Hauptinhalt

Dieser Eintrag ist aus dem Sommersemester 2021 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.

CS 572 — Information Retrieval
(engl. Information Retrieval)

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, abhängig vom importierenden Studiengang
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (2 SWS), Übung (2 SWS),
180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
6 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben und mündliche Präsentation der Lösung von mindestens zwei der Übungsaufgaben.
Prüfungsleistung: Mündliche Prüfung oder Klausur
Sprache,
Benotung
Deutsch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Data Science.
Exportfach, Ursprung Informatik, M.Sc. Data Science
Dauer des Moduls,
Häufigkeit
Ein Semester,
Zweijährlich im Sommersemester
Modulverantwortliche(r) Prof. Dr. Bernhard Seeger

Inhalt

  • Qualitätskriterien für das Information Retrieval
  • Modelle für das Information Retrieval
  • Architektur von Systemen für Information Retrieval
  • Indexmethoden und Indexaufbau
  • Anfrageerweiterung
  • IR im Web
  • Multimedia-Retrieval

Qualifikationsziele

Die Studierenden sollen

  • Kenntnisse der wichtigsten Modelle für das Information Retrieval erwerben,
  • einen Überblick über die Architektur von IR Systemen bekommen,
  • Indexierungstechniken kennen,
  • Optimierung von Anfragen in IR verstehen,
  • Kenntnisse in Anwendungen von IR im Bereich Web und Multimedia erwerben,
  • wissenschaftliche Arbeitsweisen (Erkennen, Formulieren, Lösen von Problemen, Schulung des Abstraktionsvermögens) einüben,
  • mündliche Kommunikationsfähigkeit in den Übungen durch Einüben der freien Rede vor einem Publikum und bei der Diskussion einüben.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in dem Modul Algorithmen und Datenstrukturen vermittelt werden.


Literatur

  • Manning, Raghavan, Schütze: Introduction to Information Retrieval, Cambridge University Press
  • Baeza-Yates, Ribeiro-Neto: Modern Information Retrieval, Addison Wesley
  • Ferber: Information Retrieval-Suchmodelle und Data-Mining-Verfahren für Textsammlungen und das Web, dpunkt Verlag
  • Henrich: Information Retrieval - Grundlagen, Modelle und Anwendungen



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Sommersemester 2021 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.