Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2021/22 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.
CS 592 — Künstliche Intelligenz
(engl. Artificial Intelligence)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (2 SWS), Übung (2 SWS), 180 Stunden (60 Std. Präsenzzeit, 120 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
6 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben und mündliche Präsentation der Lösung von mindestens zwei der Übungsaufgaben. Prüfungsleistung: Mündliche Prüfung oder Klausur |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Informatik. |
Exportfach, Ursprung | Informatik, M.Sc. Informatik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Jedes zweite Wintersemester |
Modulverantwortliche(r) | Prof. Dr. Alfred Ultsch |
Inhalt
- Programmieren in Prolog/ Prädikatenlogik /Constraints
- Wissen, Wissensrepräsentation, Inferenz
- Struktur wissensbasierter Systeme
- Wahrscheinlichkeitsbasiertes Schließen
- DS und Fuzzy Inferenz
- Knowledge Engineering und maschinelles Lernen
- Nichtklassische Logiken
- Praxis der wissensbasierten Systeme /Agentensystem
Qualifikationsziele
Die Studierenden sollen
- Fertigkeiten und Kenntnis der wichtigsten KI-Methoden und deren Anwendung in der Praxis kennenlernen,
- wissensbasierter Inferenzsysteme in Prädikatenlogik (Prolog) erstellen können,
- Wissensrepräsentationsformen verwenden können,
- über Kenntnisse von Problemlösungs-, Such- und Planungsalgorithmen verfügen,
- einen Überblick über gebräuchliche Methoden des Schätzen: Bayes, Demster/Shafer, Fuzzy Inferenz besitzen,
- Methoden des Wissenserwerbs aus dem Bereich des maschinellen Lernen und Knowledge Engineering kennen,
- einen Einblick in nicht-klassische Logiken besitzen,
- wissenschaftlicher Arbeitsweisen einüben (Erkennen, Formulieren, Lösen von Problemen, Schulung des Abstraktionsvermögens),
- mündliche Kommunikationsfähigkeit in den Übungen durch Einüben der freien Rede vor einem Publikum trainieren.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen aus den Basismodulen zur Informatik und Knowledge Discovery.
Literatur
- W.F. Clocksin, C.S. Mellish: Programming in Prolog, Springer, 2003.
- S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002.
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2021/22 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.