b(€) K@) (z,6) K®)(€,w) dpun (€)-
Cd

Hence

BV (5)(2) = Wi(z,0) = / b(E) K (2,€) dun (€) = P2 (b)(2).
d



Lhus, with respect 1o the mvariant measure atio\s) = \7) amig),
FW(z,¢) = e2v (216)—2v [¢|? = j(s¢, 2).
Therefore we find easily that W, (Ky)(z) = Ky(sy(2)) j(sy,2). Namely
W, =U(sy).
In particular, the K-invariant operator on F, which determines W is

S

k=0

Moreover, using (4.78) we see that the fundamental function byy(€) is given by
b (€) = (Wel, 1) = U(se(1)(0) = e 27,

Example 4.3: Wick calculus. Let b be a real-analytic function with everywhere convergent Taylor

expansion
B
0% 0
_ =B
b(z) Z ol BT b(0) 2%z
a,BENE
We define the Wick calculus via
=8
0% 0 .
&= > = ﬁb(O) Toe T35 (4.79)
,BENd

where T, is the Toeplitz operator with symbol z*. Notice that this definition is consistent
with the definition given in subsection 3.1. Thus, if b(z) = ) fi(2) g;(z) with f;,g; entire
J

holomorphic functions, then the sesqui-holomorphic extension of b is Ey(z,w) = ) f;i(2) g;(w),
J

and & = > Ty 7_;’; In particular, if we use the Taylor series of b, we see that
J

FBE) = Bilz0 = Y Tb(0) 2

acNd

In the special case of the symbol e, ;(z) = e{l0)+{el2) we obtain ey (1)(2) = Ee, ,(2,0) = ezt
and similarly £,_, _ (1)(z) = e~ {19 Hence, if (a,b) = A then

/5eab Ee_ b, a( d,uu / <Z‘b ~lal2) dpry ( ) ;-

Thus the eigenvalues of the link transform associated with the Wick calculus are

—~— A
v

E'EN)=¢ev.
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Let Py denote the subspace of F, consisting of all homogeneous polynomials of degree k. It has
a reproducing kernel K ,Sz, w) =K ,SU) (z,w), where

y vk (z|w)k
Ky (z,w) = K,(c )(z,w) = %

The orthogonal projection Py : F,, — Py is given by Px(f)(z) = (f, Kk(, 2)),, and the covariant
field of operators generated by Py is Py ¢ = U(ge) Py Ulge) ™"

Lemma 4.1 For allk e N, ¢ e C?,

Pre(Ku)(z) = Ulge) ® Ulge)" (i) (z,w)
= .(gfa ) Kk(z_gaw_g) '(gf’ )
= VIO Ky(z — &,w — )er € P, (4.80)

Proof:

Pre(Kuw)(z) = Pp(U(g-¢) Kuw)(z =€) j(9-¢,2)
= (U(g-¢) Kuw» Ki(,2—8))y i(9-¢,2)
= (Kuw, Ulge) Ki(2 —&))v jlg-¢,2)
= Ki(z—& w—¢) j(9-¢ 2)i(9-¢, w).

Q.E.D.

Lemma 4.2 For any ¢,j,n € N and a,b € C*

i (alb)? (d+€+j—1)5!
C[ 2% G0 (ale)" ) =i s s T

Proof: Integrating in polar coordinates (where S = {¢ € C%; |¢| = 1} and o is the U(d)-invariant
probability measure on S) we find

/|Z|” (2|0} (al2)" dpy(z) =
Ct

20 i 2d-1 .2 j+n ,—vr’
= a— T ror dr [ (€|b)? (al€)™ do(€)
0 S

o0
4 .
- 5 v /td+z+j—1 vt gt j!{a, b)’
0

M d =) (d);

(d+2£+35—1)5! {(a]b)’

T T, e

Q.E.D.



