Main content

This entry is from Winter semester 2018/19 and might be obsolete. You can find a current equivalent here.

Numerical Solution Methods for Finite Dimensional Problems
(dt. Numerik endlichdimensionaler Probleme)

Level, degree of commitment Specialization module, compulsory elective module
Forms of teaching and learning,
workload
Lecture (4 SWS), recitation class (2 SWS),
270 hours (90 h attendance, 180 h private study)
Credit points,
formal requirements
9 CP
Course requirement(s): Written or oral examination
Examination type: Successful completion of at least 50 percent of the points from the weekly exercises.
Language,
Grading
German,
The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics.
Duration,
frequency
One semester,
Jedes zweite Wintersemester
Person in charge of the module's outline Prof. Dr. Stephan Dahlke

Contents

Methods for eigenvalue problems of matrices, fast iteration methods for large systems of equations. Selected additions, such as curve tracking for nonlinear equation systems or fast decomposition methods (FFT, wavelet transformation)


Qualification Goals

The students shall

  • be empowered to classify practical problems in relation to applicable methods and the effort involved,
  • deal with different methods, their different applications and the differences in efficiency and universality of the methods,
  • see how to build up and analyze solution methods from different basic methods for complex tasks,
  • learn about the development of efficient methods by combining building blocks of different characteristics in the core topic of iterative methods for large systems of equations,
  • practice mathematical working methods (development of mathematical intuition and its formal justification, training of the abstraction capability, proof techniques),
  • improve their oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.

Prerequisites

Translation is missing. Here is the German original:

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Numerische Basisverfahren vermittelt werden.


Applicability

Module imported from M.Sc. Mathematics.

It can be attended at FB12 in study program(s)

  • B.Sc. Mathematics
  • B.Sc. Business Mathematics
  • M.Sc. Data Science
  • M.Sc. Computer Science
  • M.Sc. Mathematics
  • M.Sc. Business Mathematics
  • LAaG Mathematics

When studying M.Sc. Data Science, this module can be attended in the study area Advanced and Specialization Modules in Mathematics.

Die Wahlmöglichkeit des Moduls ist dadurch beschränkt, dass es dem Schwerpunkt Scientific Computing zugeordnet ist.


Recommended Reading

  • Stoer, J., Bulirsch, R.: Numerische Mathematik II, Springer, 2000;
  • Golub, G., van Loan, C.: Matrix Computations, The Johns Hopkins University Press, 1990;
  • Hanke-Bourgeois, M.: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Teubner, 2002.



Please note:

This page describes a module according to the latest valid module guide in Winter semester 2018/19. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.