Main content
This entry is from Winter semester 2016/17 and might be obsolete. No current equivalent could be found.
M.Sc. Mathematics — Specialization Modules in Mathematics
In this area of study, modules totaling 51 LP must be selected. At least 18 LP must be acquired in modules on Pure Mathematics (marked with an "R") and at least 12 LP in modules on Applied Mathematics ("A"). In addition, a maximum of two advanced or business mathematics application modules may be taken. The business mathematical application modules ("A*") count towards applied mathematics.
List of modules in this area of study:
Sorted: alphabetical, by classification, by level and CP
- Actuary Science: Mathematics of Indemnity Insurance (Specialization module, 3 CP, A*)
- Actuary Science: Risc Theory (Specialization module, 3 CP, A*)
- Adaptive Numerical Methods for Operator Equations (Specialization module, 6 CP, A)
- Advanced Module Algebra/Number Theory/Geometry (6 ECTS) (Advanced module, 6 CP, R)
- Advanced Module Algebra/Number Theory/Geometry (9 ECTS) (Advanced module, 9 CP, R)
- Advanced Module Analysis/Topology (6 ECTS) (Advanced module, 6 CP, R)
- Advanced Module Analysis/Topology (9 ECTS) (Advanced module, 9 CP, R)
- Advanced Module Numerical Mathematics/Optimization (9 ECTS) (Advanced module, 9 CP, A)
- Advanced Module Numerical Mathematicss/Optimization (6 ECTS) (Advanced module, 6 CP, A)
- Advanced Module Stochastics (6 ECTS) (Advanced module, 6 CP, A)
- Advanced Module Stochastics (9 ECTS) (Advanced module, 9 CP, A)
- Algebraic Equations and Varieties (Specialization module, 9 CP, R)
- Algebraic Geometry: Advanced Methods (Specialization module, 9 CP, R)
- Algebraic Geometry: Projective Varieties (Specialization module, 9 CP, R)
- Algebraic Lie Theory (Specialization module, 9 CP, R)
- Algebraic Topology (Specialization module, 9 CP, R)
- Algebraic Topology (Small Specialization Module) (Specialization module, 6 CP, R)
- Analytic Number Theory (Specialization module, 9 CP, R)
- Applied Algebraic Geometry (Specialization module, 6 CP, R)
- Applied Functional Analysis (Specialization module, 9 CP, A)
- Approximation Theory (Specialization module, 9 CP, A)
- Asymptotical Statistics (Specialization module, 3 CP, A)
- Combinatorics (Large Specialization Module) (Specialization module, 9 CP, R)
- Combinatorics (Small Specialization Module) (Specialization module, 6 CP, R)
- Commutative Algebra (Large Specialization Module) (Specialization module, 9 CP, R)
- Commutative Algebra (Small Specialization Module) (Specialization module, 6 CP, R)
- Compressive Sensing (Specialization module, 6 CP, A)
- Computer Aided Geometric Design (Specialization module, 6 CP, A)
- Differential Geometry I (Specialization module, 9 CP, R)
- Differential Geometry II (Specialization module, 9 CP, R)
- Discrete Geometry (Advanced module, 6 CP, R)
- Discrete Mathematics (Advanced module, 9 CP, R)
- Elementary Algebraic Geometry (Advanced module, 9 CP, R)
- Elementary Stochastics (Advanced module, 9 CP, A)
- Elementary Topology (Advanced module, 6 CP, R)
- Extreme value theory (Specialization module, 6 CP, A)
- Financial Mathematics I (Advanced module, 6 CP, A*)
- Financial Mathematics II (Specialization module, 6 CP, A*)
- Financial Optimization (Specialization module, 6 CP, A*)
- Finite Frames (Specialization module, 6 CP, A)
- Functional Analysis (Advanced module, 9 CP, R)
- Galois Theory (Specialization module, 9 CP, R)
- Holomorphic Functions and Abelian Varieties (Specialization module, 9 CP, R)
- Introduction to Complex Geometry (Specialization module, 9 CP, R)
- Lie Groups and Lie Algebras (Advanced module, 9 CP, R)
- Mathematical Data Analysis (Advanced module, 9 CP, A)
- Mathematical Statistics (Specialization module, 9 CP, A)
- Mathematics of personal insurance: Health insurance (Specialization module, 3 CP, A*)
- Mathematics of personal insurance: Life insurance (Specialization module, 3 CP, A*)
- Non-Parametric Statistics (Specialization module, 6 CP, A)
- Noncommutative Algebra (Specialization module, 9 CP, R)
- Nonlinear Optimization (Specialization module, 9 CP, A)
- Numerical Solution Methods for Differential Equations (Specialization module, 9 CP, A)
- Numerical Solution Methods for Elliptical Partial Differential Equations (Specialization module, 6 CP, A)
- Numerical Solution Methods for Finite Dimensional Problems (Specialization module, 9 CP, A)
- Optimization (Advanced module, 9 CP, A)
- Partial Differential Equations (Specialization module, 9 CP, R)
- Probability Theory (Specialization module, 9 CP, A)
- Quantitative Risk Management (Specialization module, 6 CP, A)
- Regularity Theory of Elliptic Partial Differential Equations (Specialization module, 6 CP, A)
- Representation Theory (Advanced module, 9 CP, R)
- Selected Topics on Financial Mathematics (Specialization module, 3 CP, A*)
- Special Methods for Initial Value Problems (Specialization module, 6 CP, A)
- Specialization Module Algebra/Number Theory/Geometry (6 ECTS) (Specialization module, 6 CP, R)
- Specialization Module Algebra/Number Theory/Geometry (9 ECTS) (Specialization module, 9 CP, R)
- Specialization Module Analysis/Topology (6 ECTS) (Specialization module, 6 CP, R)
- Specialization Module Analysis/Topology (9 ECTS) (Specialization module, 9 CP, R)
- Specialization Module Numerical Mathematics/Optimization (6 ECTS) (Specialization module, 6 CP, A)
- Specialization Module Numerical Mathematics/Optimization (9 ECTS) (Specialization module, 9 CP, A)
- Specialization Module Optimization (6 ECTS) (Specialization module, 6 CP, A)
- Specialization Module Optimization (9 ECTS) (Specialization module, 9 CP, A)
- Specialization Module Stochastics (3 ECTS) (Specialization module, 3 CP, A)
- Specialization Module Stochastics (6 ECTS) (Specialization module, 6 CP, A)
- Specialization Module Stochastics (9 ECTS) (Specialization module, 9 CP, A)
- Spectral and Scattering Theory (Specialization module, 9 CP, R)
- Statistics (Advanced module, 6 CP, A)
- Stochastic processes (Specialization module, 6 CP, A)
- Stochastical Analysis (Specialization module, 9 CP, A)
- Time Series Analysis (Specialization module, 6 CP, A)
- Topology (Advanced module, 9 CP, R)
- Wavelet Analysis I (Specialization module, 6 CP, A)
- Wavelet Analysis II (Specialization module, 6 CP, A)
Please note:
This page applies to the most current examination regulations in Winter semester 2016/17. If you are studying according to an earlier or later examination regulation other provisions may apply:
- Winter 2016/17
- Summer 2018 (no corresponding element)
- Winter 2018/19 (no corresponding element)
- Winter 2019/20 (no corresponding element)
- Winter 2020/21 (no corresponding element)
- Summer 2021 (no corresponding element)
- Winter 2021/22 (no corresponding element)
- Winter 2022/23 (no corresponding element)
- Winter 2023/24 (no corresponding element)
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.