Main content
This entry is from Winter semester 2016/17 and might be obsolete. No current equivalent could be found.
Combinatorics (Large Specialization Module)
(dt. Kombinatorik (Großes Vertiefungsmodul))
Level, degree of commitment | Specialization module, depends on importing study program |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Written or oral examination Examination type: Successful completion of at least 50 percent of the points from the weekly exercises. |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Subject, Origin | Mathematics, M.Sc. Mathematics |
Duration, frequency |
One semester, irregular |
Person in charge of the module's outline | Prof. Dr. Volkmar Welker |
Contents
Basic combinatorial structures (e.g. set systems, graphs, etc.) are introduced and their central properties are derived. The competence for a deeper analysis of the structures is imparted by means of extreme, probabilistic, geometric or algebraic methods.
Qualification Goals
Students can
- derive basic properties of combinatorial structures,
- recognize and analyze combinatorial structures in different contexts,
- apply methods from other areas of mathematics to the analysis of combinatorial structures.
They deepen
- the practice of mathematical methods (development of mathematical intuition and its formal justification, training of the ability to abstract, proof methods),
- in the recitation classes, their oral communication skills through discussion and free speech in front of an audience.
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Diskrete Mathematik vermittelt werden, sowie ggf. je nach Schwerpunktsetzung eines der Aufbaumodule Elementare Stochastik oder Algebra.
Recommended Reading
- N. Alon, J. Spencer, The probabilistic method, Wiley, 2008.
- I. Anderson, Combinatorics of finite sets, Dover, 2011.
- S. Jukna, Extremal combinatorics, Springer, 2011.
- B. Sturmfels, E. Miller, Combinatorial commutative algebra, Springer, 2005.
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2016/17. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24 (no corresponding element)
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.