Hauptinhalt
Dieser Eintrag ist aus dem Sommersemester 2018 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.
Stochastische Prozesse
(engl. Stochastic Processes)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (3 SWS), Übung (1 SWS), 180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
6 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Wirtschaftsmathematik. |
Exportfach, Ursprung | Mathematik, M.Sc. Wirtschaftsmathematik, M.Sc. Wirtschaftsmathematik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Vertiefungsmodulen |
Modulverantwortliche(r) | Prof. Dr. Markus Bibinger, Prof. Dr. Hajo Holzmann |
Inhalt
Die Vorlesung setzte die Wahrscheinlichkeitstheorie fort und führt in verschiedene Klassen von stochastischen Prozessen ein. Je nach Veranstaltung liegt der Fokus auf einem oder mehreren der Gebiete Martingale, Markov Prozesse, Punktprozesse, stationäre Prozesse, oder Elementen der stochastischen Analysis.
Qualifikationsziele
Die Studierenden sollen
- Grundlagen der Theorie der stochastischen Prozesse in kontinuierlicher Zeit erwerben,
- Techniken der Konstruktion und Analyse von stochastischen Prozessen beherrschen,
- an ein aktuelles wissenschaftliches Gebiet herangeführt werden,
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen sowie im Vertiefungsmodul Wahrscheinlichkeitstheorie vermittelt werden.
Literatur
- Abhängig von der Veranstaltung
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Sommersemester 2018 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.