Hauptinhalt
Dieser Eintrag ist aus dem Sommersemester 2018 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
Kombinatorik (kleines Vertiefungsmodul)
(engl. Combinatorics (Small Specialization Module))
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (3 SWS), Übung (1 SWS) oder Vorlesung (2 SWS), Seminar (2 SWS), 180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
6 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben oder Vortrag mit schriftlicher Ausarbeitung. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Exportfach, Ursprung | Mathematik, M.Sc. Mathematik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Unregelmäßig |
Modulverantwortliche(r) | Prof. Dr. Volkmar Welker |
Inhalt
Es werden spezielle kombinatorische Strukturen und deren mathematischer Kontext untersucht. Spezialisierte Methoden zur Untersuchung von Strukturen werden erarbeitet und angewandt. Die möglichen Rückschlüsse auf den mathematischen Kontext, in dem die Strukturen auftreten, werden herausgearbeitet.
Qualifikationsziele
Die Studierenden können
- spezialisierte kombinatorische Strukturen analysieren,
- auf spezielle kombinatorische Strukturen zugeschnittene Methoden anwenden,
- kombinatorische Strukturen im Kontext anderer mathematischer Disziplinen erkennen und untersuchen.
Sie vertiefen
- die Einübung mathematischer Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Diskussion und freie Rede vor einem Publikum.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Diskrete Mathematik vermittelt werden, sowie ggf. je nach Schwerpunktsetzung eines der Aufbaumodule Elementare Stochastik oder Algebra.
Literatur
- A. Björner, F. Brenti, Combinatorics of Coxeter groups, Springer, 2005.
- B. Bollobas, Random graphs, Cambridge, 2001.
- M. de Longueville, A course in topological combinatorics, Springer, 2012.
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Sommersemester 2018 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.