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JÜRGEN HERZOG AND VOLKMAR WELKER

Abstract. For an ideal I in a regular local ring or a graded ideal I in the polyno-

mial ring we study the limiting behavior of βi(S/Ik) = dimK TorS

i (S/m, S/Ik) as

k goes to infinity. By Kodiyalam’s result it is known that βi(S/Ik) is a polynomial

for large k. We call these polynomials the Kodiyalam polynomials and encode the

limiting behavior in their generating polynomial. It is shown that the limiting

behavior depends only on the coefficients on the Kodiyalam polynomials in the

highest possible degree. For these we exhibit lower bounds in special cases and

conjecture that the bounds are valid in general. We also show that the Kodiyalam

polynomials have weakly descending degrees and identify a situation where the

polynomials have all highest possible degree.

1. Introduction

Let S be either a regular local ring with maximal ideal m and residue class field

K or a polynomial ring over K with maximal graded ideal m. We assume that

dim S = n. Furthermore, let I be a proper (graded) ideal in S. In his paper [7]

Kodiyalam proved that

βi(S/Ik) = dimK TorS
i (S/m, S/Ik)

as a function of k is a polynomial function of degree ≤ ℓ(I) − 1 for k ≫ 0. Here

ℓ(I) denotes the analytic spread of I, that is, the Krull-dimension of the fiber

R(I)/mR(I) of the Rees algebra R(I) =
⊕

k≥0 Iktk. It is known and easy to prove

that height(I) ≤ ℓ(I) ≤ dim S.

We denote by Pi(I) the polynomial with Pi(I)(k) = βi(S/Ik) for k ≫ 0. and

call the polynomials P0(I), P1(I), . . . , Pn(I) the Kodiyalam polynomials of I. Note

that P0(I) = 1.

It is an immediate consequence of Kodiyalam’s result, see Remark 2.1, that the

projective dimension pd(S/Ik) of S/Ik stabilizes for k ≫ 0. Indeed this fact was

proved by different means first by Brodmann [3]. Note, that Brodmann’s result was

formulated in terms of the depth rather than the projective dimension. We write

apd(I) for limk→∞ pd(S/Ik) and call apd(I) the asymptotic projective dimension of

I.
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In this paper we are interested in the limiting behavior of the polynomial

P(I)(k, t) =

apd(I)
∑

i=0

Pi(I)(k)tapd(I)−i

as k goes to infinity. Clearly, at least P1(I)(k) goes to infinity if ℓ(I) 6= 1. In-

deed, in Proposition 2.2 we show that ℓ(I) − 1 = deg P1(I) ≥ deg P2(I) ≥ . . . ≥

deg Papd(I)(I). In the proof of Proposition 2.2, essentially following the ideas by

Kodiyalam [7], we identify Pi(I) as the Hilbert polynomial of the some finitely gen-

erated module. Therefore, the leading coefficient of Pi(I) is of the form ki/di! where

di = deg Pi(I). By K(I) we denote max{i | di = ℓ(I)−1}. Note, that the preceding

facts imply that ki is the multiplicity of a finitely generated module.

We show that the limiting behavior for k → ∞ of P(I)(k, t) is up to convergence

rate completely determined by the polynomial
∑

K(I)
i=1 ki · t

apd(I)−i. More precisely:

Theorem 1.1. Let I be a (graded) ideal in S such that ℓ(I) ≥ 2. Let α1, . . . , αK(I)−1

be the roots of the polynomial

K(I)
∑

i=1

ki · t
apd(I)−i. Then for 1 ≤ i ≤ apd(I) there are

sequences (γ
(i)
k )k≥1 of complex numbers, such that after suitable numbering:

(i)

apd(I)
∏

i=1

(t − γ
(i)
k ) = P(I)(k, t) for all k ≥ 1.

(ii) γ
(i)
k → αi, 1 ≤ i ≤ apd(I) − 1, for k → ∞.

(iii) γ
(apd−1)
k = αapd−1 = −1, for all k ≥ 1.

