Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2021/22 und möglicherweise veraltet. Es konnte kein aktuelles Äquivalent gefunden werden.
Mathematische Statistik
(engl. Mathematical Statistics)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, abhängig vom importierenden Studiengang |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Wirtschaftsmathematik. |
Exportfach, Ursprung | Mathematik, M.Sc. Wirtschaftsmathematik, M.Sc. Wirtschaftsmathematik |
Dauer des Moduls, Häufigkeit |
Ein Semester, Regelmäßig im Wechsel mit anderen Vertiefungsmodulen |
Modulverantwortliche(r) | Prof. Dr. Markus Bibinger, Prof. Dr. Hajo Holzmann |
Inhalt
- Statistik im linearen Modell
- Statistische Modelle, exponentielle Familien, Suffizienz von Statistiken
- Grundlagen der Entscheidungstheorie, Minimax – und Bayesansatz, Zulässigkeit und das Stein-Phänomen
- Unverfälschte Minimum-Varianz Schätzung
- Testtheorie, Neyman-Pearson Lemma, UMP und UMPU Tests
- Asymptotische Schätztheorie
Qualifikationsziele
Die Studierenden sollen
- die Grundbegriffe der mathematischen Statistik kennenlernen,
- einige wichtige Verfahren der Statistik kennn- und anwenden lernen,
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen, im Vertiefungsmodul Wahrscheinlichkeitstheorie und im Praktikum zur Stochastik vermittelt werden.
Literatur
- Casella, G. und Berger, R. L. „Statistical Inference“, Duxbury 2002
- Shao, J., „Mathematical Statistics“, Springer 2003.
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2021/22 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24 (kein Äquivalent)
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.