1neorem .0 Lel K,£ © 1IN anag write o7’ .= \A *) A F. LNREN LNE crgenvatuecs of o' are given

by

o~

A A A
B = ev qe(D) ae7), VAEC,

where

k .
d+k-1\ 2J
= E —_. 4.81
)= <d+j—1) J! s
Jj=0
Proof: Let A € C and let a,b € C? be so that {a|b) = A\. Then, using Lemma 4.1, we have

BEEA) = ((A™) AT eqp) (0) = (AT, Pr)s, = /6a,b(€) (Pre Pr)s, dpo(§)

Cd
- / as® | [ Pretia)(e) PRI di(2) dstw) | oo
Cd x4
= elald) o(&lb) (21€) Ki(z—& w—¢) e v (€|w)
/ @X/J

Ky(w,z) dpy(z) dpy(w) | dp(§)

= [0 | [ Kiw - 9Kew.z + 9 dpuf)
Cd Cd xCd
e € dpy, (w) | dps (€).

Interchanging the order of integration, the last integral becomes

/!

/ Ki(z,w — &) Ko(w, z +€) ¥ } e Elw—s+y) duu(é)] dpy (2) dpsy (w)
Cd xCd

= // Ky (z,z - é) K, (w,w + é) elalw—z+3) dpy,(z) dpy, (w)
14 1%
Cd x Cd

— eb Ix(a,b) To(a,b),

Ix(a,b) := /Kk (z,z + g) %) dp, (2)
Cd

where



and we used the lact that 1g\a,0) = 1g\—a, —0). 10 Calctulate [p(a,0) WE €Xpand Aglz,z T ;) and

use Lemma 4.2,

hed = f:( )/Isz 9 O gt g 2
>

ﬂ,ji_jj); Z % /|z|2(k—j)<z|b>j (a2)" dpy (2)
" n=0 o

7=0

i vi N (d+k-1)
=V L GG @
O (d+k-1) (2Y (A
B Z<d+j—1> J! _q’“<5>'

Q.E.D.

Remark 4.1 Notice that the polynomial qi can be written also as

k

o (k=) 4
j= J:

and that

N

qk(x)_(ker—l) hd-

Applying Theorem 4.3 we obtain the following result.

x)j _ (k+d—1) \Fi(=k; d; —2).

Jj=

o0 o0
Theorem 4.4 LetT = Y tx P, S = > s¢P; be K-invariant operators on holomorphic functions
and let AT, AS be the associated calculi. Let BT = (A%) AT be the corresponding link transform.

Then

- A w A
BT:S(\) =ev Y iy ok () > s a(>)
k=0 =0
Proof: We have
BTS() = 3t 5 BR()
k,£>0
A )\ A
= > tsier a(0) @l —6"Ztk a( ZS@ qe(7)-
k,£>0 k>0 >0

Q.E.D.

The following example of a one-parameter family of calculi will play an important role in the
sequel.
Example 4.4: Let « € C, a# 1 and set

ti(@) = (1—a)* of and T(a) =) ti(e) P,



Le. \L\&) J){\z) =1l —¢C) Ji&zg). LEL A~ = A 7 D€ LNE asSS0Clated CalCulus. 1N€n 1neorem
4.3 shows that the eigenvalues of B®*# = BT(@).T(8) are given by

Bos() = Yok D) Y F @) (1= o)1 - )"

k>0 £>0

Claim: If |a| <1 then

> 1 o
K
=— . 4.82
>t o) = a0 (125 ) (1.82)
k=0
Indeed, by absolute convergence we can interchange the order of summation and obtain
0 00 joo(d+.)__ oo()joo ¢
k Jk—j & azr L, O
> ale) = 3 Y et 7 (d+)e 5
k=0 A (k —J)! = = ¢
J
o0 o0 _ar
IS S C TRRERE Y ()
= 7 I-)? =
_ 1 oz
1-a? P \1-a
It follows that o
A a A
>oiw(@) e () =ewp (1222
k=0
If also |3] < 1, then B
—~— 1- A
BaB(\) = exp {—Q’B_ —} , (4.83)
I-a)1-p)v
and in particular,
— 1—|af? X
o)) — Z L 4.84
B —exp {12105 2 (1.89)

By analytic continuation in «, 8 we obtain:
Proposition 4.1 Let a,3 € C\ {1}. Then the eigenvalues of B*? are given by (4.83).