(iv) γ
(apd(I))
k ∈ R for k ≫ 0 and γ

(apd(I))
k → −∞ for k → ∞.

The assumption ℓ(I) ≥ 2 is equivalent to saying that I is not a principal ideal.

Clearly, for principal ideals I, each power Ik is principal and β0 = β1 = 1, βi = 0

for i ≥ 2 which is a trivial situation for our purposes.

Theorem 1.1 focuses our interest on the number K(I) and the multiplicities ki for

1 ≤ i ≤ K(I). Note, that in Theorem 1.1 the number of αi equal to 0 is apd(I)−K(I)

and that for 1 ≤ i ≤ K(I) we have

ki

k1

= lim
k→∞

βi(S/Ik)

β1(S/Ik)
.

The following two are our main results.

Theorem 1.2. Suppose that ℓ(I) = n. Then K(I) = n, in particular, deg Pi(I) =

n − 1 for i = 1, . . . , n.

Theorem 1.3. Suppose that R(I)/mR(I) is a domain and R(I)mR(I) is Cohen–

Macaulay. Then ki/k1 ≥
(

K(I)−1
i−1

)

for i = 1, . . . , K(I). Moreover, equality holds if

and only if R(I)mR(I) is a complete intersection.
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As a first corollary we get that the inequality from Theorem 1.3 holds if ℓ(I) = n

and R(I)/mR(I) is a domain. Observe that R(I)/mR(I) is always a domain if I is a

graded ideal in the polynomial ring generated by elements of the same degree. From

this remark and Theorem 1.3 we deduce in a second corollary that equality holds

for Artinian monomial ideals generated in a single degree with linear relations.

Based on experimental data we conjecture that the inequality from Theorem 1.3

holds in general.

Conjecture 1.4. Let I ⊂ S be a (graded) ideal. Then

lim
k→∞

βi(S/Ik)

β1(S/Ik)
=

ki

k1
≥

(

K(I) − 1

i − 1

)

for i = 1, . . . , K(I).

We note that the condition ki

k1

≥
(

K(I)−1
i−1

)

from Conjecture 1.4 is satisfied whenever

the polynomial
∑

K(I)
i=1 ki · tapd(I)−i has only real roots (see [1, Observation 3.4]).

Indeed, we know of no example for which the polynomial is not real rooted. But we

consider our evidence too weak for a conjecture. Indeed, we see in Remark 2.5 that

for ℓ(I) ≥ 2 we have that −1 is always a root. In addition, in all example we tried

experimentally ℓ(I) was small and there were only very few roots other than −1.

For the class of monomial ideals it is an interesting question which of the invariants

defined for I in the introduction can depend on the characteristic of the field. The

fact that ℓ(I) is independent of the field is an immediate consequence of a convex

geometric description in [5] (see also [9, Corollary 4.10]). On the other hand for the

invariants apd(I), Pi(I) for some i > 1, K(I) and then ki for some i > 1 we do not

know of a proof nor a counterexample. In general counterexamples are hard to find,

due to the fact that only small powers of monomial ideals can be treated with the

existing computer algebra systems.

2. The Kodiyalam polynomials of an ideal

Before we come to a more subtle analysis of the polynomials Pi(I)(k) we state a

simple consequence of the fact that βi(S/Ik) = Pi(I)(k) for k ≫ 0. As mentioned in

the introduction the conclusion was first shown by Brodmann [3] in terms of depth.

Remark 2.1. The projective dimension pd(S/Ik) stabilizes for k ≫ 0.

Proof. Let q = max{i : Pi(I) 6= 0}, and let k0 be an integer such that Pi(I)(k) =

βi(S/Ik) for all k ≥ k0. Since Pi(I)(k) has only finitely many zeroes, we may also

assume that Pq(I)(k) 6= 0 for all k ≥ k0. Then pd(S/Ik) = q for all k ≥ k0. �

For a polynomial P we set deg P = −∞ if is the zero polynomial. Using this

convention we get.

