Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2021/22 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
Spezialverfahren für Anfangswertprobleme
(engl. Special Methods for Initial Value Problems)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (3 SWS), Übung (1 SWS), 180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
6 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Vertiefungsmodulen |
Modulverantwortliche(r) | Prof. Dr. Stephan Dahlke |
Inhalt
Verfahren und Begriffe für Anfangswertprobleme mit besonderen Problemanforderungen, wie große, steife Probleme, Probleme mit Erhaltungssätzen. Parallele Verfahren
Qualifikationsziele
Die Studierenden sollen
- die Grenzen der üblichen Standardverfahren erkennen, wenn besondere Anforderungen aus Problemstellung oder Rechnerarchi-tektur in den Vordergrund treten,
- die theoretischen Hintergründe und praktische Lösungsansätze für diese Anforderung kennen lernen um in konkreten Fällen eine problemadäquate Verfahrenswahl treffen zu können,
- hier beispielhaft nachvollziehen, wie Entwicklungen in Naturwissen-schaften und Informatik die Angewandte Mathematik beeinflussen,
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Numerik vermittelt werden.
Verwendbarkeit
Importmodul aus dem M.Sc. Mathematik.
Es kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Mathematik
- B.Sc. Wirtschaftsmathematik
- M.Sc. Informatik
- M.Sc. Mathematik
- M.Sc. Wirtschaftsmathematik
Im Studiengang B.Sc. Wirtschaftsmathematik kann das Modul im Studienbereich Vertiefungsbereich absolviert werden.
Das Modul ist dem Schwerpunkt Numerik/Optimierung zugeordnet. Weitere Informationen zur Wählbarkeit sind der Bereichsbeschreibung zu entnehmen.
Literatur
- Strehmel, K., Weiner, R.: Numerik gewöhnlicher Differentialgleichungen, Teubner, 1995;
- Burrage, K: Parallel and sequential methods for ordinary differential equations, Clarendon Press;
- Hairer, E., Luchich, C., Wanner, G.: Geometric numerical integration – Structure-preserving algorithms for ordinary differential equations, Springer.
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2021/22 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.