Corollary 4.1 Let o, € C\ {1} be so that 1 —afB = (1 —a)(1 — B) (i.e. a+ B =2ap).
Then B*P coincides with the Berezin transform (namely, with the link transform of the Toeplitz

calculus).

A
v

Proof: We have @:3()\) =ev, VX € C. Since this is true for the Berezin transform B we
conclude that B*# = B. Q.E.D.

Corollary 4.2 Let o, 3 € C\ {1} be so that af = 1. Then B*# =1.
Proof: We have @3()\) =1, VxeC Q.E.D.

Corollary 4.3 Let a« € C\ {1} be so that |a| = 1. Then B“* = I. Consequently A% is an
isometry.



rroposition 4.2 Lel cx € L\ 11ly ana let 7 = ﬁg‘ >\U. Lhen D77 = J *uv, 1.e.

(B 1)z /f (w).

Proof: The operator of convolution with y» is the Berezin transform for the Toeplitz calculus

associated with L2(C%, uv). Hence its eigenvalues are eV(7) = ¢7 7 = Bo, B ().
Q.E.D.

The following general fact follows by elementary properties of intertwining operators.

Lemma 4.3 Let A be an invariant symbolic calculus, considered formally as a map between
Hilbert spaces A : L*(D, pg) — So(H). Let

A=UB: B=AA), and A=QV (Q=ANA) (4.85)

be the polar decompositions of A, with U, V minimal partial isometries (i.e. Ker (U) = ker (A)
and ker (V) = ker (A")). Then

B:(fog)=(B2f)og, VgeG, Y fe Dom(B2). (4.86)

Q3 (w(g)(X)) = m(9)(Q*(X)), VgeG, VX e Dom(Q3), (4.87)

where
m(9)(X):=U(g) X U(g)~", VgeGQG.

U and V are intertwining operators, i.e.

”T(g) (ub) = Z’{bog—la ”T(g)(vb) = Vbog—l

for all g € G and b in the appropriate domains. Thus, U and V are invariant symbolic calculi.

Proof: (4.86) and (4.87) follow immediately from Proposition 2.7. Notice also that
A(r(g) X) = A'(X)og™!, VgeG, VX € Dom(A"), (4.88)

The fact that
m(g)(Ap) = Apog-1 , Y g€G, VX €Dom(A),

clearly implies

7(9)Us) =Usog1 , Y g€EG, V f€Ran(B2).

Hence, U is an invariant symbolic calculus with Dom(i/) = Ran(B %) Similarly, using the fact
that Q2 is one-to-one on the range of V, we see that m(g)(Vy) = Vyog-1 for all g € G and all
b € Dom(V). Q.E.D.

Theorem 4.5 Let k € N and let AT = U | APx|, where |APx| = (AP’“,.AP’“)% = B®) 3 e the
polar decomposition (4.85) of the invariant symbolic calculus A% associated with the projection
Pk. Then

—_—

(B®)3(X) = e |qk<§)|, YA€ (~00,0], and (BW)z = ?|qk|( ). (489)



as anl Op€rator on L {L", lig) = L \Ixn, T ). NVOreover

UB = WVi, where Vi = sgn(ze) () (4.90)

and W is the Weyl calculus.

Proof: Let a,b € C? and denote A = {a|b). We claim that for all z,w € C?