Proposition 2.2. ℓ(I) − 1 = deg P1(I) ≥ deg P2(I) ≥ . . . ≥ deg Pn(I).
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Proof. For i ≥ 1 we have

βi(S/Ik) = βi−1(I
k) = dimK TorS

i−1(S/m, Ik) = dimK Hi−1(x; Ik).

Here Hi(x; Ik) is the ith Koszul homology of Ik with respect to x = x1, . . . , xn,

where x is a regular system of parameters if S is a regular local ring, and is the

sequence of indeterminates in case S is a polynomial ring.

Observe that Hi(x; R(I)) is a graded H0(x; R(I))-module. Thus by H0(x; R(I)) =

R(I)/mR(I) it is a graded R(I)/mR(I)-module. Since Hi(x; R(I))k = Hi(x; Ik) for

all k, we see that Pi(I) is the Hilbert polynomial of Hi−1(x; R(I)) for i ≥ 1. Thus

the degree of Pi(I) is the Krull dimension of Hi−1(x; R(I)) minus 1. In particular,

deg P1(I) = dim R(I)/mR(I) − 1 = ℓ(I) − 1.

In order to prove the inequalities deg Pi+1(I) ≤ deg Pi(I), it remains to show

that dim Hi(x; R(I)) ≤ dim Hi−1(x; R(I)) for all i ≥ 1. To see this, let P ∈

Supp Hi(x; R(I)). Then mR(I) ⊂ P and Hi(x; R(I)P ) = Hi(x; R(I))P 6= 0. Rigid-

ity of the Koszul homology (see [4, Exercise 1.6.31]) implies that Hi−1(x; R(I))P =

Hi−1(x; R(I)P ) 6= 0. Thus Supp(Hi(x; R(I)) ⊂ Supp Hi−1(x; R(I)), which yields

the desired inequality for the dimensions. �

We give a first example which shows that there are cases where the inequalities

in Proposition 2.2 are indeed equalities.

Example 2.3. Let I = (x3, x2 − yz, y4 + xz3, xy − z2) ⊂ S = K[x, y, z]. The ideal

I is (x, y, z)-primary, so that ℓ(I) = 3 and pdS/Ik = 3 for all k. It follows form

Theorem 1.2 that deg Pi(I) = 2 for i = 1, 2, 3. A calculation with CoCoA indicates

that P1(I)(k) = (k + 1)2, P2(I)(t) = (5
2
k + 7

2
)k and P3(I)(k) = 3

2
k(k + 1). So here

we have 2 = ℓ(I)− 1 = deg P1(I) = deg P2(I) = deg P3(I). More precisely, k1 = 6,

k2 = 15 and k3 = 21.

The second example shows that even for monomial ideals the inequalities from

Proposition 2.2 can be strict.

Example 2.4. Consider the monomial ideal

I = (a6, a5b, ab5, b6, a4b4c, a4b4d, a4e2f 3)

in Q[a, b, c, d, e, f ]. Then P1(I)(k) = 3k2 + 4k − 7, P2(I)(k) = 6k2 + 3k − 7,

P3(I)(k) = 3k2 − k + 5, P4(I)(k) = 5, P5(I)(k) = 1 and P6(I)(k) = 0. Thus

deg Pi(I) = 2 for i = 1, 2, 3, while P4(I) and P5(I) are of degree 0, and P6(I) is

the zero polynomial. In particular, K(I) = 3.

In the light of Proposition 2.2 and Examples 2.3 and 2.4, Theorem 1.2 provides

sufficient conditions for extremal behavior of K(I).

Proof of Theorem 1.2. It has been shown by Brodmann [3] that pdS/Ik ≥ ℓ(I) for

k ≫ 0. Thus our assumptions imply that pdS/Ik = n for k ≫ 0. Therefore,

Pn(I) 6= 0 and deg Pn(I) ≥ 0.
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We will show that deg Pn(I) = n − 1, equivalently, that dim Hn−1(x; R(I)) = n.

Then the assertion of the theorem follows from Proposition 2.2.

