Main content
CS 627 — Advanced Algorithmics
(dt. Höhere Algorithmik)
| Level, degree of commitment | Specialization module, depends on importing study program |
| Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
| Credit points, formal requirements |
9 CP Course requirement(s): Successful completion of at least 50 percent of the points from the weekly exercises as well as at least 2 presentations of the tasks. Examination type: Oral examination (individual examination) |
| Language, Grading |
English,The grading is done with 0 to 15 points according to the examination regulations for the degree program M.Sc. Computer Science. |
| Subject, Origin | Computer Science, M.Sc. Computer Science |
| Duration, frequency |
One semester, irregular |
| Person in charge of the module's outline | Prof. Dr. Sebastian Wild |
Contents
Translation is missing, sorry. German original:
- Approximationalgorithmen
- Parametrisierte und Exakte Algorithmen
- Randomisierte Algorithmen
- Linear Programming, Primal-Dual-Algorithmen
- Komplexitätstheorie
Qualification Goals
Translation is missing, sorry. German original:
Die Studierenden
- können Algorithmen für Berechnungsprobleme aus verschiedensten Anwendungskontexten entwerfen,
- können für ein konkretes Berechnungsproblem einen adäquaten algorithmischen Ansatz aus einer Reihe fortgeschrittener algorithmischer Techniken auswählen,
- können die Güte von Algorithmen in verschiedenen Analysemodellen beurteilen,
- können die algorithmische Schwierigkeit von Berechnungsproblemen nachweisen.
Prerequisites
None. The competences taught in the following modules are recommended: either Algorithms and Data Structures or Practical Informatics II: Data Structures and Algorithms for Pre-Service-Teachers, Efficient Algorithms.
Recommended Reading
- J. Hromkovič: Algorithmics for Hard Problems.
- Cygan et al. Parameterized Algorithms. Springer Verlag, 2015.
- J. Flum, M. Grohe: Parametrized Complexity Theory.
- M. Mitzenmachen, E. Upfal: Probability and Computing - Randomized Algorithms and Probabilistic Analysis.
- S. Arora, B. Barak: Computation Complexity - A Modern Approach.
- V. Vazirani: Approximation Algorithms.
- Kleinberg, Tardos. Algorithm Design. Pearson/Addison-Wesley, 2006.
- Skiena, Steven S. The Algorithm Design Manual. Springer Verlag, 2008.
- Williamson, Shmoys. The Design Of Approximation Algorithms. Cambridge University Press, 2011.
Please note:
This page describes a module according to the latest valid module guide in Winter semester 2025/26. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- Winter 2016/17 (no corresponding element)
- Summer 2018 (no corresponding element)
- Winter 2018/19 (no corresponding element)
- Winter 2019/20
- Winter 2020/21
- Summer 2021
- Winter 2021/22
- Winter 2022/23
- Winter 2023/24
- Winter 2025/26
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.