AR (zw) = APD(Ky)(2)/Ku(2)

-1
= (dd_-ll_k) 1y (d—i—k; d; %) el#lb) glalw)

Here we use the standard notation 1 Fy (o 8; z) = > %%)M ””n—f Since Agz)b (z,w) is holomorphic
n>0 " ’

in @ and z and anti-holomorphic in b and w, it suffices to consider @ = b and z = w. In this case,
we obtain from Lemma 4.1

AL (Ko)(2) = / L8 o0 GO K (2 €, 2 - €) ) d (6)

cd
k
s
k
_ % o127 glela)+al2) /e<na> e 1n** dp, ()
: o
_ l/_k u\z\ +(al2) Z / dpw (n).-
k! m! )
m,n=0 Cd

The last integral is evaluated by Lemma 4.2

/ {nla)™ (aln)" |2

m! n!

(d+k+n-1) |a*"
d—1)!(d), vktr nl ~

d:“fu(n) = 5m,n( (4-91)

Hence

— o0 2n
AP (K)(2) = (d”“ 1) Z d+k 1" telay gtaley oo 1o

€a,b )
a o nlv

_ (d+k— ) R (d+k d laf® ) olzla) Jlalz) vzl
d—1 v

Since a sesqui-holomorphic function is determined by its value on the “diagonal”, we see that
d+k-1 (a|b) y
AL ) = () m (ko () glot) g o),
and (4.91) is established.

Lemma 4.4 For allz € C and k € N

d+k—1
e"’”q;c(m)=( 2_1 ) 1P (d+k; d; z).



I'rool: 1ntercnanging tne oracr ol suminatlon, we get

> d+k—1\ oo knm d+k—1\ z™
fae -5 () - (1) (45 =

An easy combinatorial argument yields

’%’:” (m) <d+k—1>_<d+k+m—1>
= \J k—3j k

and thus
(e o]
d+k+m-—1\ =™
alz) = ) ( k ) oo
m=0
e (d+k—1) N (d A B 2™
= d—1 = (d)m m!
d+k—1
= ( g1 ) 1F1(d+ k5 d; ).
Q.ED.
It follows from (4.91) and Lemma 4.4 that
0 g (D) et galw) 4.92
ea‘b(z,w) =evqr| ) e e . (4.92)

Next, we know that

—_—

B®(\) = (AP) APc(\) = e qu)Q, VieC

1
Considering B*)? as an operator on L?(C%, ug), and knowing that the Plancherel measure is

supported on (—o0,0] (i.e. on the eqp with b = —a), we conclude from

BE)(\) = e |qx (%) , VA€ (—00,0]

that

1 N A
Bk)? — o3 |q,c|(;),

This establishes (4.89). Computing Asfb(z, w) via the factorization AT = Z/{(k)B(k)%, we obtain

(k)
ALt (o) = o ()] Heel ),

Comparing this with (4.92) we conclude that

UP, (Kw)(2)

A )\
> (z|b) (a|w)_ 4.
Ko (2) =e2 sgn(qk(—u)) eV’ e (4.93)



rnowever, tne vveyl transiorin vy SatlsSlles

We,(K)(z) = 2 /@d €0 (O U (50) (K) (2) dpiol€)

_ / ((E18) (lale) pri—z+26lw) (1O g ()
Cd
_ / plElbt2mm) izt L16) g0 gy g wielw)
Cd
— ew ) glalw) rzlv)
i.e.
Wea,b(Kw)(z)

Ky(2)
Comparing (4.93) and (4.94) we conclude that

1%

eap (2, W) = = e {0 glalw), (4.94)

€a,b

A
Uk — Wy, (eay)» Where V= SgH(Qk)(;)-

Standard approximation arguments yield that U](ck)

