Hauptinhalt

Dieser Eintrag ist aus dem Sommersemester 2021 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.

CS 516 — Inhaltsbasierte Bild- und Videoanalyse
(engl. Content-based Image and Video Analysis)

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, Wahlpflichtmodul
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (2 SWS), Übung (2 SWS),
180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
6 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben und mündliche Präsentation der Lösung von mindestens zwei der Übungsaufgaben.
Prüfungsleistung: Mündliche Prüfung oder Klausur
Sprache,
Benotung
Deutsch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Informatik.
Dauer des Moduls,
Häufigkeit
Ein Semester,
Im Wechsel mit anderen Vertiefungsmodulen
Modulverantwortliche(r) Prof. Dr. Bernd Freisleben, Dr. Markus Mühling

Inhalt

Die Vorlesung beschäftigt sich mit Verfahren zur inhaltsbasierten Bild-

und Videoanalyse. Folgende Themen werden behandelt:

  • Grundlagen der Bild- und Videoverarbeitung
  • Maschinelles Lernen
  • Grundlagen von tiefen neuronalen Netzen (CNN, LSTM)
  • Schnitterkennung
  • Bilderkennung
  • Ähnlichkeitssuche
  • Bildsegmentierung
  • Personenerkennung
  • Text Spotting

Qualifikationsziele

Das Lernziel des Moduls ist, die für die inhaltsbasierte Analyse von Bild- und Videodaten notwendigen Methoden zu verstehen und anwenden zu können. Hierzu zählen Methoden der Bild- und Bewegtbildverarbeitung und des maschinellen Lernens. Nach dem Besuch des Moduls sollten die HörerInnen Software-Systeme zur Bilderkennung konzipieren und basierend auf Deep Learning Bibliotheken (Caffe, Tensorflow, …) implementieren können. Des Weiteren üben die Studierenden wissenschaftliche Arbeitsweisen durch Schulung des Abstraktionsvermögens sowie das Erkennen, Formulieren und Lösen von Problemen.


Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen zur Praktischen Informatik vermittelt werden. Darüber hinaus ist Programmiererfahrung in Python und C++ empfehlenswert und Grundkenntnisse in Linux sind hilfreich.


Verwendbarkeit

Importmodul aus dem M.Sc. Informatik.

Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen

  • B.Sc. Data Science
  • B.Sc. Informatik
  • M.Sc. Data Science
  • M.Sc. Informatik

Im Studiengang B.Sc. Data Science kann das Modul im Studienbereich Informatik Wahlpflichtmodule absolviert werden.


Literatur

  • Wird in der Veranstaltung bekanntgegeben.



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Sommersemester 2021 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.