Solving differential equations

  1. Cioica, P. A.; Dahlke, S.; Döhring, N.; Kinzel, S.; Lindner, F.; Raasch, T.; Ritter, K.; Schilling, R. L.: Adaptive wavelet methods for the stochastic Poisson equation. BIT 52, No. 3, 589-614 (2012).
  2. Cohen, A.; Dahmen, W.; DeVore, R.: Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comput. 70, No.233, 27-75 (2001).
  3. Cohen, A.; Dahmen, W.; DeVore, R.: Adaptive wavelet methods. II: Beyond the elliptic case. Found. Comput. Math. 2, No. 3, 203-245 (2002).
  4. Dahmen, W.: Multiscale and wavelet methods for operator equations. Springer Berlin. Lect. Notes Math. 1825, 31-96 (2003).
  5. Kappei, J.: Adaptive frame methods for nonlinear elliptic problems. Appl. Anal. 90, No. 7-8, 1323-1353 (2011).
  6. Raasch, T.: Adaptive wavelet and frame schemes for elliptic and parabolic equations. Marburg: Univ. Marburg, Fachbereich Mathematik und Informatik.
  7. Stevenson, R., Werner, M.: A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems. Math. Comput. 78, No. 266, 619-644 (2009).