(4.90) is established, and the proof of Theorem 4.5 is complete. Q.E.D

= Wy, (s) for all admissible symbols f. Hence

Theorem 4.6 Let o € C\ {1} and let A* = U |A*| be the polar decomposition of A%, where
|AY| = (BO"O‘)%. Let o = iT_% where z = x + iy. Then |A%| = B2, where B is the Berezin

transform associated with the Toeplitz calculus, and UY = AP, where B = w1

ty+1°

Proof: We know by (4.84) that
— 11— |af
|A2|(N) = exp {5 o i} = exp {i :c}

1—al? v 2v

Also, B(\) = ev. Hence |:ZE|(>\) = B2 ()), and therefore |A%| = B2. Next, using (4.82) and (4.92)
we see that for any a,b € C¢ with (a|b) = X and any z,w € C? we have for |a| < 1

Az, ,(Kuw)(2)

AL A 1 A
@ = — d k —)erv = —
Ky (z) efalw) lzlb) — (1-a) k2>0a Qk(y)e xp {1 -« V}'

By analytic continuation we conclude that

Ag, L (Ky)(2) exp {; ﬁ} ., VaeC\{1}. (4.95)

Kw(z) e(a\w) e(z\b) B

11—lal? A
|Aa\<ea,b>={ 1= Jol —}ea,b,

2 1—af?2 v

l—-a v

Since

we obtain also

Ag (Bu)(z) 11— |a? X U (Ky)(2)
Kw(z) elalw) o(zb) = exXp o Kw(z) elalw) o(z/b) "

2 [1-a2 v
Therefore, by (4.95), we obtain

UL (Ku)(2) :exp{( 1 _11—|a|2) %}:exp {#3} (4.96)

Kw (z) e<""w) e(z\b)




with
1-2a+a? iy-—1

p= T1-2a+e? y+1
Comparing (4.96) and (4.95) we conclude that 2(®) = AB. Q.E.D.

Remark 4.2 In general, U® = AP is different from the Weyl calculus W, and

UYD =W «— f=-1 < aecR\{l} < z€eR

Remark 4.3 Theorem 4.6 suggests another possible definition of the Wick calculus (4.79), namely
E=WB: (4.97)

where B is the Berezin transform and W is the Weyl calculus.

Indeed, using (4.94) we see that for all a,b € C? with A = (a|b) and all z,w € C? we have

W), E) ke

€a,b —

Ko(z) e@lw) e® ¢ % Ko (z) elolo) o)
On the other hand, using the definition (4.79) we see that &, , = Te,, Tc;,, and therefore

Eeqp (Kuw)(2) el 75 | (Kuw)(2)

Kp(z) ealw) e — Ky (z) efaw) ey —

since for holomorphic symbols ¢ we have 7 (Ky) = ¢(w) Ky. Therefore (4.97) holds.

Remark 4.4 Theorem 4.6 suggests also to consider £ as the limiting case of A* where o — oc.

More precisely, using the parameter z instead of o = z—:& and writing (¥) A = A%, we see that
(tiy) g = (W) A (B2)® .
Comparing this with (4.97), we conclude that
E=0DA=A>.

Summing up, the Toeplitz, Weyl and Wick calculi correspond to the points 0, —1, and oo

respectively in the a-plane, and the points 0, 1, and —1 respectively in the z-planes.

The polynomials g5 (4.81) have an interesting orthogonality property.
Proposition 4.3 The polynomials {qx}3°, are orthogonal with respect to the probability measure

1 -1 _—|z
TXCo0)(a)lal 171" do,

dp(z) := @-n

where X(_o0,0)(%) is the indicator function of (—o00,0). Moreover,

(d)k
gkl 72w, p) = T

Thus, the sequence of mormalized polynomials {(k‘/(d)k)% ar(2)}32, s an orthonormal basis of
L*((~00,0), p).