Notice that

Hn−1(x; R(I))k = Hn−1(x; Ik) ∼= Hn(x; S/Ik) ∼= (Ik :S m)/Ik = 0 :G mG,

where G =
⊕

k≥0 Ik/Ik+1.

From here on the proof follows an argument given to us by Shiro Goto and the

referee. Our assumption on the analytic spread implies that dim G = dim G/mG =

n. Hence there exists a prime ideal P ∈ Spec G with mG ⊂ P and dim G/P = n.

Now in the Artinian local ring GP we have

0 6= (0 :GP
PGP ) ⊂ (0 :GP

mGP ) ∼= (0 :G mG)P .

From this it follows that P ∈ AssG(0 :G mG). Consequently, dim(0 :G mG) ≥ n.

�

In case I is m-primary the consequence of Theorem 1.2 was first proved using

different means in [6].

We now turn our attention to the multiplicities ki for 1 ≤ i ≤ K(I).

Remark 2.5. If ℓ(I) ≥ 2, then

K(I)
∑

i=1

(−1)iki = 0.

Proof. Since

n
∑

i=0

(−1)iβi(S/Ik) = 0 for all k ≥ 1, it follows that
∑n

i=0(−1)i+1Pi(I)(k) =

0. All terms in the alternating sum are polynomials for k ≫ 0. Therefore, for any

k-power the alternating sum of the coefficients cancels. Now by ℓ(I) ≥ 2, the maxi-

mal degree ℓ(I)−1 > 0 = deg P0(I)(k) is achieved for Pi(I)(k), 1 ≤ i ≤ K(I). This

implies the assertion. �

If one looks at the actual values of the ki in Example 2.3 one observes that K(I) = 2

and ki/k1 ≥
(

2
i−1

)

, and in Example 2.4 we have K(I) = 3 and ki/k1 =
(

3
i−1

)

. Theorem

1.3 provides conditions under which inequalities of that type hold. Before we can

proceed to the proof of Theorem 1.3 we need the following lemma.

Lemma 2.6. Let P be a prime ideal of height h in a regular local ring (R, n, K).

Then

dimK TorR
i (K, R/P ) ≥

(

h

i

)

for i = 1, . . . , h.(1)

Equality holds if and only P is generated by a regular sequence.
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Proof. Let F be a minimal free R-resolution of R/P . The ring RP is a regular local

ring of dimension h, and the localization FP is a free resolution of the residue class

field RP /PRP . Since PRP is generated by a regular sequence of length h, we see

that

dimK TorR
i (K, R/P ) = rankR Fi = rankRP

(Fi)P ≥

(

h

i − 1

)

.

On the other hand, if P is generated by a regular sequence, then the Koszul

complex of this sequence provides a minimal free R-resolution of R/P , and equality

holds in (1).

Conversely, suppose we have equality in (1). Then dimK TorR
1 (K, R/P ) = h,

which implies that P is generated by h elements. Since h is the height of P , these

elements form a regular sequence �

Proof of Theorem 1.3. The proof of Theorem 1.1 implies that the multiplicity of

the R(I)/mR(I)-module Hi−1(x; R(I)) is ki. In particular, k1 is the multiplicity of

R(I)/mR(I) = H0(x; R(I)). Hence by [4, Corollary 4.6.9] it follows that

ki = k1 · rank Hi−1(x; R(I)) for i = 1, . . . , K(I).

Set T = R(I)mR(I) and denote by W the residue class field of the local ring T .

Then for i = 1, . . . , K(I) the rank of Hi−1(x; R(I)) is the vector space dimension

of the W -vector space Hi−1(x; T ). Since x is a system of generators of mR(I), the

numbers dimW Hi−1(x; T ) have the following interpretation: suppose I is generated

by f1, . . . , fm. Let A = S[y1, . . . , ym] be the polynomial over S in the variables

yi. Let J denote the kernel of the canonical, surjective S-algebra homomorphism

ϕ : A → R(I) with yi 7→ fi for i = 1, . . . , m, and set P = (J, m). Then P is a prime

ideal and B = AP is a regular local ring. The algebra homomorphism ϕ induces

then a surjective homomorphism B → T of local rings, and it follows that

dimW Hi−1(x; T ) = dimW TorB
i−1(W, T ) for i = 1, . . . , K(I).

