Main content
This entry is from Summer semester 2018 and might be obsolete. You can find a current equivalent here.
Partial Differential Equations
(dt. Partielle Differentialgleichungen)
Level, degree of commitment | Specialization module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement(s): Written or oral examination Examination type: Successful completion of at least 50 percent of the points from the weekly exercises. |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Duration, frequency |
One semester, Regularly alternating with other advanced modules im Gebiet Analysis |
Person in charge of the module's outline | Prof. Dr. Ilka Agricola, Prof. Dr. Stephan Dahlke, Prof. Dr. Pablo Ramacher |
Contents
- classical partial differential equations (Laplace equation, wave equation, heat equation)
- distributions, fundamental solutions of differential operators, Sobolev spaces
- weak solutions, boundary value problems for partial differential equations
Qualification Goals
The students shall
- Learn about and be able to use differential equations as a means of mathematical modeling,
- Apply results from functional analysis to the systematic theory of partial differential equations,
- practice mathematical working methods (development of mathematical intuition and its formal justification, training of the ability to abstract, proof techniques),
- improve their oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen Analysis und Lineare Algebra vermittelt werden, und Grundkenntnisse der Funktionalanalysis und Lebesgue-Integration.
Applicability
Module imported from M.Sc. Mathematics.
It can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- B.Sc. Business Mathematics
- M.Sc. Computer Science
- M.Sc. Mathematics
- M.Sc. Business Mathematics
- LAaG Mathematics
When studying LAaG Mathematics, this module can be attended in the study area Specialization Modules.
Die Wahlmöglichkeit des Moduls ist dadurch beschränkt, dass es der Reinen Mathematics zugeordnet ist.
Recommended Reading
- Lawrence Evans, Partial differential equations. AMS, 1998.
- G.B. Folland, Introduction to Partial Differential Equations,
- Princeton University Press, 1995.
Please note:
This page describes a module according to the latest valid module guide in Summer semester 2018. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.