I'roof:. Let U = £ < /. Using tne cnange ol varlables i = —Ir, we 0Dlalll

—_1)¢ 00 k . j
[ saadote) = G [ (Zu)ﬂ (%) (fl)]> flet dr

Jj=0

DDk, o (k) @y
= 2V (y) @y

=0

e Gy ()

_ (—1)64:!—1(d)k (%)e (td”_l(l +t)k>‘t:_1 ~0,

since k > £. Thus, (f, qx) 12(p) = 0 for every polynomial f of degree at most k£ — 1. In particular,
{ar}32, are orthogonal in L?(p). The same calculations yield

/Rﬁvqu(w) dp(z) = (—1)’6—:—1(61)}9 (%)k (td+k71(1 I t)k)|t:—1 = ().

Thus,

[ o anta) - Xk%(fli’;j) 5 [ o) anto

— 1 [ el = L.

Q.ED

We close this section with an example of invariant symbolic calculus which generalizes Example

4.4. Tt is more complicated but, nevertheless, explicitly solvable.
Example 4.5: Fix2 <n € Nand a € C\ {1}, and define

b o k=0 (modn)
o k # 0 (mod n)

and T = ) tx Pp. Let w = e’n and ay = w'a. Then L Z( ) =ty for all k. Let T =

k>0 " =0
n—1 ) n—1 (0
(1 — )Y ()P, Then X 3 QTT)d =T, and hence Z 1Aa4 = AT. Tt follows that if
k>0 £=0
a,b € C and (a|b) = A then for all z,w € C¢

A (Ku)z) 1 &= 1A
ar(A) = Ky (2) elalw) elzlb) ) Z l—ag {1—0{g ;}
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Berezin transform on symmetric tube domains

Let T(f2) be a symmetric tube domain of rank r and genus p in C? (see subsection 1.3). Let
v >p—1 and for each b € L>®(T (1)) let
Ty = PYI M,

b2 (@),

(5.98)

be the Toeplitz operator with symbol b on the weighted Bergman space L2(T(f), u,). Here
PW) : L2(T(Q), p,) — L2(T(Q), ) is the orthogonal projection and My f = b f is the operator
of multiplication by b. In this case the link transform is the Berezin transform B*) = 7'7. Our

goal here is to give a new proof, via Theorem 2.1 of the following known result [UU94]| (see also
[Be78]). Here, for any A = (A1,...,A;) € C" we denote

2= Oy Aty -5 A1), (5.99)

Also, p = (p1,p2;---,pr), the half sum of the positive roots, is given by

. a 1 .
pj:(]—1)§+§, ji=1,2,...,m (5.100)
and for simplicity we put also
t p_1
=v—-—.
g 2

Theorem 5.1 Letv >p— 1. Then

Dom(BW) = {A € C; |Re ;| < t}

and for A € Dom(B®)),

__ ToA+p+v— 9 To(=A" - p* +v) :ﬁ L, + Aj) Dt = Aj) (5.101)
j=1 P(tu+pj .

= To(v — 9 To(v) )Tt — pj)

In the derivation of (5.101) we shall use the following result, which is of independent interest. For
a,f,7y € R and z,w € T(Q) consider the integral

lopy(z,w) = / No(7(2,8)) Np(7(§,8)) Ny(7(&; w)) dpo(&). (5.102)

T()

Definition 5.1 D is the set of all (a,,7) in RN x R x R" such that the integral (5.102) is
absolutely convergent for all (z,w) € T'(2) x T'(f2), and the convergence is uniform on compact
subsets of T'(Q2) x T'(2).

Theorem 5.2 We have the inclusion

DQU%@ﬁEWXWXW;%+w<U—D%ﬂHL

. a d . a .
Oéj+ﬂj+7j<(7“—J)§, ﬁj>;+(3—1)§ for 1<j<r},
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Iy .y (2,w) = Iy gy Nat gy (T(2,w))
with

Recall that X = R? is the Euclidean Jordan algebra whose positive cone is €.