In particular, pdBT = K(I) − 1, since HK(I)−1(x; T ) 6= 0, but Hi−1(x; T ) = 0 for

i > K(I). Let H be the kernel of B → T . Then H is a prime ideal with

height H = dim B − dim T = dim B − depth T = pdBT = K(I) − 1.

Here we have employed the assumption that T is Cohen–Macaulay.

The assertions of the theorem now follow from Lemma 2.6 applied to the prime

ideal H and the regular local ring B. �

Corollary 2.7. Suppose that R(I)/mR(I) is a domain and that ℓ(I) = n. Then

lim
k→∞

βi(S/Ik)

β1(S/Ik)
=

ki

k1
≥

(

n − 1

i − 1

)

for i = 1, . . . , n.
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Proof. Since ℓ(I) = n, it follows that P = mR(I) is a prime ideal of height 1.

Therefore, R(I)P is a one dimensional local domain and hence Cohen–Macaulay.

Thus we may apply Theorem 1.3 and obtain

lim
k→∞

βi(S/Ik)

β1(S/Ik)
= lim

k→∞

Pi(I)(k)

P1(I)(k)

= lim
k→∞

ki

(n−1)!
kn−1 + · · ·

k1

(n−1)!
kn−1 + · · ·

=
ki

k1
.

�

In the next result we describe a situation in which the hypotheses of Theorem 1.3

for the equality conclusion are satisfied.

Corollary 2.8. Let I ⊂ S be a monomial ideal generated in a single degree with

dim S/I = 0. Suppose that I has linear relations. Then

lim
k→∞

βi(S/Ik)

β1(S/Ik)
=

ki

k1

=

(

n − 1

i − 1

)

for i = 1, . . . , n.

Proof. Let I = (u1, . . . , um) be the monomial generators of I, each of degree d.

Since they are all of same degree, it follows that R(I)/mR(I) ∼= K[u1, . . . , um]. In

particular, R(I)/mR(I) is a domain. We denote the prime ideal mR(I) by P , and

show that R(I)P is a discrete valuation ring. Then it follows that height P = 1, so

that ℓ(I) = n, and Theorem 1.3 yields the desired equations.

In order to prove that R(I)P is a discrete valuation ring, it suffices to show that

PR(I)P is generated by one element. Let x = (x1, . . . , xn) be a regular system of

parameters in case S is a regular local ring and the sequence of indeterminates in

case S is a polynomial ring. Observe, that (x1, . . . , xn)R(I)P = PR(I)P . We will

show that each xi differs from x1 only a by unit, form which the desired conclusion

will follow.

Since dim S/I = 0, we have that xd
i ∈ I for i = 1, . . . , n. Let F be the free

S-module with basis e1, . . . , em and let ε : F → I the S-module epimorphism with

ε(ei) = ui for i = 1, . . . , m. Let i be an integer with 1 < i ≤ m. Since I has linear

relations, the relation xd
i e1 = xd

1ei can be expressed as a multihomogeneous linear

combination of linear relations, namely

xd
i e1 − xd

1ei =
∑

j

vjrj ,

with vj monomials and relations rj = xjk
ejk

− xjl
ejl

, and where the multidegree of

each summand is equal to the multidegree xd
1x

d
i . It follows that {xjk

, xjl
} = {x1, xi}

for all j. We choose one of the relations rj in this sum, and may assume that

rj = x1ejk
− xiejl

. This relation gives rise to the equation x1(ujk
t) = xi(ujl

t) in the
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Rees algebra R(I). Since the elements uit do not belong to P , they become units in

R(I)P . Thus the preceding equation shows that x1 and xi only differ by a unit in

R(I)P , as desired. �

We note that the conclusion of Corollary 2.8 is valid in many cases that do not

satisfy its assumptions.

