Hauptinhalt
Dieser Eintrag ist aus dem Sommersemester 2021 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
Algebraische Topologie
(engl. Algebraic Topology)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Unregelmäßig |
Modulverantwortliche(r) | Prof. Dr. Sönke Rollenske, Prof. Dr. Volkmar Welker |
Inhalt
Es werden algebraische Invarianten von topologischen Räumen konstruiert (Homologie, Kohomologie oder Homotopie). Als Anwendendung bekommt man elegante Lösungen für klassische Probleme der Topologie (Invarianz der Dimension, Fixpunktsätze).
Qualifikationsziele
Die Studierenden
- kennen grundlegende topologische Konstruktionen,
- können algebraische Invarianten nutzen, um topologische Fragestellunge zu lösen,
- können funktorielle Zusammenhänge erkennen und benutzen.
Sie vertiefen
- die Einübung mathematischer Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Diskussion und freie Rede vor einem Publikum.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und dem Aufbaumodul Algebra sowie einer einführenden Veranstaltung über Topologie vermittelt werden.
Verwendbarkeit
Importmodul aus dem M.Sc. Mathematik.
Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Mathematik
- M.Sc. Informatik
- M.Sc. Mathematik
- LAaG Mathematik
Im Studiengang M.Sc. Informatik kann das Modul im Studienbereich Nebenfach Mathematik absolviert werden.
Literatur
- Hatcher, Allen Algebraic topology. Cambridge University Press, Cambridge, 2002.
- May, J. P. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Sommersemester 2021 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.