Main content

This entry is from Winter semester 2016/17 and might be obsolete. You can find a current equivalent here.

CS 460 — Theoretical Computer Science
(dt. Theoretische Informatik)

Level, degree of commitment Advanced module, depends on importing study program
Forms of teaching and learning,
Lecture (4 SWS), recitation class (2 SWS),
270 hours (90 h attendance, 180 h private study)
Credit points,
formal requirements
9 CP
Course requirement(s): Written examination
Examination type: Successful completion of at least 50 percent of the points from the weekly exercises as well as at least 2 presentations of the tasks.
The grading is done with 0 to 15 points according to the examination regulations for the degree program B.Sc. Computer Science.
Subject, Origin Computer Science, B.Sc. Computer Science
One semester,
each winter semester
Person in charge of the module's outline Prof. Dr. H.-Peter Gumm, Prof. Dr. Rita Loogen


  • Automata theory and formal languages: grammars and the Chomsky hierarchy, finite automata and regular expressions, context-free grammars and push-down automata, closure properties of formal languages, decidability questions
  • Computability: models of computability: Turing, Loop and While-computability, primitive recursion and μ-recursion, Church-Turing thesis; decidability, enumerability, undecidable problems
  • Complexity theory: complexity measures; P and NP; reductions and NP-complete problems

Qualification Goals

Basic knowledge in core areas of theoretical computer science, in detail:

  • Dealing with regular expressions, finite automata and grammars. Recognizing the possibilities and limitations,
  • Understanding formal models of computing,
  • Principal limits of algorithmic computing,
  • Limits of efficient problem solving,
  • Practice of scientific working methods (recognition, formulation, solving problems, training of abstraction skills),
  • Training of oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.


Translation is missing. Here is the German original:

Keine. Empfohlen werden mathematische Grundkenntnisse, wie sie in den Basismodulen Grundlagen der linearen Algebra und Grundlagen der Analysis vermittelt werden.

Recommended Reading

  • E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson Studium, 2002.
  • U. Schöning: Theoretische Informatik – kurzgefasst, Spektrum 2008.
  • G. Vossen, K.-U. Witt: Grundkurs der Theoretischen Informatik, Vieweg 2011.
  • D.W. Hoffmann: Theoretische Informatik, Hanser Verlag 2009.
  • H.P.Gumm, M.Sommer: Einführung in die Informatik, Kapitel 9, Oldenbourg 2009.

Please note:

This page describes a module according to the latest valid module guide in Winter semester 2016/17. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.