Example 2.9. Let I = (xy, vw, xz) then ℓ(I) = 3 = apd(I) and P1(I)(k) =
1
2
k2 + 3

2
+ 1, P2(I)(k) = k2 + 2k and P3(I)(k) = 1

2
k2 + 1

2
k. Thus K(I) = 3 and

k1 = 1 =
(

K(I)−1
0

)

, k2 = 2 =
(

K(I)−1
2

)

and k3 = 1 =
(

K(I)−1
2

)

. But I does not have

linear relations by β2,4(S/I) = 1.

3. Roots of Polynomials

Before we can prove Theorem 1.1 we need a technical lemma. A similar lemma,

albeit for polynomials with a different structure, appears in [2] in another context.

Lemma 3.1. Let (fk(t))k≥1 be a sequence of real polynomials of degree ≤ q − 1 and

f(t) a non-zero real polynomial of degree q − 1. Assume that all (fk(t))k≥1 and f(t)

have non-negative coefficients. Let ℓ be a natural number such that:

⊲ limk→∞ fk(t)/k
ℓ = 0, where the limit is taken in Rq.

Let α1, . . . , αq−1 be the roots of f(t). Then there are sequences (γ
(k)
i )k≥1, 1 ≤ i ≤ q

of complex numbers such that:

(i)

q
∏

i=1

(t − γ
(k)
i ) = fk(t) + kℓf(t) + tq.

(ii) γ
(k)
i → αi, 1 ≤ i ≤ q − 1, for k → ∞.

(iii) γ
(k)
q is real for k ≫ 0 and γ

(k)
q → −∞ for k → ∞.

Proof. Assume first that the roots αi are pairwise disjoint. Now we consider a

fixed zero αi. Let ε > 0 be such that f(t) 6= 0 for 0 < |t − αi| < 2ε. Set Gi
ε =

{t | |t−αi| ≤ ε}. We claim that for large enough k the polynomial fk(t)+kℓf(t)+ tq

has a zero in Gi
ε. Assume not. Then we can find arbitrarily large k for which

gk(t) := fk(t) + kℓf(t) + tq does not vanish in Gi
ε. Then 1/gk(t) is holomorphic

inside Gε. By the maximum principle the maximum of 1/gk(t) on Gi
ε is obtained

on the boundary of Gi
ε. In particular, this implies that there is a t0 such that

|t0 − αi| = ε and |1/gk(t0)| > |1/gk(αi)|. Hence |gk(αi)| > |gk(t0)|. Thus

|fk(αi) + αq
i | > |fk(t0) + kℓf(t0) + tq0|

This implies

1/kℓ|fk(αi)| + 1/kℓ|αi|
q > |1/kℓfk(t0) + f(t0) + 1/kℓtq0|
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Since by assumption the left hand side converges to 0 for k → ∞ and the right

hand side to |f(t0)| > 0 we obtain a contradiction. Hence there is a zero of fk(t) +

kℓf(t) + tq in Gi
ε for large k.

Now we choose ε small enough so that the Gi
ε, 1 ≤ i ≤ q−1, are pairwise disjoint.

In this situation and for large enough k we denote by γ
(k)
i the zero of fk(t)+kℓf(t)+tq

in the disk Gi
ε around αi with radius ε. Then as ε goes to 0 the root γ

(k)
i converges

to αi, 1 ≤ i ≤ q−1. Since for k → ∞ at least one coefficient of gk(t) goes to infinity

there must be at least one root with modulus going to infinity. We call this root

γ
(k)
q .

The argumentation so far shows that for each distinct root of f(t) there is a

sequence of roots of fk(t) + kℓf(t) + tq converging to the root and in addition there

is a sequence γ
(k)
q of roots with limk→∞|γ

(k)
q | = ∞. We are left with studying multiple

roots. Assume α is an r-fold root of f(t) for some r ≥ 2. In this case α is also a

root of kℓ ∂i

∂it
f(t) for 0 ≤ i ≤ r − 1. Consider the polynomial

1

q

(

kℓ ∂

∂t
f(t) +

∂

∂t
fk(t) + q(q − 1) · · · (q − i)tq−1

)

.

