Hauptinhalt
Dieser Eintrag ist aus dem Wintersemester 2021/22 und möglicherweise veraltet. Ein aktuelles Äquivalent finden Sie hier.
Numerik von Differentialgleichungen
(engl. Numerical Solution Methods for Differential Equations)
Niveaustufe, Verpflichtungsgrad | Vertiefungsmodul, Wahlpflichtmodul |
Lehr- und Lernformen, Arbeitsaufwand |
Vorlesung (4 SWS), Übung (2 SWS), 270 Stunden (90 Std. Präsenzzeit, 180 Std. Selbststudium) |
Leistungspunkte, Voraussetzungen zum Erwerb |
9 LP Studienleistung(en): Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Sprache, Benotung |
Deutsch,Die Benotung erfolgt mit 0 bis 15 Punkten gemäß der Prüfungsordnung für den Studiengang M.Sc. Mathematik. |
Dauer des Moduls, Häufigkeit |
Ein Semester, Jedes zweite Wintersemester |
Modulverantwortliche(r) | Prof. Dr. Stephan Dahlke |
Inhalt
Ergänzende Grundlagen zu Differentialgleichungen, Verfahren für gewöhnliche Anfangs- und Randwertprobleme, z.B. auch für steife Probleme. Standardverfahren für partielle Differentialgleichungen.
Qualifikationsziele
Die Studierenden sollen
- generell lernen, numerische Verfahren in Bezug auf Anwendbarkeit und Zweckmäßigkeit einzuschätzen,
- in die Diskretisierung von Differentialgleichungen eingeführt werden unter Einschluss von Methoden zur Schätzung und Steuerung der unvermeidlichen Approximationsfehler,
- die Klassifikation verschiedener Problemformen bei Differentialgleichungen und die angemessene Auswahl von Verfahren kennenlernen,
- erkennen, wie stark die theoretische Analyse die Rahmenbedingungen für numerische Verfahren festlegt; insbesondere soll die Bedeutung funktionalanalytischer Konzepte für numerische Fragestellungen klar werden,
- mathematische Arbeitsweisen einüben (Entwickeln von mathematischer Intuition und deren formaler Begründung, Schulung des Abstraktionsvermögens, Beweisführung),
- in den Übungen ihre mündliche Kommunikationsfähigkeit durch Einüben der freien Rede vor einem Publikum und bei der Diskussion verbessern.
Voraussetzungen
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Numerische Basisverfahren vermittelt werden.
Verwendbarkeit
Das Modul kann im FB12 verwendet werden im Studiengang bzw. in den Studiengängen
- B.Sc. Mathematik
- B.Sc. Wirtschaftsmathematik
- M.Sc. Data Science
- M.Sc. Informatik
- M.Sc. Mathematik
- M.Sc. Wirtschaftsmathematik
- LAaG Mathematik
Im Studiengang M.Sc. Mathematik kann das Modul im Studienbereich Vertiefungsbereich Mathematik absolviert werden.
Das Modul kann auch in anderen Studiengängen absolviert werden (Exportmodul).
Das Modul ist der Angewandten Mathematik zugeordnet. Weitere Informationen zur Wählbarkeit sind der Bereichsbeschreibung zu entnehmen.
Literatur
- Deuflhard, P., Bornemann, F.: Numerische Mathematik II, de Gruyter 2002;
- Strehmel, K., Weiner, R.: Numerik gewöhnlicher Differentialgleichungen, Teubner, 1995;
- Hanke-Bourgeois, M.: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Teubner, 2002.
Bitte beachten Sie:
Diese Seite beschreibt ein Modul gemäß dem im Wintersemester 2021/22 aktuellsten gültigen Modulhandbuch. Die meisten für ein Modul gültigen Regeln werden nicht durch die Prüfungsordnung festgelegt, und können daher von Semester zu Semester aktualisiert werden. Folgende Versionen liegen im Online-Modulhandbuch vor:
- WiSe 2016/17
- SoSe 2018
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
- WiSe 2023/24
Das Modulhandbuch enthält alle Module, unabhängig vom aktuellen Veranstaltungsangebot, vergleichen Sie dazu bitte das aktuelle Vorlesungsverzeichnis in Marvin.
Die Angaben im Online-Modulhandbuch wurden automatisch erstellt. Rechtsverbindlich sind die Angaben der Prüfungsordnung. Wenn Ihnen Unstimmigkeiten oder Fehler auffallen, sind wir für Hinweise dankbar.