Hauptinhalt

Dieser Eintrag ist aus dem Wintersemester 2021/22 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.

Algebraische Topologie
(engl. Algebraic Topology)

Niveaustufe, Verpflichtungsgrad Vertiefungsmodul, abhängig vom importierenden Studiengang
Lehr- und Lernformen,
Arbeitsaufwand
Vorlesung (4 SWS), Übung (2 SWS),
270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium)
Leistungspunkte,
Voraussetzungen zum Erwerb
9 LP
Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben.
Prüfungsleistung: Klausur oder mündliche Prüfung
Sprache,
Benotung
Deutsch,
Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik.
Exportfach, Ursprung Mathematik, M.Sc. Mathematik
Dauer des Moduls,
Häufigkeit
Ein Semester,
Unregelmäßig
Modulverantwortliche(r) Prof. Dr. Sönke Rollenske, Prof. Dr. Volkmar Welker

Inhalt

Es werden algebraische Invarianten von topologischen Räumen konstruiert (Homologie, Kohomologie oder Homotopie). Als Anwendendung bekommt man elegante Lösungen für klassische Probleme der Topologie (Invarianz der Dimension, Fixpunktsätze).


Qualifikationsziele

Die Studierenden

  • kennen grundlegende topologische Konstruktionen,
  • können algebraische Invarianten nutzen, um topologische Fragestellunge zu lösen,
  • können funktorielle Zusammenhänge erkennen und benutzen.

Sie vertiefen

  • die Einübung mathematischer Arbeitsweisen (Entwicklung mathematischer Intuition und deren formale Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
  • in den Übungen ihre mündliche Kommunikationsfähigkeit durch Diskussion und freie Rede vor einem Publikum.

Voraussetzungen

Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und dem Aufbaumodul Algebra sowie einer einführenden Veranstaltung über Topologie vermittelt werden.


Literatur

  • Hatcher, Allen Algebraic topology. Cambridge University Press, Cambridge, 2002.
  • May, J. P. A concise course in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999



Bitte beachten Sie:

Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2021/22 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:

Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.

Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.