Lemma 5.1 Let (a,,7) € D and let g € NA. Then

Iap.4(9(2),9(w)) = Natpir(7(g(i€))) In,p.4(2,w)

for all z,w € T(Q).
Proof: Observe first that for all s € C" and g € NA
Ny(7(9(2), 9(w))) = Ns(7(2,w)) Ns(7(g(i€))), 2w € T(Q). (5.103)

Indeed, both sides of (5.103) are holomorphic in z, anti-holomorphic in w, and coincide for z = w

(see (1.27)). Therefore they coincide everywhere. Using the invariance of pg, we obtain

lopy(9(2), 9(w)) = / Na(7(9(2),€)) Np(7(£,£)) Ny(7(&, 9(w))) dpo(§)

Q.E.D.

Corollary 5.1 For (., 3,7) € D and all z,w € T(Q),
o, gy (2,w) = Ia,py (i€, i€) Noipiny(T(2,w)). (5.104)

Proof: Lemma 5.1 implies (5.104) for z = w (by using g = g,). Since both sides of (5.104) are
holomorphic in z and anti-holomorphic in w, they coincide for all z,w € T'(2). Q.E.D.

Lemma 5.2 Fizv € Q and o € R". Then the function

faw(z) = Ny <x +.w> (5.105)
= = 29
belongs to L2(X) if and only if
-1
Otj<(j—1)%—pT for j=1,2,...,r (5.106)
Thus, if a,v € R" satisfy
aj+v<(G-12—p+1 for j=1,2,....r (5.107)

2



en ) | Ja,w\T) ]1’1,\.’11‘) |ar < 00, ana
X

[ Ta@ frate)do = am ¢ ( )
R Lo(—a*) Ta(—7*)
X

Proof: Notice that if —c,;1 ;> (j — 1) § for 1 < j <7 then (1.29) implies that

1 _(ztiv t %
fanw(x) = m/e i ‘)N_g*_g(t)dt
Q

and the integral converges absolutely. Thus the Fourier transform satisfies

2 Ee
J
3 L —(vlt) gy
Fas®) = frgy ol e N ()
Thus by Parseval’s formula
—2iaj
(2m)d2 =t —(o|26) nrx
Waallioce = “Foigye [ &N 0 pa(®)dt
Q

provided

d a
_2ar+1—j>_+(j_1)§ for j:172a"'7T7

which is equivalent to (5.106). Suppose now that (5.107) holds. Then

/fav fro(z da:—/| z)|? dz < oo,

and Parseval’s theorem yields

_ji:1(a i) 9 )d
I _ - m —(u[2t) Arx
7@ oyt = fo B [N
X -7 Q
To(—a* —7* — %)
_ d Y7
= (4n) To(—a*) Ta(—7*) Na+l+%(v)

Q.E.D.

Proof of Theorem 5.2: In view of (5.104) we have only to find conditions for the finiteness of
I, 5 (ie,ie), and to compute it. Notice first that, with the notation (5.105), we have

IQ,E,Z(ie,ie) :/ (Zfa,eﬂ—y(x) fl,e+y(x) dz Nﬁ—p(y) dy.
Q



Lnereiore, 11 (o.1U) Nnolds, we obtalnl

- Q
(4m) / / i —t
- N r(t) N*
Ta(ca)Ta(y) J \J ¢ NepWd | &Ny pa (O
- a \a
4m)iTo(B — &
_ _UnTal ;) /e—““(t)N* g __a(t)dt
PQ(—Oé*) FQ(—Z*) J =t
_ (m)ToB - PTa(-e* - —7")
a(-a*) Ta(—7") ’
provided we have also
d a
>4+ (=12, j=1,2
/6] > r + (.7 ) 2; J )4y , T
and
N
O‘j+18j+7j<(r_])§a J=12, , T
This completes the proof of Theorem 5.2. Q.E.D.

For the proof of Theorem 5.1 we shall need also the following identity.

Lemma 5.3 Let o € C" satisfy Re(og) > (j—1) § for j=1,2,...,r. Then

d
Fa(a) =Tala® +2p - ;)

where p is defined by (5.100).

