Main content
This entry is from Winter semester 2016/17 and might be obsolete. No current equivalent could be found.
Regularity Theory of Elliptic Partial Differential Equations
(dt. Regularitätstheorie elliptischer partieller Differentialgleichungen)
Level, degree of commitment | Specialization module, depends on importing study program |
Forms of teaching and learning, workload |
Lecture (3 SWS), recitation class (1 SWS), 180 hours (60 h attendance, 120 h private study) |
Credit points, formal requirements |
6 CP Course requirement(s): Written or oral examination Examination type: Successful completion of at least 50 percent of the points from the weekly exercises. |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Origin | M.Sc. Mathematics |
Duration, frequency |
One semester, irregular |
Person in charge of the module's outline | Prof. Dr. Stephan Dahlke |
Contents
- Elliptic partial differential equations
- variational formulation
- function spaces
- Regularity of solutions in Sobolev and Besov spaces
Qualification Goals
Students will
- Recognize the relevance of regularity theory to practical problems, especially to the numerical treatment of partial differential equations, and acquire knowledge of the basic principles of regularity estimation
- learn how methods from functional analysis, numerics, and approximation theory work together
- re-evaluate knowledge from basic and advanced modules
- recognize the relations of regularity theory to other areas of mathematics and to other sciences
- practice mathematical working methods (developing mathematical intuition and its formal justification, training the ability to abstract, reasoning)
- improve their oral communication skills in exercises by practicing free speech in front of an audience and in discussion
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Modul Numerik (Numerische Basisverfahren) vermittelt werden.
Applicability
The module can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- B.Sc. Business Mathematics
- M.Sc. Computer Science
- M.Sc. Mathematics
- M.Sc. Business Mathematics
When studying M.Sc. Mathematics, this module can be attended in the study area Specialization Modules in Mathematics.
The module can also be used in other study programs (export module).
Die Wahlmöglichkeit des Moduls ist dadurch beschränkt, dass es der Angewandten Mathematics zugeordnet ist.
Recommended Reading
- Theorie und Numerik elliptischer Differentialgleichungen, W. Hackbusch, Teubner Studienbücher (1996)
- Elliptic Boundary Value Problems in Domains with Point Singularities, V- Kozlov, V. Maz'ya und J. Rossmann, American Mathematical Society (1997)
- Elliptic Problems in Nonsmooth Domains, P. Grisvard, Pitman, Boston, (1985)
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2016/17. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24 (no corresponding element)
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.