By induction on r we obtain that this polynomial has r − 1 roots converging to α

as k goes to infinity. Now, by [8, Theorem 3.2.4] it follows again that there are

sequences (γ
(k)
i )k≥1, 1 ≤ i ≤ q such that statement (i) and (ii) hold and such that

limk→∞|γ
(k)
q | = ∞. It thus remains to verify (iii).

Since by assumption at least one of the coefficients of fk(t) + kℓf(t) + tq is un-

bounded and there are q − 1 bounded roots it follows that there must be a q-th

root that is unbounded. Since kℓf(t) + fk(t) + tq has real coefficients all roots in

C \ R come in conjugate pairs. Since there is a unique unbounded root it follows

that the root is real for large enough k. By the property that fk(t) + kℓf(t)+ tq has

only non-negative coefficients it follows that all real roots are non-positive, hence

the unbounded roots must go to −∞ as k → ∞. �

Proof of Theorem 1.1. The assertion follows directly from Lemma 3.1 and Remark

2.5 if we set q = apd(I), f(t) = 1
(ℓ(I)−1)!

∑

K(I)
i=1 kit

apd(I)−i and fk(t) = P(I)(k, t) −

f(t) − tapd(I). �

A sequence a0, . . . , aq of real numbers is called log-concave if a2
i ≥ ai−1ai+1 for

1 ≤ i ≤ q − 1. We say that a non-necessarily log-concave sequence a0, . . . , aq is

strictly log-concave at i if a2
i > ai−1ai+1. Log-concavity of a sequence of strictly

positive numbers a0, . . . , aq implies that the sequence is unimodal, i.e. there is an

i such that a0 ≤ · · · ≤ ai ≥ · · · ≥ aq. This property is of interest in enumerative

combinatorics and combinatorial commutative algebra. In the sequel we want to

exhibit some facts that allow to deduce partial or full unimodality of the sequence

β0(S/Ik), . . . , βapd(I)(S/Ik) for large k.
9



The next remark identifies situations when we can expect strict log-concavity.

The part (i) is a trivial consequence of the definition and part (ii) is a well know

fact about real rooted polynomials (see for example [1] and the references therein).

Remark 3.2. (i) If a0, . . . , aq is a sequence of positive real numbers that is log-

concave then there are numbers 0 ≤ j1 ≤ j2 ≤ q such a0 < · · · < aj1 =

· · · = aj2 > · · · > aq. In particular, a0, . . . , aq is strictly log-concave at i for

1 ≤ i ≤ j1 and j2 ≤ i ≤ q − 1.

(ii) If a0 +a1t+ · · ·+aqt
q ∈ R[t] has only real roots then a0, . . . , aq is log-concave.

Corollary 3.3. Let I be a (graded) ideal in S. Assume that the coefficient series

of
∑

K(I)
i=1 ki · t

apd(I)−i is strictly log-concave at 1 ≤ i − 1, i, i + 1 ≤ apd(I) − 2. Then

for large k the sequence β0(S/Ik), β1(S/Ik), . . . , βapd(I)(S/Ik) is strictly log-concave

at i.

Proof. Using the notation from Theorem 1.1 we set

bk(t) =
1

(t − γ
(apd(I))
k )

P(I)(k, t)

and q = apd(I). Then bk(t) has roots converging to the roots of
∑

K(I)
i=1 ki · t

apd(I)−i.

Thus up to a constant factor the coefficients of bk(t) converge to the coefficients of
∑

K(I)
i=1 kit

q−i. Since the coefficients are continuous in terms of roots this implies that

the coefficient sequence of bk(t) is strictly log-concave for large k at i−1, i and i+1.