Proof: Notice first that forall 1 < j <r

a

N d : a .
(a +2£_;)j_(.7_1)§:ar—H—j_(r_])Ea

and so the real parts of both sides are positive simultaneously. Next, when Reoj > (j — 1) § for

all j,
Ta(e) = HP —(G-1) 2) (2m) " [[ Tersioy — (r — ) g)
j=1
— 0T [ e 20D, - -9 ~Tal@ +20- .

=1

Q.E.D.

Proof of Theorem 5.1: In the case of the Toeplitz calculus in the context of the spaces
L2(T(R), uy) the function F(z,w) is given by




yve Clallnl tiat

F(A) = (v, ) Ex(2),

where
ToA+p+v—4)To(-A"—p" +)
c(v,A) = = e
Lo(v)Ta(v — %)
and

Ex(2) = Ee,(2,1€) = Nxyp(7(2, 7€)

Indeed, using Theorem 5.2 and the definition (1.28)we find

—~ — aly N(7(z,w))™" N(7(w,ie))™" 0. w w
zF(A) - ( ) (é) N(T(z,ie))*”N(T(w,w))*” NA+£( ( ’ ))du()( )

= a(V) N(7(2,i0))" Iy piu-s (2 ic)

~ ToQ+p+v—NTa(-A" —p" +v) _
- Ta(v) Ta(v — 9) Natp(7(z, i€))-

Using Theorem 5.2, we obtain

BY(\) = ) F(-X) [KY(2,4€) 1 dus (2)
()
= (A (v, —-X) / Nysp(7(2,i€)) N_pyp(7(z,1€)) |KW) (2, ie)|? dpss (2)
T(Q)

= a(v)c(v,]) c(v,-]) I—A-I-Q—U,U,A—l—g—u (ie,ie)

Fa(v — ‘;i) Ca(—2p* +v)
FQ(A* - B* + l/) FQ(—A* - E* + l/)

= a(v)c(v,A) (v, —A)(47r)d

ToQA+p+v—HTo(-A+p+v—9)
To(v) Ta(v — 9) ’

T

where we used the definitions of ¢(v, A), ¢(v, —)), a(v) and Lemma 5.3 to obtain

d d
Fa(—=2p" +v) =Tqa(-2p+v+2p— ;) =Tq(v— ;)

Notice also that by Lemma 5.3

d d d
Po(-A+p+v-— ;) =To(-A"+p"+v-— St ;) =Ta(=2" - p" +v),
since
N 2d ,
(2p" +2p)j = — for j=1,2,...,r
= = r
Therefore the eigenvalue of the Berezin transform B®*) can be written in the form

a;)(/\) CTaA+p+v—HTo(-2* - p* +v)
s To(v) To(v — 9) '




rlinaily, using {1.29) and {(9.JJ) we obtaln

N r o, d
B = I Ty +pi+ " ;3_ 1)1)§

o D\ +t)T(=Nj + 1)

since pj—g—(j—l)

SIS}
|
N
~
R
Il
S
|
T
[
=
o,

This completes the proof of Theorem 5.1. Q.E.D.

Remark 5.1: Quite generally, it is easy to see that the fundamental function az;(A) of the

Toeplitz calculus T is equal to the eigenvalue of the Berezin transform B = 7' T
ar(}) = B(}).
Therefore Theorem 5.1 yields (3.76).

Remark 5.2: The right hand side of (5.101) is an entire meromorphic function of A which is

analytic in the tube
Q,:={AeC"; |Re(N)| <t,} (5.108)

Therefore the above proofs show that (5.101) holds for all A € @, v > p — 1. We conjecture that
it is possible to consider the Toeplitz quantization 7®) and the associated link transform B®)
in a canonical and explicit way for all v > 2 —, and that (5.101) is valid for all A € @, in the
extended range of v. This may require the techniques of [AU97] and [AU99].
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