Main content
This entry is from Winter semester 2019/20 and might be obsolete. No current equivalent could be found.
Adaptive Numerical Methods for Operator Equations
(dt. Adaptive Numerische Verfahren für Operatorgleichungen)
Level, degree of commitment | Specialization module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (3 SWS), recitation class (1 SWS), 180 hours (60 h attendance, 120 h private study) |
Credit points, formal requirements |
6 CP Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises. Examination type: Written or oral examination |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Mathematics. |
Duration, frequency |
One semester, irregular |
Person in charge of the module's outline | Prof. Dr. Stephan Dahlke |
Contents
- Elliptic partial differential equations
- weak solutions
- Galerkin method
- finite elements
- a-posteriori error estimators
- adaptive refinement strategies
- Wavelets, compressibility
Qualification Goals
The students shall
- To recognize the relevance of adaptive approximation techniques for practical problems, especially for the numerical treatment of elliptic partial differential equations, and to acquire knowledge of the basic principles of error estimator design and refinement strategies,
- learn how methods from functional analysis, numerical analysis and approximation theory interact,
- Re-evaluate knowledge from basic and advanced modules,
- practice mathematical working methods (development of mathematical intuition and its formal justification, training of the ability to abstract, proof techniques),
- improve their oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.
Prerequisites
None. The competences taught in the following modules are recommended: either Foundations of Mathematics and Linear Algebra I and Linear Algebra II or Basic Linear Algebra, either Analysis I and Analysis II or Basic Real Analysis, Numerical Analysis.
Applicability
The module can be attended at FB12 in study program(s)
- B.Sc. Mathematics
- B.Sc. Business Mathematics
- M.Sc. Computer Science
- M.Sc. Mathematics
- M.Sc. Business Mathematics
When studying M.Sc. Mathematics, this module can be attended in the study area Specialization Modules in Mathematics.
The module can also be used in other study programs (export module).
Die Wahlmöglichkeit des Moduls ist dadurch beschränkt, dass es der Angewandten Mathematics zugeordnet ist.
Recommended Reading
- Theorie und Numerik elliptischer Differentialgleichungen, W. Hackbusch, Teubner Studienbücher (1996)
- Numerical Analysis of Wavelet Methods, A. Cohen, North-Holland (2003)
- A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, R. Verführt, Wiley Series Advances in Numerical Mathematics. Chichester: Wiley. Stuttgart: B.G. Teubner (1996)
- Adaptive Approximations- und Diskretisierungsverfahren, T. Raasch, Vorlesungsskript, Universität Mainz (2009)
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2019/20. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17
- Summer 2018
- Winter 2018/19
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24 (no corresponding element)
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.