Main content
This entry is from Winter semester 2016/17 and might be obsolete. No current equivalent could be found.
Applied Functional Analysis
(dt. Angewandte Funktionalanalysis)
Level, degree of commitment | Specialization module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Written or oral examination Examination type: Successful completion of at least 50 percent of the points from the weekly exercises. |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Duration, frequency |
One semester, Regularly alternating with Functional Analysis |
Person in charge of the module's outline | Prof. Dr. Ilka Agricola, Prof. Dr. Stephan Dahlke |
Contents
Banach and Hilbert spaces, theorems of Hahn and Banach, function spaces, continuation and embedding theorems, elliptic partial differential equations
Qualification Goals
The students should
- learn to recognize and appreciate the relevance of functional analytic methods to practical problems, such as those in numerics, and acquire the functional analytic tools to solve these problems,
- learn how methods of linear algebra, analysis and topology interact,
- re-evaluate knowledge from the basic modules and some advanced modules (e.g., "Function Theory and Vector Analysis"),
- recognize the relationships of functional analysis to other areas of mathematics and to other sciences.
- practice mathematical working methods (developing mathematical intuition and its formal justification, training the ability to abstract, reasoning)
- improve their oral communication skills in exercises by practicing free speech in front of an audience and in discussion.
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen vermittelt werden und Kenntnisse der allgemeinen Integrationstheorie aus Maß- und Integrationstheorie oder Funktionentheorie und Vektoranalysis.
Applicability
Module imported from M.Sc. Mathematics.
It can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- B.Sc. Business Mathematics
- M.Sc. Computer Science
- M.Sc. Mathematics
- M.Sc. Business Mathematics
- LAaG Mathematics
When studying LAaG Mathematics, this module can be attended in the study area Specialization Modules.
Die Wahlmöglichkeit des Moduls ist dadurch beschränkt, dass es der Angewandten Mathematics zugeordnet ist.
Recommended Reading
- Dobrowolski, M., Angewandte Funktionalanalysis, Springer 2006
- Alt, H.W. , Lineare Funktionalanalysis, Springer 1999
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2016/17. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24 (no corresponding element)
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.