Now P(I)(k, t) =
∑q

i=0 Pi(I)(k)tq−k is obtained from bk(t) by multiplication with

(t − γ
(q)
k ). Set γ := −γ

(q)
k and write bk(t) = c0 + · · · + cq−2t

q−2 + cq−1t
q−1, where

cq−1 = 1. If k is large enough and we set c−1 = cq = 0 then βq−i(S/Ik) = γci + ci−1

for 0 ≤ i ≤ q. Hence strict log-concavity at i − 1, i and i + 1 for large k implies::

βq−i(S/Ik)2 − βq−i−1(S/Ik) · βq−i+1(S/Ik) = (γci + ci−1)
2 −

(γci−1 + ci−2)(γci+1 + ci)

= γ2(c2
i − ci−1ci+1) +

γ(ci−1ci − ci−2ci+1) + c2
i−1 − ci−2ci

> γ(ci−1ci − ci−2ci+1)

Multiplying ci−1ci − ci−2ci+1 by ci−1ci we obtain c2
i−1c

2
i − ci−2ci−1cici+1. Again

from strict log-concavity we know that c2
i−1 > ci−2ci and c2

i > ci−1ci+1. Since the

coefficients of bk(t) are positive as they are up to a constant close to the coefficients of
∑

K(I)
i=1 ki ·t

q−i it follows that c2
i−1c

2
i −ci−2ci−1cici+1 > 0 and hence ci−1ci−ci−2ci+1 > 0.

�

Example 3.4. Let I be generated by a regular sequence of length n. By using

the Eagon-Northcott complex we see that βi(S/Ik) =
(

k+n−1
n−i

)(

k−2+i

i−1

)

for 1 ≤ i ≤
10



Figure 1. Root loci for Example 3.4 and parameters n = 20, k ∈ {1, . . . , 40}

apd(I) = n. Thus

q
∑

i=0

Pi(I)(k)tn−k = tn +
n

∑

i=1

(

k + n − 1

n − i

)(

k − 2 + i

i − 1

)

tn−i.

In particular,

ki =
(n − 1)!

(n − i)!(i − 1)!

and therefore

n
∑

i)=1

kit
n−i =

n
∑

i=1

(n − 1)!

(n − i)!(i − 1)!
tn−i

=
n−1
∑

i=0

(

n − 1

i

)

tn−1−i

=
1

(n − 1)!
(1 + t)n−1
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Indeed this calculation is predicted by Corollary 2.8 when I is the maximal (graded)

ideal in a polynomial ring. The calculation implies that all αi from Theorem 1.1

are equal to −1 and the coefficient series is the sequence of binomial coefficients

which is strictly log-concave. Hence Corollary 3.3 applies. Thus for large k the

sequence β0(S/Ik), . . . , βn(S/Ik) is strictly log-concave and hence unimodal. Clearly,

this consequences of Corollary 3.3 can also be easily checked by inspection of the

sequence β0(S/Ik) = 1, βi(S/mk) =
(

k+n−1
n−i

)(

k−2+i

i−1

)

, 1 ≤ i ≤ n in this case. This

example also shows that the fact that all roots of
∑apd(I)

i)=1 kit
apd(I)−i are real does not

force the roots of
∑n

i=0 Pi(I)(k)tn−i to be real for large k. Indeed, one can check

that no root except for the two roots forced by Theorem 1.1 and depending on the

parity of n one additional root of
∑q

i=0 Pi(I)(k)tq−k are real. In Figure 1 we have

depicted the roots for n = 20 and k from 1 to 40 in this example with the imaginary

axis being vertical and the real axis being horizontal. Indeed, the real root going to

−∞ is only seen for small k as it leaves the axis range already for small values of k.

One easily recognizes the root curves converging to −1 in conjugate pairs.

Following the same argumentation as in Example 3.4 we deduce from Corollary

2.8 and Corollary 3.3 the last result of this paper.

Corollary 3.5. Let I ⊂ S be a monomial ideal generated in a single degree with

dim S/I = 0. Suppose that I has linear relations. Then for large k the sequence

β0(S/Ik), . . . , βn(S/Ik) is strictly log-concave and hence strictly unimodal.

We do not know any ideal I for which the conclusion of Corollary 3.5 does not

hold. But we do not see enough evidence to formulate a conjecture.
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